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We propose spintronic systems which spin dynamics is determined by the frequent normal electron colli-
sions. Spin oscillation induced by the electrical field is predicted. The hydrodynamic equations for the electron
spin-polarized liquid have been obtained and analyzed. We found that in the case of a conducting magnetic-
inhomogeneous ring, both the spin polarization and the drift current may oscillate simultaneously with a large
decay time �“spin pendulum”�. We demonstrate also that the spin polarization of the electron density may be
revealed via the voltage between the ends of the open circuit with an inhomogeneous spin polarization. The
effect may be observed both in the hydrodynamic and the diffusive regimes.
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I. INTRODUCTION

In recent years, the generation and control of nonequilib-
rium spin-polarization in nonmagnetic conductors have been
a focus of attention �see, e.g., Ref. 1�. A number of promising
methods and schemes have been proposed and discussed.
However, the effects of electron-electron scattering are not to
be used in these schemes. Our goal is to demonstrate that the
normal electron scattering offers new possibilities for the
spintronic systems. The effects of electron-electron scattering
in the spin dynamics were considered in Refs. 2–4, but not in
the case of hydrodynamic electron flow,5 when the electron-
electron scattering dominates and the electron system may be
considered as a liquid with its inherent effects.

Meanwhile, a hydrodynamic flow regime is quite real in a
low-dimensional electron gas in heterostructures �as well as
in electron systems over the liquid helium surface6�. The
main condition is the following. The transport electron mean
free path should be determined by the “normal” collisions
that conserve the total momentum of the system of interact-
ing particles. They may be electron-electron collisions �when
the umklapp processes are absent due to small sizes of the
Fermi surfaces of low-dimensional conductors� or electron-
phonon collisions7 �when phonons are tightly coupled to the
electron system�. In other words, the condition lN� lV should
be satisfied, where lN is the mean free path �m.f.p.� for the
normal collisions and lV is the m.f.p. for collisions that do
not conserve the quasimomentum.

A hydrodynamic electron flow was observed experi
mentally in a high-mobility electron gas in �Al,Ga�As
heterostructures8 �see also Ref. 9� at 1.5–20 K. For that
range of the electron temperatures, the electron-electron
m.f.p., lee, is much less than the electron m.f.p. determined
by the collisions with imperfections of the heterostructure, li.
Besides that, in the experiment,8 the phonon temperature was
much lower than the electron temperature and collisions with
phonons were inessential. The hydrodynamic regime breaks
under an increase of the temperature of the sample, because
the electron-phonon m.f.p., lep, becomes less than lee, and
phonons can remove effectively a momentum from the low-
dimensional electron system being in good acoustic contact
with the surrounding media. If, experimentally, it is possible
to provide a weak contact with the surrounding media �that
results in the conservation of the total momentum of the

electron-phonon system�, then the increasing of the tempera-
ture favors the hydrodynamic regime due to the decreasing
of the normal m.f.p., lN��lee

−1+ lep
−1�−1.

In the hydrodynamic flow regime, the state of the electron
liquid is characterized by the velocity u�r� and its density
��r�. Naturally, when our electron system is spin-polarized,
the densities of the spin components differ from each other.
In this case, the electron liquid is a two-component mixture
and the density variables have the spin indexes, i.e., ���r�.
Meanwhile, in the leading approximation, the velocity u�r�
is the same for all the spin components. The reason is that
frequent collisions between electrons with different spins
form a common drift of the electron system. Moreover, we
have to regard the electron liquid as incompressible when the
geometric size of a conductor is larger than the electron
screening radius �which is comparatively small in metals and
heterostructures� and the characteristic frequencies of the
considered processes are less than the plasma frequency. We
would like to emphasize that the incompressibility means
here that the nonequilibrium addition to the electron density
is vanishing �nevertheless, the equilibrium density may be
inhomogeneous; see discussion below�. Obviously, the in-
compressibility and the equal velocities of the spin compo-
nents lead to the following simple fact. The total current
through the channel cross section, I, does not depend on the
coordinate along the channel and it is distributed between the
spin components in proportion to their densities. Thus, the
current characteristics of the system are determined by the
value of I.

As we demonstrate below, in the conducting ring with
inhomogeneous magnetic properties the value of the total
current undergoes low-decay harmonic oscillations which
frequency depends on the characteristics of the inhomogene-
ity. The nature of these oscillations is the following. The
electron drift in the magnetic-inhomogeneous ring causes the
appearance of a nonequilibrium spin polarization, i.e., an ac-
cumulation of the nonequilibrium densities of the spin-up
and spin-down components occurs �while the total density is
conserved�. The accumulation exists until the moment when
the drift is stopped due to the interaction of the nonequilib-
rium spin density with a field that induces the inhomogeneity
of the electron spectrum. However, electrons have inertial
masses and the process will evolve back. We call this oscil-
lation process a “spin pendulum.”
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Note, the existence of the well-known hydrodynamic
waves, which frequencies are less than the plasma frequency,
is impossible here due to the Coulomb interaction. Conse-
quently, “spin-pendulum-like” oscillations are the only pos-
sible oscillations of the system in this case.

The interesting spin-electrical effect related to the non-
equilibrium spin polarization may be observed not only in
the ring but in the open circuit as well. The skewed spin
polarization causes a voltage between the ends of the open
circuit and it allows easy registering of the spin polarization.
Note, the spin-electrical effect in magnetoelectric materials
in the equilibrium inhomogeneous state was discussed early
in Ref. 10.

Note that all the aforementioned effects are possible both
in the magnetic conductors, when densities of the spin com-
ponents differ from each other initially �e.g., due to the ex-
change interaction�, and in nonmagnetic materials, when ei-
ther spin separation is due to the Rashba effect11 or is caused
by an external magnetic field. It is important that nonmag-
netic materials get magnetic properties due to the appearance
of the induced nonequilibrium spin distribution. Conse-
quently, the aforementioned steady state and dynamic effects
also exist here, but there are second-order effects. In the case
of a two-dimensional electron gas in heterostructures, the
variation of magnetic properties can be induced by a nonuni-
form gate voltage applied, which affects the Rashba effect,12

by a variation of the external magnetic field or by a space-
dependent spin injection.

II. SPIN HYDRODYNAMICS

A time-dependent distribution function f�r ,p , t� for elec-
trons at the position r and with the momentum p obeys the
Boltzmann transport equation

� f

�t
+ v

� f

�r
=

��� + e��
�r

� f

�p
+ J�f� . �1�

The hydrodynamic equations can be derived from the Bolt-
zmann transport equation by the method used in Refs. 13 and
14, taking into account that the function f�r ,p , t� depends
also on the spin index �, which corresponds to the different
spin components. It is assumed in Eq. �1� that the energy
spectrum of the current carriers depends on the coordinates,
momentum, and spin index: �=��r ,p ,��. The electrical po-
tential � appears due to the space-dependent nonequilibrium
spin density. J�f� is the scattering term and v=�� /�p is the
electron velocity.

Let us assume that momentum dissipation is vanishing
and the normal scattering processes dominate, and the fol-
lowing conditions are fulfilled: lN /L�1 and ��N�1. Here L
is the characteristic geometric size of the system, � is the
characteristic frequency of the oscillation processes in the
system, �N= lN /vF is the relaxation time corresponding to the
normal collisions, and vF is the Fermi velocity. In this case,
we may expand Eq. �1� in series in these small parameters. In
the leading approximation, we obtain the following equation:

JN�f �0�� = 0. �2�

Here JN is the part of the collision term that corresponds to
the normal collisions. The solution of Eq. �2� is the quasi-
equilibrium drift distribution

f �0� = n��� − �	� − up�, n�z� = �e�z−	�/T + 1�−1, �3�

where the drift velocity u and nonequilibrium additions to
the chemical potential �	� depend on the coordinates r and
time t �we neglect here the temperature variations�. Follow-
ing the method used in Refs. 13 and 14, we analyzed the
conditions of solvability up to the next two orders of series
expansions and have obtained the following equations for
�	� ,u, and �:

����

�t
+ div�0�u = �D̂ + F̂����, �4�

m�
�u

�t
+ �

�

�� � ��	� + e�� = �V̂ + Û�u , �5�

�
�

��� = 0. �6�

Here ��=�0�+��� is the spin-dependent density and �0� is
the equilibrium spin density. �Note that ��� is the function
on �	�, and, in the linear approximation, ���=
��	�,
where 
� is the spin-dependent density of states on the
Fermi surface.� m�= � 1

h
�rr−1��� p2�− �n

��
�drp, �=����, where

r is the dimensionality of the electron system.D̂ is the diffu-

sion operator, F̂ is the spin-flip operator, the operator V̂ re-

lates to the viscosity, and the operator Û corresponds to the
scattering with momentum dissipation �see, e.g., Refs. 13
and 14�. Note that the specific forms of these operators are
not important for us: the corresponding terms in Eqs. �4� and
�5� are small enough and we use these terms only for the
estimates. Note, both diffusion processes in the mixture of
liquids and the viscous braking of flow, see Ref. 15, are too
slow to compare with dynamic processes, which we discuss
below. This is valid when the hydrodynamic parameter, lN /L,
is small, lN /L�1; additionally, we suppose that both the
spin-flip and impurity scattering are not very effective, see
Eq. �13�.

Meanwhile, Eqs. �4�–�6� have a clear physical meaning.
Equation �4� describes the law of conservation of the number
of colliding particles, while Eq. �5� corresponds to the con-
servation of the total momentum. Equation �6� is the result of
incompressibility of the electron liquid with the Coulomb
interaction. �To derive Eqs. �4� and �5� in the form presented,
we assume that electrons have a spherical Fermi surface.�
Equations �4� and �5� are written in the linear approximation
in the drift velocity u, but the terms that contain �	� ,��� are
given in the explicit form under the assumption u→0. This
approximation is sufficient here since the nonlinear effects
will be considered for the case when the common drift is
absent.

Neglecting both the viscosity of the electron liquid and
momentum dissipation, we rewrite Eq. �4� in the following
form ��n=n��−�	��−n����:

m�
�u

�t
+ �P + e� � � + �

�
� ����n

hr drp = 0, �7�

P = �
�
� pv�n

rhr drp,
�P

��	�

= ��. �8�
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Note that, integrating Eq. �7� by parts in the momentum
space, we obtain Eq. �5�. Equation �7� is a natural generali-
zation of the Euler equation15 for the mixture of liquids in-
teracting with an external electrical field and with the field
that induces the inhomogeneity of the electron spectrum.
P��	�� is a nonequilibrium addition to the electron pressure.

In the case of a conducting ring, the electron pressure
does not cause the net effect on the electrons because
	�Pdx=0 �if our conductor is homogeneous, pressure can be
compensated by an electrical field, ���. Meanwhile, the
force ��� may cause a common drift in the ring as it acts on
the electrons which are nonequilibrium on the spin. Figure 1
illustrates the physical picture arising in the conducting ring
with the inhomogeneity of the equilibrium spin density and
explains the origin of the total force which acts on the spin-
nonequilibrium distribution: this force is caused by the elec-
tron drift along the inhomogeneous ring.

III. SPIN PENDULUM

Let us discuss the oscillation process described by Eqs.
�4�–�6�, which is related to the current I= I0ei�t, i.e., a spin
pendulum. In the linear approximation, we may solve the
problem completely and find the frequency of the oscilla-
tions,

�2 = 
 ��↑
�
��2 1


*dx�
 m

�
dx�−1

,
1


* = �
�

1


�

, �9�

u =
I

es�
, �	� = i

I

es�
�
���

�
��

,

e�� = −
i

�es
m�2

�
+ �

�

��

�
� 1


�
���

�
�����I . �10�

Here x is the coordinate along the conducting channel, the
“up arrow” corresponds to the one of spin components, s is
the cross section of the channel, which is assumed
x-independent, a prime denotes differentiation with respect
to x, and L is the length of the conducting channel �i.e., the

ring length in our case�. Note, both �	� and �� are written
here as imaginary values, which means that they oscillate
with a phase shift in the quarter of the period so as to com-
pare with the oscillation of the current I.

As is evident from Eqs. �9� and �10�, the oscillations exist
only when the relative concentration of the spin components
varies along the channel. The frequency of oscillations is
proportional to the level of the magnetic inhomogeneity, �
= ���max−��min� /�, viz.,

� � �vF�LL1�−1/2, �11�

where L1 is the characteristic scale of the spectrum inhomo-
geneity.

Initially, the oscillations of the spin pendulum could be
excited by the “magnetic push” when an external magnetic
field is switched on �much faster than �−1� and an initial
current I=es� /cm is induced �where � is the magnetic flux
through the ring�. Naturally, there are dissipation processes
in the hydrodynamic flow, which we did not take into ac-
count. They lead to the damping of the spin-pendulum oscil-
lations. It is easy to estimate the decay time,

�d � � e2�sR

mL
+

D

L1
2 +

1

�sf
�−1

, �12�

where R is the electrical resistance of the homogeneous ring.
The second term on the right-hand side of Eq. �12� is related
to the diffusion of the nonequilibrium spins through the in-
homogeneous region. In the hydrodynamic regime, the dif-
fusion coefficient is determined by the normal collisions, i.e.,
D� lNvF. The third term on the right-hand side of Eq. �12�
corresponds to the spin relaxation, which is due to the spin-
flip with the characteristic time �sf. Note, as it follows from
Eq. �12�, the “space-sharp” inhomogeneity �e.g., a sharp in-
terface boundary between different magnetic materials�
causes a very fast decay of the oscillations.

Thus, we predict the appearance of low-decay oscillations
of the spin polarization with the frequency � under the con-
ditions

�N � �−1 � �d. �13�

This brings up the following question: is it possible to satisfy
these inequalities for the existing experimental objects?
It seems the second inequality may bring experimental
problems, and the inequality �sR /mL��1 is the most
difficult condition: when ��1, L1�L, it means that the
transport m.f.p. of electrons, ltr, should be larger than the
length of the sample L. Nevertheless, the hydrodynamic re-
gime has been observed experimentally in high-mobility
GaAs hereostructures,8 and lN was much less than the width
of the 2D conducting channel ��4 	m� and the electron-
impurity m.f.p., li�20 	m. Thus, conditions �13� could be
realized for such structures when the electron transport m.f.p.
is determined by the electron-impurity scattering. To reach
this case, one should decrease the diffusive boundary scatter-
ing �in Ref. 8, the probability of diffusive reflection of elec-
trons from the boundary q�0,2�. In the hydrodynamic re-
gime, the corresponding contribution to the transport
relaxation rate, ltr

−1, is of the order qlN /d2 and it may be
decreased by increasing d.

FIG. 1. Equilibrium distribution of the spin density �0↑ along the
ring of length L �a�. When electrons drift into the right ��b��, the
nonequilibrium spin-up potential �	↑ appears in the regions where
the spin-up density �0↑ varies. The total force is a sum of all forces
acting on electrons and it is directed to the left. Consequently, it
leads to the change of the drift direction.
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It seems interesting that there exists a possibility to keep
the amplitude of the oscillations constant �as in an ordinary
pendulum clock� owing to the magnetic connection of the
ring with an energy-pumping cell.

IV. SPIN-ELECTRICAL EFFECT

Let us discuss now the spin-electrical effect in an open-
ended homogeneous conductor. At u=0, we obtain from Eqs.
�7�–�10� the following potential difference between the open
ends:


� � ��L� − ��0� =
e

�
�P�0� − P�L�� , �14�

P�x� = ��↑ −
�↓
↑

↓

��	↑ + �
↑ −
�↑

↑

�
↑

�	↑
��	↑

2 + ¯ . �15�

Equation �15� yields the electron pressure as the expansion in
series on the �	. The second-order term is written in the
form of the case of nonmagnetic materials. All the quantities
in the coefficients of �	↑ and ��	↑�2 are understood as the
equilibrium state quantities. It is obvious from Eq. �14� that
the difference between the nonequilibrium spin pressures at
the ends of the circuit induces an electrical voltage that can
be measured experimentally. The voltage exists during the
lifetime ��, which is determined either by the spin relaxation
due to the spin-flip processes or by the diffusion equalization
of the spin concentration along the circuit, �����sf

−1

+D /L2�−1. The electrical charge q�
��� /Rc �where Rc is
the electrical resistance of the circuit� flows through the
meter during this time. Let us discuss the case in which the
spin polarization is induced in a nonmagnetic conductor due
to the current spin injection from the magnetic material.
Then, a meter connected to the ends of the nonmagnetic
conductor will fix the electrical charge q and indicates the
nonequilibrium spin density existed in the nonmagnetic con-
ductor.

We should note here that this “spin-electrical” effect is not
a specifically hydrodynamic effect. In the diffusion regime,
when collisions that do not conserve momenta are dominated
over normal collisions, we may write the continuity equa-
tions in the following form:

����

�t
+ div������	� + e��� = 0, �16�

where �� is the contribution to the conductivity of the cor-
responding spin component, �=����. Consequently, taking
into account Eq. �6� we obtain the following equation for the
case of a homogeneous conductor:

e��x� = ��↓
↑

↓

− �↑��	↑
�

+ � �↑

↑

�
↑

�	↑
−

��↑

�	↑
��	↑

2

�
+ ¯ .

�17�

Here, the second term on the right-hand side of Eq. �19� is
written for the case of nonmagnetic conductors only.

V. CONCLUSION

In summary, it is shown that different types of spin oscil-
lations are possible when the normal electron scattering pre-
vails over other scattering processes. The low-decay oscilla-
tions of the spin polarization with the frequency �
accompanied by the oscillations of the drift current may be
induced in the conducting ring with inhomogeneous mag-
netic properties under the conditions Eq. �13�. In the case of
the heterostructures, the inhomogeneity may be induced by
the inhomogeneous Rashba splitting due to the space-
dependent electrical field. Assuming that the splitting 
pF is
small enough, i.e., 
pF / pF�1, we obtain from Eq. �9� that
�=vF� 2

L 	� 
pF

pF
��2

dx�1/2
. In the case of a completely nonmag-

netic and inhomogeneous ring the excitation of local spin
polarization also induces non-linear “spin-pendulum-like”
oscillations, but the consideration of that goes beyond the
framework of this paper. In the case of the open circuit, one
may detect a non-equilibrium spin-polarization, measuring
the voltage between the open ends of the circuit. It can be
done both in the hydrodynamic and diffusion regimes.
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