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Kondo physics in transport through a quantum dot with Luttinger-liquid leads
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We study the gate voltage dependence of the linear conductance through a quantum dot coupled to one-
dimensional leads. For interacting dot electrons but noninteracting leads Kondo physics implies broad plateau-
like resonances. In the opposite case Luttinger-liquid behavior leads to sharp resonances. In the presence of
Kondo as well as Luttinger-liquid physics and for experimentally relevant parameters, we find a line shape that

resembles the one of the Kondo case.
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Electron correlations can strongly alter the low-energy
physics of many-electron systems. The Kondo effect and
Luttinger-liquid (LL) behavior are two of the most prominent
examples, both affecting electron transport through a quan-
tum dot coupled to one-dimensional (1D) leads.

For noninteracting leads the appearance of Kondo physics
was investigated theoretically for the (two-lead) single impu-
rity Anderson model (STAM).! At small temperatures T and
for sufficiently large U/I" the Kondo effect leads to a reso-
nance in the linear conductance G(Vg) with an unusual broad
plateaulike line shape replacing the Lorentzian resonance (of
width 2I") known from tunneling at U=0. Here U denotes
the local interaction on the dot, I'=I"; +I'; measures the hy-
bridization of the dot and (left and right) lead states, and V,
is the gate voltage applied to the dot region. On resonance
the number of dot electrons is odd, implying a local spin-1/2
degree of freedom on the dot that is responsible for the
Kondo effect.? For T—0 the resonance height approaches
2(e?/h)4T T g/ (T +T g)*>—i.e., the unitary limit for symmet-
ric dot-lead couplings—and its width is of order U.>* For the
SIAM at T=0, G is proportional to the one-particle spectral
weight of the dot at the chemical potential u.* Varying V,
within an energy range of order U the Kondo resonance of
the spectral function is pinned at (close to) u and has a fixed
height?> which explains the broad plateaulike resonance in
G(V,). A series of transport experiments on quantum dots
was interpreted in the light of these results.’

The line shape of G(V,) is equally strongly affected by
the correlations in the 1D leads if the Kondo effect is sup-
pressed. This can be achieved considering one of three cases:
no spin degeneracy on the dot, no interaction on the dot, and
spinless fermions. The low-energy physics of 1D wires of
interacting electrons is characterized by a vanishing quasi-
particle weight and power-law scaling of correlation func-
tions known as LL behavior.® In the case of spin-rotation-
invariant interactions (and spinless fermions) all exponents
can be expressed in terms of a single LL parameter K, that
depends on the interaction, the filling factor n, and other
details of the model considered. For repulsive interactions,
K,<1. At T=0 and for finite LL leads the resonances at V/,
have approximately Lorentzian shape. For a spinful model
and symmetric dot-lead couplings, G(V2)=2e2/ h. At asymp-
totically large N, where N is the length of the LL leads, the
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width w vanishes as a power law, in strong contrast to the
broad resonances induced by the Kondo effect. At asymmet-
ric couplings there are still resonances but limy_,.. G=0 also
at V.7

The problem of a single spin 1/2 coupled to a LL was
investigated generalizing the Kondo model.® However, the
very interesting question of the resonance line shape result-
ing from the competition between the two correlation effects
has not been addressed so far. Here we will investigate this
fundamental issue. We study three cases using an approxi-
mate method that is based on the functional renormalization
group (fRG) (Ref. 9): (a) noninteracting leads, interacting
dot; (b) LL leads, noninteracting dot; (c) LL leads, interact-
ing dot. We focus on 7=0. Unless otherwise stated we con-
sider symmetric dot-lead couplings. For case (a) we repro-
duce the pinning of spectral weight at w and thus the
plateaulike resonance. For case (b) we confirm the expected
LL line shape of the resonances. Some emphasis is put on the
two-particle backscattering that for spinful particles plays an
important role on intermediate length scales. The results
show that the aspects of Kondo and LL physics essential to
answer the above question are captured by our method. For
case (c) we show that for LL leads of experimentally acces-
sible length the line shape resembles the one of case (a). Our
results indicate that the plateaus vanish for N — .

The model we investigate is given by the Hamiltonian

H:Hkin+Hint+Hbar+Hgate’ (1)
with the kinetic energy
Hign=—12 2 (C,T,UCJ'H,U"' H.c.),
=1, j=—

the interaction

N N-1
_ y_
Hin = 2‘; Ujnj i, + E{ Ujnjijss s
J=

Jj=

Whe‘re n; ;=n; ,~v (see below) and 7;=i; ;+7; |, the tunnel
barriers
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Hbarz(t_t,) 2 (C}-I—I,O'Cj],O'+C]I o /+I o-+HC)
o=1,|

and the part containing the gate voltage

Jr
Hgate= Vg 2 2 nj o

o=1.1 j=j;

Standard second-quantized notation is used. The interaction
is restricted to a finite part of the wire (j e[1,N]) corre-
sponding to an experimental setup where the LL wires are
connected to (higher-dimensional) Fermi-liquid (FL) leads.
The model with Hy;,+H;, and interaction on all sites is
known as the extended Hubbard model. Away from half-
filling—that is, for n# 1—it is a LL at least for sufficiently
weak repulsive interactions. Very accurate results for K,
were recently obtained numerically.!” We allow the on- 51te
U;=0 and nearest-neighbor U’ ;=0 interactions to depend on
position. By turning on the interaction adiabatically over a
few tens of lattice sites we can suppress any electron back-
scattering at the FL-LL contacts, which we are here not in-
terested in.!" The constant bulk values of U; and U are
denoted by U and U’, respectively. We can choose different
interactions in the leads and on the dot sites (j € [j;,/,] with
Np=j,—j;+1) and thus model cases (a)—(c). As long as j; and
Jj are sufficiently far away from the contacts at sites 1 and N
the position of the dot does not play a role. In H;, we shifted
n;, by the parameter v=v(n,U,U’) which is chosen such
that on sites 1 to NV, but excluding the dot region, the average
density n acquires the desired value.!' This is important as
K, depends on n. The tunnel barriers are modeled by reduced
hoppings ¢’ <t across the bonds linking the sites j,—1, j; and
j r ] rt L.

At temperature 7=0 the linear conductance of the system
described by Eq. (1) can be written as'?

2¢? 5
G(V,,N) = 7|I(O,Vg,N) ,

2)

with the effective transmission |1(e,V,,N)|*=(4r*~[e
+u])|G) a(e,V,.,N)[>. The (spin-independent) one-particle
Green function G has to be computed in the presence of an
interaction and in contrast to the noninteracting case acquires
an N dependence. In the notation used in the following we
suppress the argument N in G. To determine G we use a
recently developed fRG scheme. The starting point is an ex-
act hierarchy of differential flow equations for the self-
energy matrix 3" and higher-order vertex functions, where
A € (,0] denotes an infrared energy cutoff which is the
flow parameter. We truncate the hierarchy by only consider-
ing the one- and two-particle vertices. The two-particle ver-
tex is projected onto the Fermi points and parametrized by a
static effective interaction with local and nearest-neighbor
parts. This implies a frequency-independent 3. A detailed
account of our method was given in Refs. 11 and 14. Using
the Dyson equation an approximate expression for G y is
obtained from 3 taken at the end of the fRG flow at A=0.
Generically the order-N coupled differential equations can
only be integrated numerically. For a variety of transport
problems through inhomogeneous LL’s it was shown earlier
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FIG. 1. Upper panel: conductance as a function of V, for the
SIAM at different U/T". Lower panel: average number of electrons
on the dot.

that our method leads to reliable results for weak to interme-
diate interactions.!!-14-1

Case (a): noninteracting leads, interacting dot. We focus
on Np=1 for which our model reduces to the SIAM and here
(for N=1) approximate the two-particle vertex by the bare
interaction. Without LL leads, v only shifts the position of
the resonance. We chose v=1/2 for which G(Vg) is symmet-
ric around 0. The set of flow equations reduces to a single

one for the effective on-site energy VA=V, +2§X Jp On the dot
site jp. It reads
a uvMm
—VA=— = ReG  (iIN)=—F—, 3
oA Gipip(tA) = (A+1)2+ (VA2 ®)

with the initial condition VA= *=V, and the hybridization I
=2t"%p, where p denotes the spectral weight at the end of
the leads. As usual we here assume an energy-independent p
(infinite-bandwidth limit).”> Note that in this case U can be
taken as the unit of energy. The upper panel of Fig. 1 shows
G(V,) for different U/T". For U>T" we recover the plateau-
like resonance of unitary height.’ Also for asymmetric dot-
lead couplings we reproduce the exact height of the plateau.
The occupation of the dot can be computed from the Green
function and is shown in the lower panel. In the plateau
region it turns out to be close to 1 while it sharply rises
(drops) to 2 (0) to the left (right) of the plateau. Our dot
self-energy is frequency independent which leads to a
Lorentzian dot spectral function of width 2I" and height
1/(7T) centered around V=VA=0, This implies that the spec-
tral weight at w and thus G(V,) is determined by V.* The
solution of the differential equation (3) at A=0 is obtained in
implicit form

vJi(v) = 8Jy(v) _ Jo(v,)
vY(v) - 5Y0(U) YO(U ),

with v=V7/U, v,=V, 7T/U 6=I'm/U, and Bessel functions
J,. Y,. For =V.m/U being the first zero of
Jo—ie., V. 0 7655U—this equation has a solution with a
small |V| For U>T the crossover to a solution with |V]
being of order U (for |V,|>V,) is fairly sharp. Expanding
both sides of Eq. (4) for small [v| and [v,| gives V=V,
Xexp[-U/(wl")]. The exponential pinning of the spectral
weight at u=0 for small |V | and the sharp crossover to a V
of order U when |V | >V, leads to the observed resonance
line shape. For U >F the width of the plateau is 2V.

(4)
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FIG. 2. Upper panel: G(V,) for a noninteracting dot with LL
leads at different N. The parameters are Np=1, t'=0.17, n=3/4,
U=t, and U’'=0.65¢ (small two-particle backscattering). Lower
panel: scaling of the resonance width. Solid circles: the same pa-
rameters as in the upper panel. Open circles: Np=1, t'=0.1¢, n
=1/2, U=t, and U’ =0 (large two-particle backscattering).

=1.531U, which is larger than the width U found with Bethe
ansatz.’ The agreement has been improved significantly us-
ing a more elaborate fRG scheme, as will be explained in an
upcoming paper (see also Ref. 17). In the present context,
however, this difference is a minor issue. It is remarkable
that our technically fairly simple approximation reproduces
the pinning of spectral weight, which is an important feature
of Kondo physics. This has to be contrasted with other
simple approximations as, e.g., low-order perturbation theory
or the self-consistent Hartree approximation, which do not
give the correct line shape of G(V,).

Case (b): LL leads, noninteracting dot. Using the fRG-
based approximation, we have earlier studied tunneling
through a quantum dot embedded in a spinless LL. We
showed that for N— o the resonance width w vanishes fol-
lowing a power law with a K ,-dependent exponent. Also the
case of asymmetric dot-lead coupling was investigated.!! In-
cluding the spin degree of freedom the physics becomes
more complex due to the possibility of two-particle scatter-
ing of electrons with opposite spin at opposite Fermi points.
This limits power laws to exponentially large length scales.
To clearly observe LL behavior at experimentally accessible
scales one has to consider a situation in which this back-
scattering process is small. In our model for fixed n and U
this can be achieved by fine-tuning U’.'* In the upper panel
of Fig. 2 we show the N dependence of G(V,) for a single-
site dot computed for a small backscattering amplitude. At
resonance voltage V;, the conductance is 2¢%/h independent
of N. In the lower panel the extracted w (solid circles) is
shown as a function of N. It follows the power law N»=172
(Ref. 7), with an fRG approximation to the LL parameter K ,,
which is correct to leading order in the interaction.”!!14.16
E.g., for n=3/4, U=t, and U'=0.65¢ we find Kp=0.76, in
excellent agreement with the numerical result Kp=0.7490.10
Off resonance G asymptotically vanishes *N 1=K, 7.11 For v,
close to V; such that 1-G/(2¢*/h)<1, the deviation from
the unitary limit scales as N'-Kp characteristic for a weak
single impurity. Further increasing N this difference in-
creases and the behavior eventually crosses over to the off-
resonance power-law suppression of G discussed above. Due
to an exponentially large crossover scale, even for the very
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FIG. 3. Upper panel: G(V,) for an interacting dot with LL leads.

The parameters are n=1/2, U=t, U’ =0.5¢t, N=10* N,=6, and t'
=0.1¢. Lower panel: average number of electrons on the dot.

large N accessible with our method the complete crossover
from one to the other power law cannot be shown for a
single fixed V, but follows from one-parameter scaling.”!"
At sizable backscattering the off-resonance conductance and
thus the width w first slightly increase for increasing
N—becoming larger than the noninteracting width—as
shown by the open circles in the lower panel of Fig. 2. For
larger N both quantities start to decrease and eventually go to
zero for exponentially large N. The backscattering process
scales to zero (only) logarithmically in the low-energy limit,
and power-law behavior cannot be observed even for fairly
long LL leads.'* An upper bound of the length of one-
dimensional wires realized in experiments is of the order of
wum, roughly corresponding to 10* lattice sites.'®

Case (c): LL leads, interacting dot. We here focus on the
case in which the interactions on the dot and in the LL leads
are taken to be equal. In the upper panel of Fig. 3, G(V,) is
shown for a parameter set with sizable two-particle back-
scattering and LL lead length N=10* typical for experiments.
For interactions large compared to the hybridization we find
the broad plateaulike resonances induced by the Kondo ef-
fect, at least for finite LL leads. The same holds for other Ny,
in particular for Np=1. The width of the plateaus is propor-
tional to the local component of the effective interaction at
the end of the fRG flow and to 1/Np. Here we are interested
in the interplay of Kondo and LL physics and thus focus on
tunnel barriers with small transmission. In the plateau re-
gions the number of electrons on the dot (lower panel) is odd
while it is even for gate voltages where G is small. The upper
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FIG. 4. Upper panel: G(Vg) for an interacting dot with LL leads
at different N. The parameters are as in the upper panel of Fig. 2,
but with interaction on the dot. Lower panel: scaling of G/(2¢*/h)
at V,=0 outside the plateau (circles) and of 1-G/ (2¢%/h) on the
plateau at V,=-0.685¢ (squares).
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panel of Fig. 4 shows the N dependence of G(V,) computed
for the same parameters as in the upper panel of Fig. 2 (small
backscattering), but including the interaction on the dot.
Note the different V,-axis scales of Figs. 2 and 4. In Fig. 4
the differences between the curves for different N are barely
visible; in particular, the changes of the resonance width are
marginal. For parameters with sizable backscattering, as in
Fig. 3, the difference between curves computed for different
N are even smaller. To analyze the N dependence at small
backscattering in more detail in the lower panel of Fig. 4 we
show the scaling of G for a gate voltage outside the plateau
(circles) and of 2¢?/h—G for a gate voltage on the plateau-
like resonance (squares). For V, outside the plateau G fol-
lows a power law with the exponent 1—K;l and G vanishes
for N—o. Within every plateau we find a V;, at which G
=2¢*/h independent of N. For V,# V;, still within the pla-
teau, the deviation of G from the unitary limit scales as
N'"Ko—ie., with the weak single impurity exponent. This
shows that any deviation from V; acts as an impurity. By
analogy with the single impurity behavior’-'* we conclude
that in the asymptotic low-energy limit the impurity will ef-
fectively grow and for N— o the plateaus will vanish. For
infinitely long LL leads the resonances are infinitely sharp
even in the presence of Kondo physics. However, for ¢’
< U the plateaus at finite N are well developed and the
length scale on which they start to deteriorate is extremely
large.

Also for asymmetric dot-lead couplings we find (almost)
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plateaulike resonances. To discuss this in more detail we fo-
cus on typical parameters with N=~10* and an asymmetry
I’ /Tx=2. Then the width is almost unaffected by the asym-
metry. For the interaction and filling as in Fig. 4 (small back-
scattering) the height within the plateaus varies by a few
percent (with maxima at the left and right boundaries) and
has an average value of =~0.85(2¢%/h). For sizable back-
scattering the difference to the symmetric case is even
smaller. With increasing N the variation of the conductance
on the plateaus increases and the average value decreases.
We expect that for N— o the resonances disappear.

In summary, we studied how the linear conductance
through a quantum dot is modified in the presence of both
Kondo physics and LL leads. Using an approximate method
that is based on the fRG we investigated the dependence of
G on the gate voltage as well as the length N of the LL leads.
We found that for all experimentally accessible length scales
and for typical left-right asymmetries of the dot-lead hybrid-
izations the plateaulike resonances characteristic for Kondo
physics will also be present if the leads are LL’s. The pla-
teaus are more pronounced if the two-particle backscattering
is sizable, although they disappear for N — oo,
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