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We study the size dependence of thermal conductivity in nanoscale semiconducting systems. An analytical
formula including the surface scattering and the size confinement effects of phonon transport is derived. The
theoretical formula gives good agreements with the existing experimental data for Si and GaAs nanowires and
thin films.
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It is of great importance from both fundamental and ap-
plication point of views to understand heat conduction in
nanoscale materials. On one hand, many fundamental ques-
tions remain open, such as whether the thermodynamical
laws still apply to the nanoscale materials which are charac-
terized by finite number of atoms/molecules, while the ther-
modynamics is established on the fact that the system con-
tains infinite large number of molecules. On the other hand, a
continuous miniaturization and increase of running speed of
semiconductor devices will give rise to redundant heat that
will deteriorate the devices’ efficiency.1 How to dissipate the
heat from these devices becomes a crucial issue in heat man-
agement.

Generally, two approaches are used in studying heat con-
duction in such low-dimensional systems of finite size. At
first, in order to understand the physical mechanism of heat
conduction in such systems, many one-dimensional �1D� lat-
tice models with and without on-site �pinning� potential are
used such as the Fermi-Pasta-Ulam �FPU� model2 without
on-site potential, and the Frenkel Kontoroval �FK� model
and the �4 model with on-site potential.3 More recently, a
polymer model with transverse motion has been introduced
and studied both analytically and numerically.4 All these
models nicely demonstrate the role of anharmonicity and the
role of on-site potential in 1D heat conduction. They are
useful in helping us understand the fundamental law of heat
conduction, the Fourier law. In the system without on-site
potential, a size-dependent thermal conductivity has been
observed,2 which is attributed to a superdiffusive motion of
phonons.5 However, such models are too simple to be used
for modeling heat conduction in realistic nanostructures, be-
cause the heat conduction in such models is restricted to 1D
or quasi-1D, the scattering of phonons from surfaces is com-
pletely neglected.

Another popular approach employs the Boltzmann trans-
port equation, which can explain the bulk transport phenom-
ena well. However, as we know that for nanostructures, both
the effects of phonon confinement and nonequilibrium pho-
non distribution due to boundary scattering are important.
Indeed, recent theoretical and experimental investigation
demonstrates a size-dependent behavior of lattice vibration
of nanostructures.6 Experimental measurements also show
that thermal conductivity of semiconducting nanowires and

thin films is smaller than the corresponding bulk value.7–10

However, a general satisfactory theory to give a prediction
agreed with existing experimental results at room tempera-
ture is not available yet.

In this paper, we propose a phenomenological theory for
the size dependence of thermal conductivity by taking into
account the intrinsic size effect of phonon velocity, mean
free path, and the surface scattering effect. An explicit ana-
lytic expression is obtained, in which all parameters have
clear physical meaning, and good agreements with the exist-
ing experiments are found. The different roles of two basic
effects in the different size range are illustrated.

We start with the well-known kinetic formula of thermal
conductivity � for bulk dielectric materials,11

� =
1

3
c�l , �1�

where c is the specific heat, � the average phonon velocity,
and l the mean free path �MFP�. We assume that phonons
predominate the thermal conduction, which is true for semi-
conductors or insulators discussed here. For thermal conduc-
tivity of nanomaterials, we first consider the size dependence
of � and l. The specific heat is assumed to be constant and
the room temperature is applied in this paper. The average
phonon velocity is proportional to the characteristic Debye
temperature of crystals,12,13

� �
2h

�kB
� 3NA

4�V
�1/3

� �2�

with the Planck constant h, the Boltzmann constant kB, the
Avogadro constant NA, and the molar volume V. The system
considered is assumed to be isotropic.

In the following discussion, we suppose Eq. �2� is valid
for the corresponding nanoscale crystals. Let L be the size of
nanostructures, such as the diameter of nanowires or the
thickness of thin films, the L→	 limit is denoted by using
the subscript b which means the corresponding bulk limit,
the size dependence of the phonon velocity is equal to that of
the Debye temperature, we thus have, �L /�b=�L /�b.

From the Lindemann’s proposition, we may get the rela-
tionship between the melting point and the Debye tempera-
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ture of crystals. In 1910, Lindemann proposed a melting cri-
terion, known to be valid for small particles,14 stating that a
crystal will melt when the root mean square displacement
�MSD� 
 of atoms in the crystal exceeds a certain fraction of
the interatomic distance.15 Combining with the Einstein spe-
cific heat theory, the square of the characteristic temperature
is proportional to the melting point Tm of crystals, and the
modern form of this relation for the Debye temperature is11,16

� = const . � Tm

MV2/3�1/2

�3�

with the molecular mass M. According to the same relation
for nanocrystals,

�L
2/�b

2 = TL
m/Tb

m. �4�

Combining the Lindemann melting formula and the De-
bye expression for thermal conductivity, eliminating the De-
bye temperature and the sound velocity, it can be deduced
that the MFP is proportional to the melting point at a given
absolute temperature T, l�20Tma / ��2T� with the lattice con-
stant a and the Gruneisen constant �.11,17 Similarly, the same
relation is assumed for nanocrystals, we have

lL/lb = TL
m/Tb

m. �5�

From Eqs. �1�, �2�, �4�, and �5�, we obtain an expression
for the size-dependent thermal conductivity of nanosemicon-
ductors �TL

m /Tb
m�3/2. Moreover, based on the fact of the size-

dependent atomic thermal vibrations, the relations among the
atomic MSD 
2, the Debye temperature and the melting
point, the size-dependent melting temperature function of
nanocrystals has been modeled and validated as follows18

TL
m/Tb

m = �
b/
L�2 = exp�− �� − 1�
L/L0 − 1

� , �6�

where ���
s
2 /
i

2� is a material constant with 
s
2 and 
i

2 cor-
responding to the MSD of surface atoms of a crystal and that
of atoms within the crystal, respectively. For the free-
standing nanocrystals, �=2Sv / �3R�+11 with the bulk vi-
brational entropy Sv of melting and the ideal gas constant R18

based on the Mott’s expression for the vibrational entropy
and its relation with the melting point.13,19 L0 is a critical size
at which almost all atoms of a crystal are located on its
surface, L0=2�3−d�w with the atomic/molecular diameter w
and the dimension d=0,1, and 2 for nanoparticles, nano-
wires and thin films, respectively.18 Note that the two basic
assumptions in the model of the size-dependent atomic ther-
mal vibrations of nanocrystals are: �1� Although 
s

2 and 
i
2

are considered to be size-dependent �the phonon softening is
considered to occur not only on the surface but also in the
interior for small size crystals�, �, the ratio between them, is
taken approximately as a size-independent value; �2� the co-
operative coupling between the surface region and the inte-
rior region is considered phenomenologically by taking the
variation of 
2 to be dependent on the value of itself, 
2 is
the average MSD over the crystal with the respective weight
of 
s

2 and 
i
2.18 With the above consideration, a change in 
2

can be given by 
2�x+dx�−
2�x�= ��−1�
2�x�dx, where the
surface-volume ratio x=L0 / �L−L0�. By integrating the above

equation, the size-dependent MSD was obtained as shown in
Eq. �6�. According to 
2�T /�2 in the high temperature ap-
proximation �T� /2�16,20 and Eq. �4�, 
b

2 /
L
2 =�L

2 /�b
2

=TL
m /Tb

m. Equation �6� indicates that the melting point
and thus the thermal conductivity decreases with reducing
size L of nanocrystals, it is valid for crystals of L�2L0 with
2L0 representing a characteristic length scale for the
crystallinity.18

The above discussion on the thermal conductivity of
nanostructures, based on the effective bulk formula, includes
the intrinsic size effect of the phonon velocity and the MFP.
The phonon-phonon interaction increases with size reduction
due to the confinement, which causes the increase of thermal
resistance and the decrease of heat conduction. On the other
hand, as the size decreases and the surface-volume ratio in-
creases, the large surface/interface scattering, corresponding
to certain boundary conditions in the linearized Boltzmann
equation, has great influence on the transport. Considering
the nonequilibrium phonon distribution due to boundary
scattering, the effect of the surface roughness with the
boundary scattering shows an exponential suppression in the
distribution and the conduction.11,21 Therefore, a term
p exp�−l0 /L� is added to correct the bulk formula, where p is
a factor reflecting the surface roughness, l0 is the phonon
MFP in the Debye model at room temperature and assumed
to be a constant here since we have considered the size effect
in the above discussion. l0 /L corresponds to the Knudsen
number of the phonon Knudsen flow induced by the interface
scattering.21 Finally, the size-dependent thermal conductivity
is obtained as

�L

�b
= p exp�−

l0

L
��exp�− �� − 1�

L/L0 − 1
�	3/2

. �7�

This is the central result of this paper. It gives a quantita-
tive prediction for the size-dependent thermal conductivity.
0� p�1. The larger value of p corresponds to the smaller
roughness, i.e., the smoother surface, thus the more probabil-
ity of specular scattering, vice versa, the smaller p corre-
sponds to the more probability of diffusive scattering. The
smaller L corresponds to the relatively larger surface rough-
ness usually and thus the smaller p. p depends greatly on
fabrication precision of nanostructures, its physical meaning
will be discussed further later on. When system size de-
creases, the value of exp�−l0 /L� decreases, which reflects the
increase of the interface scattering and thus the weakened
conduction. From the point of view of the bulk approach,
there are two asymptotic limits to be satisfied by Eq. �7�:
L→	 and p→1,�L→�b; L→L0 or p→0,�L→0. In Fig. 1,

TABLE I. Parameters used in Eq. �7� for predictions in this
paper. �=2Sv / �3R�+1, Sv=Sm−R �Ref. 22� and Sm=Hm /Tm with
the bulk melting entropy Sm, enthalpy Hm and temperature Tm. L0

=4w, and 2w for nanowires and thin films, respectively.

Hm�KJ mol−1� Tm�K� w �nm� l0 �nm�

Si 50.5523 168523 0.336824 4125

GaAs 12026 151126,28 0.24527 5.828
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we show �L /�b versus system size L for different roughness
parameter p. The thermal conductivity spans a wide range, in
which our prediction at p=0.7 for L�100 nm is consistent
with the previous theoretical prediction.21 The intrinsic size
effect decreases the conductivity obviously when the size is
smaller than about 100 nm. The surface effect related to p
can explain why the conductivity is low even in the large
size in some case.

Figure 2 shows the size-dependent thermal conductivity
of Si nanowires and thin films from the experiments and the
comparison with our theoretical predictions from Eq. �7�
with suitable parameters p. The predictions are in good
agreements with the experimental results. For carefully
prepared Si films with thickness of 70–250 nm,9 p=0.78
corresponds with the experimental results, this large value
of p implies small diffusive scattering contribution due to
the smooth surface related with the careful preparation of
the nanostructures. For Si nanowires with diameter of
20–100 nm,8 p=0.4, reflecting the larger surface roughness
of the nanowires in the sample fabrication.

Now we turn to the underlying physical meaning of the
roughness parameter p. For the Si films with the thickness
L=100 nm, if the surface roughness �, the mean root square

deviation of height of the surface from the reference plane, is
2.2 nm, which may be the case according to the precise fab-
rication technology of monocrystalline Si layers with thick-
ness dispersion smaller than 4 nm,30 p=0.78 can be obtained
by a relation p=1–10� /L; according to this relation, if
p=0.4, � is 1.32 nm for L=22 nm, which agrees with the
experimental observation for the Si nanowires well,8 thus,
this fitted formula is valid and can be used to determine p by
measuring or estimating � of samples. The larger � for a
given L corresponds to the smaller p, i.e., the rougher surface
corresponds to the higher probability of diffusive scattering.
Therefore, carefully fabricated structures with smoother sur-
face will bring forth a larger conductivity under the same
other conditions.

Figure 2 also shows that p=0.78 is applicable for the
films spanning the size range of 20–100 nm, 70–250 nm,
and 400–1600 nm, since the decreased � can be achieved
with decreasing L. Note that the surface roughness may be
different for samples of different size even in the same ex-
periment, but it can be controlled to be fewer than tens of
nanometers generally in modern fabrication.30

Figure 3 shows the thermal conductivity of GaAs nano-
wires and thin films. The theoretical predictions with corre-
sponding p also show agreements with the experimental re-
sults from different groups. Similarly to Si nanowires,
p=0.07 is also small for GaAs nanowires,7 �L�0.1�b. It
seems that for nanowires, the thermal conduction is much
worse compared to that of the corresponding films, which
may be attributed to the restrained dimension, the surface
fabrication precision and thus the increased surface scatter-
ing. For the superlattices with thickness of 140 nm,31 p
=0.98, �L
0.9�b is very high. For the superlattices of

FIG. 1. �Color online� Size-dependent dimensionless thermal
conductivity for Si films in terms of Eq. �7�, �L /�b vs system size L
for p=0.1, 0.7, and 1, respectively. The other parameters in Eq. �7�
are given in Table I.

FIG. 2. �Color online� Size-dependent thermal conductivity of
Si nanowires and thin films at 300 K. The symbols are experimental
results, the up-triangles, circles, and down-triangles for thin films
�in-plane� cited from Refs. 9, 10, and 29, respectively, the squares
for nanowires �along the axis� �Ref. 8�. The curves are predictions
from Eq. �7�, the upper one for thin films with p=0.78, the lower
one for nanowires with p=0.4.

FIG. 3. �Color online� Size-dependent thermal conductivity of
GaAs nanowires and thin films. The star is experimental result of
nanowire with diameter about 180 nm �corresponding to the rect-
angle cross-section with the same area� at 40 K, �Ref. 7� consider-
ing the similar conductivity difference between the nanowire and
the bulk extrapolated at 300 K, the curve is prediction from Eq. �7�
with p=0.07. The diamond is experimental result of GaAs/AlAs
superlattice with thickness 140 nm �Ref. 31�, assumed as the con-
ductivity of a single GaAs film with the same thickness considering
the similar structures between GaAs and AlAs �the following is the
same�, the curve for prediction with p=0.98. The squares are ex-
perimental results of GaAs/AlAs superlattices with thickness
10–100 nm �in-plane� �Ref. 32�, the curve for prediction with
p=0.75. The circles are experimental results of GaAs/AlAs super-
lattices with thickness 5−45 nm �cross-plane� �Ref. 33�, the curve
for prediction with p=0.35.
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10–100 nm,32 p=0.75 and �L is lower. The smaller L corre-
sponds to the relatively larger surface roughness and the
smaller p, thus the lower conductivity. For the superlattices
of 5–45 nm,33 p=0.35, �L corresponds to the cross-plane
conductivity measured and is even lower. Note that this low
conductivity results also from the scattering contributions of
the multi-interface corresponding to the increased interface
roughness �, which has the weaker effect on the in-plane
conductivity. When the size decreases to about 5 nm, the
structure and energy state of these nanosolids may be differ-
ent from that of the corresponding crystals, the small size
and large surface effect may not be sufficient to describe the
physical properties of such small size structures and the
quantum effect may be dominant, the present model is not
suitable for that case. Some molecular dynamic calculation
shows the minimum with the size in the cross-plane thermal
conductivity for the thinner superlattices without roughness,
which is also theoretically attributed to a crossover between

the particle transport and the wave transport.34

In summary, we have derived a quantitative formula for
the size-dependent thermal conductivity of nanoscale semi-
conducting systems by taking into account the intrinsic size
effect and by correcting the bulk expression. The formula
relates the thermal conductivity with the system size by the
surface roughness parameter, the Knudsen number, the crys-
tallinity length scale and the atomic vibration parameter. The
model reveals the respective roles in the different size range
of two basic effects on nanoscale thermal transport, i.e., the
intrinsic size effect is predominant at the size of about
5–100 nm, and the surface scattering effect is dominant at
the larger size. The theory agrees well with the existing ex-
perimental results for Si and GaAs nanowires and thin films.
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