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We study the superconducting order parameter fluctuations near the phase transition into the Larkin-
Ovchinnikov-Fulde-Ferrell state in the clean limit at zero temperature. In contrast to the usual normal metal-
to-uniform superconductor phase transition, the fluctuation corrections are dominated by the modes with the
wave vectors away from the origin. We find that the superconducting fluctuations lead to a divergent spin
susceptibility and a breakdown of the Fermi-liquid behavior at the quantum critical point.
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I. INTRODUCTION

Magnetic field suppresses superconductivity, regardless of
the pairing symmetry, via the coupling to the orbital motion
of electrons in the Cooper pairs.1 In spin-singlet supercon-
ductors, the pairs are also broken by the Zeeman interaction
of electron spins with an applied field H, or by the exchange
interaction with localized spins in a magnetic crystal, which
is known as the paramagnetic, or Pauli, mechanism. If the
orbital effects are neglected, then as shown by Larkin and
Ovchinnikov2 and Fulde and Ferrell3 �LOFF�, the competi-
tion between the paramagnetic pair breaking and the conden-
sation energy results in the formation at low temperatures of
a peculiar nonuniform superconducting state with a periodic
modulation of the order parameter, whose critical field Hc
exceeds the Clogston-Chandrasekhar paramagnetic limit for
a uniform state.4,5 The superconducting order parameter in
the simplest realizations of the LOFF state is either a single
plane wave, ��r�=�0eiqcr, or a superposition of two plane
waves, ��r�=�0 cos qcr, where qc is the wave vector of the
LOFF instability. In general, the order parameter structure
can be more complicated and is determined by minimizing
the nonlinear Ginzburg-Landau free energy.

For a long time the LOFF state had been considered a
theoretical curiosity, because its experimental detection re-
quired the fulfillment of some rather stringent conditions.
First, the orbital effects are detrimental to the LOFF state and
therefore should be weak enough. The relative importance of
the orbital and spin-pair-breaking mechanisms is measured
by the Maki parameter �M =�2Hc2

�0� /HCC,6 where Hc2
�0� is the

upper critical field in the absence of spin interactions, and
HCC is the Clogston-Chandrasekhar critical field. In the pure
paramagnetic limit, the orbital pair-breaking is absent alto-
gether and �M =�. The orbital effects were included in the
LOFF model with a spherical Fermi surface by Gruenberg
and Gunther,7 who found that at T=0 and �M �1.8 the order
parameter below the upper critical field is modulated along
the direction of the applied field. The coordinate dependence
of the pair wave function in the transverse directions is de-
scribed by the lowest Landau level, i.e., is the same as in the
pure orbital case.8,9 There is another phase transition at a
lower field, either into the usual mixed state or into the uni-
form superconducting state at �M =�, resulting in the appear-

ance of a characteristic wedgelike region in the H-T phase
diagram at low temperatures and high fields. In most “clas-
sical” superconductors, however, �M �1, so the orbital pair-
breaking dominates and the LOFF state is never realized.

One possible way to reduce the orbital effects was pro-
posed by Bulaevskii,10 who pointed out that in a layered
superconductor with the electron orbital motion confined to
the layers, the Maki parameter depends on the angle � be-
tween the direction of H and the layers, making the paramag-
netic effects dominant in a narrow angle interval near �=0.
As � approaches zero, the system undergoes a series of phase
transitions between the LOFF states corresponding to succes-
sive higher Landau levels. The full H-T phase diagram was
worked out in Ref. 11. At the parallel field orientation there
is no orbital effects, all pair breaking is entirely paramag-
netic, and the region of existence of the nonuniform state
turns out to be larger than in the isotropic three-dimensional
�3D� case, see also Ref. 12. The same ideas also apply to thin
superconducting films,13 or to surface superconductors,14 in
parallel fields.

Another obstacle to the experimental realization of the
nonuniform state is its sensitivity to the presence of disorder.
It was found by Aslamazov15 in the isotropic case that the
LOFF critical field decreases rapidly with increasing non-
magnetic impurity scattering and eventually becomes smaller
than HCC, resulting in the restoration of a first-order phase
transition into the uniform superconducting state. Later the
analysis was extended to the layered case in Ref. 16, with
essentially the same conclusions.

Thus the LOFF state can potentially be observed only if
the superconductor is both paramagnetically limited and suf-
ficiently clean. These requirements can be simultaneously
met in heavy-fermion compounds, in which Hc2

�0� is inherently
high due to a short coherence length. Earlier candidates for
hosting the LOFF state included UPd2Al3,17,18 UBe13,

19 and
CeRu2.18 The odds of finding the LOFF state are even greater
in quasi-low-dimensional superconductors, in which the or-
bital pair breaking is reduced.20–23 Several experiments on
organic24–26 and cuprate27 superconductors have revealed the
features in the H-T phase diagram, such as an upturn of the
upper critical field and the presence of an additional phase
transition below Hc2 at low temperatures, that could be inter-
preted as signatures of the LOFF state. Similar features have
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been recently reported in another heavy-fermion compound,
CeCoIn5.28,29 In all the cases mentioned above, the spin split-
ting of the electron energies in the Cooper pairs was due to
the Zeeman interaction with an applied magnetic field. It was
argued in Ref. 30 that the LOFF state can be created by the
intrinsic exchange band splitting in the ferromagnetic super-
conductor RuSr2GdCu2O8.

Another intriguing possibility of the experimental realiza-
tion of the LOFF state has been discussed very recently in
the context of ultracold atomic Fermi gases, such as 40K and
6Li. By making the populations of atoms in two different
hyperfine states unequal, one controls the mismatch between
their Fermi surfaces.31,32 When the pairing interaction be-
tween the two fermion species is turned on, the system be-
comes formally equivalent to a neutral superconductor in a
Zeeman field. Due to the absence of both the orbital effects
and impurities, this seems to be the most promising setup to
study the paramagnetic pair breaking, including the nonuni-
form states.33–37

Despite the lack of unambiguous experimental evidence,
the LOFF state has remained a subject of intensive theoreti-
cal investigations in the past decades. In addition to the stud-
ies cited above, we would like to mention Refs. 38 and 39, in
which the Ginzburg-Landau theory was developed in the
pure paramagnetic case in the vicinity of the tricritical point
in the H-T phase diagram, see Fig. 2 below, where the sign
change of the second-order gradient term in the free energy
signals the onset of the nonuniform instability. The vortex
structure in the mixed LOFF state was studied in Refs.
40–43. The LOFF model has also been extended to uncon-
ventional, in particular d-wave, pairing symmetries.22,44–46

An analysis of the spatial structure of the LOFF state imme-
diately below the upper critical field in the isotropic 3D case
was done by Larkin and Ovchinnikov,2 who showed that it is
the “striped” phase with ��r�=�0 cos qcr that is energeti-
cally favored at T=0. The zero-temperature phase transition
from the normal state was found to be second order, but
becomes first order as temperature increases.47–49 On the
other hand, it was argued in Refs. 50 and 51 that the phase
transition is always first order below the tricritical point, and
that the order parameter at T=0 is represented by a sum of
three cosines.

Another open question concerns the nature of the lower
phase transition separating the LOFF state from the conven-
tional uniform superconducting state. The only cases studied
so far assumed a one-dimensional periodicity of the order
parameter in a purely paramagnetic and isotropic two-
dimensional �2D�20,46 or 3D48 system. As the field decreases,
the nonlinear effects add higher harmonics to the LOFF state,
which starts to resemble a periodic array of Bloch domain
walls separating the regions where the order parameter is
almost uniform. When one approaches the lower critical
field, the period of the domain structure diverges, indicating
a second order phase transition.

While an extensive literature exists about the mean-field
properties of the LOFF state, the superconducting fluctuation
effects have received comparatively little attention. The
phase fluctuations of the nonuniform order parameter were
considered by Shimahara,52 who found that they are able to
destroy even the quasi-long-range order for the striped LOFF

states in the isotropic 2D case at T�0. He also conjectured
that in the isotropic 3D case the long-range order is replaced
at finite temperatures by a quasi-long-range order. This is
consistent with the findings of Ref. 53, where it was shown
that the thermal fluctuations suppress the second order phase
transition into the LOFF state in spatially isotropic systems.
These effects are analogous to the fluctuation-driven destruc-
tion of crystalline order with one-dimensional density
modulation.54 In general, one can expect that, since the wave
vectors of important fluctuating modes in the isotropic LOFF
state are close to a sphere �or a circle in 2D� of radius �qc �
�0, the fluctuation effects on observable quantities will be
considerably enhanced compared to the uniform case due to
the increased phase volume of the fluctuations.55 The fluc-
tuation effects might still be significant even when the de-
generacy manifold of the LOFF states is reduced to a set of
isolated points in the momentum space: It was recently ar-
gued in Ref. 56 that the thermal fluctuations in quasi-2D
d-wave superconductors are strong enough for the LOFF
phase transition to become of first order.

In all the works mentioned above only finite temperatures
were considered, in which case the order parameter fluctua-
tions are predominantly classical. Formally, the classical
limit corresponds to setting the frequency in the fluctuation
propagator to zero, see Sec. II below. The focus of the
present work is on the fluctuation effects at T=0 above the
quantum phase transition from the normal state to the LOFF
state driven by an external magnetic field. In this case, the
dynamic nature of the superconducting fluctuations cannot
be neglected. We assume that the system can be described by
the Bardeen-Cooper-Schrieffer �BCS� model and also that
the quantum LOFF transition is of second order. We do not
include impurities and the orbital effects, expecting our
results to be applicable either to paramagnetically limited
superconductors, or to the Fermi gases of ultracold atoms.
We would like to note that while thermal fluctuations
in superconductors have been actively studied for a long
time, see Ref. 57, the quantum fluctuations at low tempera-
tures have only recently become a subject of theoretical
investigation.58–62

The paper is organized as follows: In Sec. II, we derive
the general expression for the fluctuation propagator in the
normal state above the LOFF phase transition. We consider
both the isotropic case, in which the LOFF states are infi-
nitely degenerate in the momentum space, and the generic
case, in which the degeneracy is lifted due to the band struc-
ture and/or the gap anisotropy. In Sec. III, we calculate the
quantum fluctuation corrections to the spin susceptibility and
to the decay rate of fermionic quasiparticles.

II. LOFF FLUCTUATION PROPAGATOR

We consider a clean spin-singlet BCS superconductor in
an external magnetic field H. The coupling of the electron
charges to the vector potential is neglected, so that the super-
conductivity is affected by the field only through the Zeeman
splitting of the single-particle bands. The Hamiltonian is
given by
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H = �
k

�	k
�� − h�3,���ck�
† ck�

+ �
q,k1,2

Vk1k2
�q�ck1+�q/2�,↑

† c−k1+�q/2�,↓
† c−k2+�q/2�,↓ck2+�q/2�,↑.

�1�

The first term here is the free-fermion part, where 	k=
k
−�, 
k is the band dispersion, � is the chemical potential,
� ,�= ↑ ,↓ is the spin projection on the quantization axis
along H, h=�BH is the Zeeman field, �B is the Bohr mag-
neton, and �3 is the Pauli matrix �we use the units in which
�=kB=1, and assume that the Landé factor g=2�. The
Hamiltonian �1� can also be applied to a ferromagnetic su-
perconductor in zero applied field, in which case the electron
bands are split due to the exchange interaction with the mag-
netically ordered localized spins.

The second term in Eq. �1� is the pairing interaction,
which is effective only in the vicinity of the Fermi surface
defined by the equation 	k=0, i.e., at �	±k1,2+q/2 � ��max,
where �max is the BCS energy cutoff. We make a simplifying
assumption that the interaction matrix can be factorized,

Vk1k2
�q� = − ��q��k1

�k2
, �2�

where �k=�−k is the symmetry factor, which is nonzero only
inside the BCS shell, i.e., at �	k � ��max. The symmetry fac-
tor is assumed to be real and normalized: ��k

2�=1, where the
angular brackets stand for the Fermi-surface average. In the
group-theoretical language, �k is the basis function of an
even one-dimensional irreducible representation � of the
point group G of the crystal, which can have zeros,
symmetry-imposed or accidental, somewhere on the Fermi
surface. The pairing is said to be conventional if � is the
unity representation, and unconventional otherwise.63 To
make sure that the energies of all four fermions participating
in the BCS interaction are less than �max, one must further
assume that the function ��q� is nonzero only if �q � �qmax

��max/vF, where vF is the Fermi velocity. In the calcula-
tions below we replace ��q� by a coupling constant ��0,
introducing an explicit momentum cutoff in q integrals if
needed.

The order parameter dynamics in the normal state is de-
scribed by the fluctuation propagator57

L�q,�m� =
1

�−1 − C�q,�m�
, �3�

where �m=2�mT is the bosonic Matsubara frequency, and
C�q ,�m� is the particle-particle propagator �the Cooperon�,
see Fig. 1. Calculating the diagrams, we obtain

1

NF
L−1�q,�m� = ln

T

Tc0
− �	1

2



+ ��k
2 Re �	1

2
+

iWk + ��m�
4�T


� , �4�

where NF is the density of states per one spin projection at
the Fermi level, ��x� is the digamma function, ��1/2�
=−ln�4eC�, C
0.577 is Euler’s constant, Tc0

= �2eC /���maxe
−1/NF� is the zero-field critical temperature of

the uniform superconducting state,

Wk = 	k+�q/2� − 	k−�q/2� − 2h = vkq − 2h + O�q3� , �5�

and vk=�k	k is the quasiparticle velocity at the Fermi sur-
face. The cutoff �max has been eliminated by adding and
subtracting the Cooperon at h=�m=q=0.

The expression �4� is valid at all temperatures, for any
pairing symmetry and band structure �we will keep only the
linear in q term in the expansion �5�, assuming that the band
structure is such that the higher-order terms are negligible�.
The solution T�q ,h� of the equation L−1�q ,0�=0 determines
the temperature at which the superconducting instability with
the wave vector q develops in a given field h. Setting �m
=q=T=0, one finds that the second-order quantum phase
transition into a uniform superconducting state occurs at h0
= �� /2eC�Tc0=�0 /2
0.88Tc0, where �0 is the BCS gap at
T=0. In general, the critical temperature vs field Tc�h�, or
inversely the critical field vs temperature hc�T�, can be found
by maximizing T�q ,h� with respect to q. According to Refs.
2 and 3, in a clean isotropic superconductor at T�T*


0.56Tc0 the maximum of the critical field is achieved at
qc�0. The generic phase diagram of a LOFF supercon-
ductor is sketched in Fig. 2.

In the vicinity of the critical field hc�T�, the most diver-
gent contributions to physical quantities come from the low-
frequency fluctuations, so the inverse fluctuation propagator
�4� can be expanded in powers of �m,

1

NF
L−1�q,�m� = A�q,h� + Ã�q,h�

��m�
2h

+ O��m
2 � , �6�

where

A�q,h� = ��k
2 Re �	1

2
+

iWk

4�T

� − �	1

2

 + ln

T

Tc0
, �7�

Ã�q,h� =
h

2�T
��k

2Re ��	1

2
+

iWk

4�T

� . �8�

We focus on the fluctuation effects at T=0, when the ex-
plicit temperature dependence of the expressions �7� and �8�
can be eliminated by using the asymptotic form of the di-
gamma function, ��x�=ln x+O�x−1� at x→� �Ref. 64�,

A�q,h� = ln
h

h0
+ F�Q� , �9�

FIG. 1. The diagrammatic representation of the fluctuation
propagator. The solid lines are the Green’s functions of fermions in
the normal state, the bold dots denote the BCS pairing potential.
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Ã�q,h� = F̃�Q� , �10�

where Q=q /2h, and

F�Q� = ��k
2 ln�vkQ − 1�� , �11�

F̃�Q� = ���k
2
�vkQ − 1�� �12�

If the function F�Q� has a minimum at Q=Qc, then the
upper critical field is given by hc=h0e−F�Qc�, and the equilib-
rium wave vector of the LOFF structure is qc=2hcQc.

In the standard theory of superconducting fluctuations, see
Ref. 57, it is assumed that the maximum of the critical tem-
perature, or of the critical field, is achieved for the uniform
superconducting state, which makes it possible to expand
L−1�q ,�m� in the vicinity of the origin in the momentum
space. In contrast, the most important critical fluctuations in
the LOFF state have the wave vectors near qc�0. Assuming
that F�Q� can be expanded in the Taylor series near the mini-
mum, we obtain the following expression for the fluctuation
propagator:

L�q,�m� =
1

NF

1


 + ���m� + Kij�qi − qc,i��qj − qc,j�
, �13�

where


 =
h − hc

hc
�14�

measures the distance to the quantum critical point,

� =
F̃�Qc�

2hc
, �15�

and Kij = �1/8hc
2��i� jF�Qc�, i , j=x ,y ,z. In should be noted

that in some cases the frequency expansion �6� of the inverse
fluctuation propagator does not exist, see Sec. II C below.

A. Isotropic 3D case

Explicit expressions for � and Kij can only be obtained in
few cases, including a 3D parabolic band, 	k=k2 /2m−�,
with isotropic pairing. In this case a straightforward integra-
tion in Eqs. �11� and �12� gives

F�Q� =
1

2
ln�x2 − 1� +

1

2x
ln� x + 1

x − 1
� − 1, �16�

F̃�Q� =
�

2x
��x − 1� , �17�

where x=vFQ=vFq /2h. The function �16� has a minimum at
x=xc
1.20, with F�Qc�
−0.41, see Fig. 3. Thus the quan-
tum phase transition occurs at hc
1.51h0
0.75�0, and at
h�hc the superconducting order parameter is spatially
modulated, with the wave vector qc=2xchc /vF
0.51	0

−1,
where 	0=vF /2�Tc0 is the BCS coherence length. The LOFF
critical field hc exceeds not only h0, but also the Clogston-
Chandrasekhar field hCC=�0 /�2, which corresponds to a
first-order phase transition between the normal and the uni-
form superconducting states,4,5 see Fig. 2.

In the isotropic case the critical field of the LOFF state
does not depend on the direction of q, and the quantum-
critical fluctuation propagator �13� takes the following form:

L�q,�m� =
1

NF

1


 + ���m� + K��q� − qc�2 , �18�

where �
0.65/hc and K
0.28vF
2 /hc

2. The static limit of Eq.
�18� has the same form as the propagator of classical fluc-
tuations of the order parameter associated with the crystalli-
zation transition in an isotropic liquid.55 Note also that the
minimum of L−1�q ,0� remains infinitely degenerate even for
an ellipsoidal Fermi surface, 	k=�iki

2 /2mi−kF
2 /2m, where

mi=m /�i
2 are the effective masses, i=x ,y ,z. In this case, a

change of variables reduces the fluctuation propagator to the
form �18�, in which �q � →��x

2qx
2+�y

2qy
2+�z

2qz
2. Therefore, the

FIG. 2. The generic phase diagram of the LOFF superconductor.
The LOFF state appears at H=Hc �solid line� at temperatures below
the tricritical point �T* ,H*�. The dashed lines correspond to the
normal metal-to-uniform superconductor phase transitions: the first-
order Clogston-Chandrasekhar transition at HCC �dashed line�, and
the second-order transition at H0 �long-dashed line�. The critical
field of the LOFF state-to-uniform superconductor transition is not
shown.

FIG. 3. The momentum dependence of L−1�q ,0� in the isotropic
3D case, Eq. �16� �solid line�, and the isotropic 2D case, Eq. �22�
�dashed line�; x=vF �q � /2h.
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critical field has the same value as in the isotropic case, the
only difference being that the degeneracy manifold in the
momentum space is now ellipsoidal rather than spherical.

B. Generic band structure

The infinite degeneracy of the LOFF states is an artifact
of the parabolic band approximation. It will be lifted in the
case of a general band structure or an anisotropic gap sym-
metry. Since A�g−1q ,h�=A�q ,h�, where g is an arbitrary el-
ement of the point group G, the minima of the inverse fluc-
tuation propagator in the momentum space form a “star,” i.e.,
a set of Nq isolated points, �qc

�a��, which is invariant under all
operations from G. Assuming that inversion is present in the
point group, Nq can be as low as two and as high as the total
number of the group elements in G. The equilibrium order
parameter just below the critical field can be represented as a
linear combination of the plane waves,

��r� = �
a=1

Nq

�aeiqc
�a�r. �19�

The complex coefficients �a, which determine the spatial
structure of the LOFF phase, are found by minimizing the
Ginzburg-Landau free energy. If the minima of A�q ,h� are
well-separated then the fluctuation modes near different qc

�a�

can be treated independently.
Let us consider for concreteness a tetragonal crystal with

G=D4h, in which case there can be as many as sixteen de-
generate minima of A�q ,h�. This number is severely reduced
if one assumes that qc

�a� are along the highest symmetry di-
rections. For a 3D band this means that Nq=2, with qc

�1,2�

= ±qcẑ. Near the minima, one can write A1,2�q ,h�=

+K��qz�qc�2+K��qx

2+qy
2�. On the other hand, if there are

2D bands in the system, then the lowest possible number of
the minima is four, located for instance at qc

�1,3�= ±qcx̂,
qc

�2,4�= ±qcŷ. Then, A1�q ,h�=
+K��qx−qc�2+K�qy
2, etc.

Without any loss of generality, we can assume that K� =K�

=K, so that the fluctuation propagator near the ath minimum
can be written in the following form:

La�q,�m� =
1

NF

1


 + ���m� + K�q − qc
�a��2 . �20�

This expression, in which � and K should be treated as phe-
nomenological constants, is applicable in the generic case of
a 3D or 2D crystalline superconductor with arbitrary band
structure and pairing symmetry.

We would like to note the formal similarity between our
superconducting fluctuation propagators �18� and �20� and
the propagators of magnetic fluctuations in itinerant helical
ferromagnets65 and high-Tc superconductors,66 respectively.

C. Isotropic 2D case

The fluctuation propagator does not have the simple form
�13� if � is either zero or infinity. According to Eq. �12�, the
former possibility occurs if the surface vkQc=1 does not
intersect the Fermi surface, or if it does then �k accidentally

vanishes on the intersection line. In either case one would
have to go to higher orders of the frequency expansion. We
have not been able to find an explicit example of the band
structure for which this happens.

If �=� then the Taylor expansion in powers of ��m� fails,
and one to take the low-temperature limit directly in Eq. �4�.
Assuming as before that the temperature is the smallest en-
ergy scale in the system, one obtains

1

NF
L−1�q,�m� = ln

h

h0
+ Re��k

2 ln	vkq

2h
− 1 − i

��m�
2h


� .

�21�

In order to recover the expressions �9� and �10� from this,
one must replace ��m � → ��m � +0+.

One can check that the frequency expansion fails in the
case of the isotropic 2D band with 	k= �kx

2+ky
2� /2m−� and

�k=1. For the order parameter modulated in the xy plane we
have

F�Q� = Re ln
1 + �1 − x2

2
, �22�

F̃�Q� =
1

�x2 − 1
��x − 1� , �23�

where x=vFQ=vFq /2h. The function F�Q� has a nonanalyti-
cal minimum at x=1, with F�Qc�=−ln 2, see Fig. 3. There-
fore the zero-temperature critical field is hc=2h0, and the

LOFF wave vector is qc=4h0 /vF. Since F̃ diverges at the
critical point, one must use Eq. �21�, with the following re-
sult:

1

NF
L−1�q,�m� = ln

h

h0
+ F	vF�q�

2h
,
��m�
2h


 , �24�

where

F�x,y� = Re ln
1 + iy + ��1 + iy�2 − x2

2
.

We see that the retarded fluctuation propagator LR�q ,�� ob-
tained from Eq. �24� has a branch cut instead of a simple
pole.

The nonanalyticity of the inverse fluctuation propagator
persists even if the Fermi surface is a corrugated cylinder.
For the quasi-2D band described by 	k= �kx

2+ky
2� /2m

− t cos kzd−� �t���, with isotropic pairing, one can show
that the deepest minimum of A�q ,h� is achieved for q � ẑ.12

Then, F�Q� and F̃�Q� are given by the same expressions �22�
and �23� as in the 2D case, but with x= td �qz � /2h. The di-

vergence of F̃ at x=1 again signals the failure of the expan-
sion of L−1�q ,�m� in powers of frequency.

Below we neglect these complications and assume that
the fluctuation propagator has either the form �18� or �20�.
This does not seem to be very restrictive, especially since a
well-defined frequency expansion and analytical momentum
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dependence will be restored in realistic layered supercon-
ductors by the Fermi surface or gap anisotropy, or by disor-
der.

III. FLUCTUATION CORRECTIONS

A. Free energy and spin susceptibility

If the quantum LOFF transition in the isotropic 3D case is
first order,50,51 then our theory is not applicable. However,
even in that case it is still instructive to do the calculations
using the fluctuation propagator �18� in order to highlight the
differences with the generic case. The fluctuation correction
to the free energy in the normal state at T=0 is given by


F = 2�
q
�

0

�max d�

2�
ln L−1�q,�� . �25�

The momentum integration is restricted to �q � �qmax, see
Sec. II. In addition, the ultraviolet cutoff �max
�max is in-
troduced to guarantee the convergence of the frequency in-
tegral. This cutoff can be extended to infinity when calculat-
ing the correction to the magnetic susceptibility,


� = −
�2

�H2
F = − NF
2 1

Hc
2

�2

�
2
F .

In the isotropic 3D case, using the fluctuation propagator
�18�, we have at 
→0,


� =
NF

��Hc
2 � d3q

�2��3

1


 + K��q� − qc�2 

NFqc

2

2�2�Hc
2�K

1
�


�26�

�the main contribution to the integral comes from the vicinity
of qc�qmax�. To estimate the magnitude of the correction, we
compare it to the Pauli spin susceptibility in the normal state,
�P=2�B

2NF,


�

�P

 1.21	�0


F

2	 Hc

H − Hc

1/2

, �27�

where 
F=kF
2 /2m is the Fermi energy. Although this expres-

sion is divergent at the quantum critical point, the size of the
fluctuation correction at any nonzero 
 is small because of
the factor ��0 /
F�2. The width of the fluctuation region in
this case can be estimated as �H−Hc� /Hc���0 /
F�4. Note
also that the field-dependent fluctuation contribution to the
magnetization,


M = −
�

�H

F = − NF

1

Hc

�

�


F ,

is of the type 
M ��
, and is not singular at 
→0.
In the generic 3D case, using Eq. �20� we obtain


� =
NF

��Hc
2�

a
� d3q

�2��3

1


 + K�q − qc
�a��2 . �28�

Then, for each minimum qc
�a�, the integral can be calculated

by shifting the integration variable, q−qc
�a�=p,


� =
NF

��Hc
2�

a
� d3p

�2��3

1


 + Kp2

= Nq
NFqmax

2�3Hc
2�K

	1 −
�

2qmax
� 


K

 , �29�

which is not singular at 
→0, so is the correction to the
magnetization.

In contrast, in the generic 2D case with isolated minima
the reduced dimensionality of the momentum integral leads
to a logarithmic singularity in 
�,


� =
NF

��Hc
2�

a
� d2p

�2��2

1


 + Kp2 = Nq
NF

4�2Hc
2�K

ln
Kqmax

2



.

�30�

Using ��1/hc and K�vF
2 /hc

2, we have the following esti-
mate for the quantum fluctuation correction to the suscepti-
bility:


�

�P
�

�0


F
ln

Hc

H − Hc
. �31�

Our analysis can be easily extended to the case of the
normal metal-to-uniform superconductor transition �one
should remember though that in a paramagnetically limited
clean superconductor this transition does not exist, since the
LOFF instability always preempts the uniform instability at
T=0�. Formally setting qc=0 in the fluctuation propagator,
we see that the infinitely degenerate case �26� is never real-
ized and the correction to � in three dimensions is nonsingu-
lar, see Eq. �29�. In the 2D case, one would have the loga-
rithmically divergent correction �30�.

B. Quasiparticle decay rate

The lowest-order contribution to the self-energy of
spin-up fermions due to the superconducting fluctuations in
the normal state is given by

�↑�k,�n� = − T�
m

�
q

L�q,�m�  G↓�− k + q,− �n + �m� ,

�32�

see Fig. 4, where G↓�k ,�n�= �i�n−	k−h�−1 is the Green’s
function of spin-down fermions �the pairing is assumed to be
isotropic�. At T=0 we obtain for the quasiparticle decay rate
at the spin-up Fermi surface, i.e., for k satisfying 	k=h,

FIG. 4. The contribution of superconducting fluctuations to the
fermion self-energy, Eq. �32�. The solid lines are the single-particle
Green’s functions. The wavy line is the fluctuation propagator
L�q ,�m�.
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��k̂,�� � − Im �↑
R�k̂,�� = �

q
Im LR�q,� − Wk� , �33�

where k̂ is the direction of the Fermi momentum, LR�q ,�� is
the retarded fluctuation propagator, and the integration is re-
stricted to the region in the q-space defined by the condition
0�Wk��. Below we calculate the decay rate in the limit
�→0 at the quantum critical point, i.e., at 
=0.

In the isotropic 3D case the fluctuation propagator is
given by Eq. �18�. It is convenient to choose the polar axis in

the q-space along vk=vFk̂ �we neglect the difference be-
tween the quasiparticle velocity at the spin-up Fermi surface
and the Fermi velocity vF, which is of the order of hc /
F�. It
is easy to see that the decay rate in this case does not depend

on k̂,

���� =
�

4�2NF
�

−1

1

ds  �
0

�

q2dq
� − Wk

K2�q − qc�4 + �2�� − Wk�2

�s=cos ��. Since the main contribution to the integral comes
from q
qc, one can replace Wk→vFqcs−2hc. Introducing
u=�−Wk, we have

���� =
�2

8�

qc

NFvF
��K

�
umin

umax

duu−1/2 =
�2

4�

qc

NFvF
��K

�1/2,

�34�

where umin=max�0,�−vFqc+2hc�=0, umax=min�� ,�
+vFqc+2hc�=� �we assume ��hc�. This expression takes a
more transparent form if compared to the energy scale asso-
ciated with the superconducting phase transition,

����
�0


 1.57	�0


F

2	 �

�0

1/2

. �35�

We see that at the quantum phase transition into the LOFF
state the Fermi-liquid behavior is destroyed by the supercon-
ducting fluctuations, and the magnitude of the fluctuation
contribution to the decay rate is determined by the factor
��0 /
F�2.

In the generic case, when the inverse fluctuation propaga-
tor has minima at isolated points qc

�a� in the momentum
space, see Eq. �20�, the quasiparticle decay rate can be writ-
ten as the sum of the independent contributions from each
minimum,

��k̂,�� = �
a

�a�k̂,�� , �36�

where

�a =
�

NF
� dDq

�2��D

� − Wk

K2�q − qc
�a��4 + �2�� − Wk�2 .

Here the integration is restricted by the condition 0�Wk
��, and D=3 or 2 is the dimensionality of the system.

In three dimensions, after changing the variables q−qc
�a�

=p, choosing the z axis in the momentum space along vk,
and introducing u=�−wa− �vk � pz, where wa=vkqc

�a�−2hc,
one obtains

�a =
�

4�2NF�vk��0

�

dp�p�

 �
0

� du u

K2�p�
2 + �u − � + wa�2/vk

2�2 + �2u2 .

In the limit �→0, one can neglect u−� in the first term in
the denominator and calculate the integral over u,

�a =
1

8�2NF��vk��0

�

dp�p�ln	1 +
�2�2

K2�p�
2 + wa

2/vk
2�2
 .

�37�

The result of the integration here essentially depends on
whether wa is zero or not.

If k̂ is such that wa�0, then one can expand the logarithm
in Eq. �37� at �→0 and calculate the momentum integral.
Substituting the result in Eq. �36� we obtain

��k̂,�� =
1

16�2

��vk�
NFK2w̃2�2, �38�

where w̃−2=�awa
−2. The fluctuation contribution to the quasi-

particle decay rate has the energy dependence characteristic
of the Fermi liquid, and its magnitude can be estimated as
follows:

��k̂,��
�0

� 	�0


F

2	 �

�0

2

. �39�

On the other hand, if, for some k̂, one of wa’s is zero, then
w̃−2 diverges, making the expression �38� inapplicable. Set-
ting wa=0 in Eq. �37�, one obtains that the decay rate at �
→0 is dominated by the contribution from the ath minimum:

��k̂,�� =
1

16�

1

NF�vk�K
� , �40�

so that

��k̂,��
�0

� 	�0


F

2 �

�0
. �41�

Thus, the following picture emerges: In the generic case, the
energy dependence of the quasiparticle decay rate due to the
interaction with superconducting fluctuations turns out to be
strongly anisotropic on the Fermi surface. While ���2 is
almost everywhere, one has a non-Fermi-liquid behavior, �
��, on the lines defined by the intersection of the surfaces
vkqc

�a�=2hc with the Fermi surface. For the consistency of

QUANTUM FLUCTUATIONS IN LARKIN-OVCHINNIKOV-¼ PHYSICAL REVIEW B 73, 144502 �2006�

144502-7



our calculation we must assume that these intersection lines
do exist, otherwise the coefficient � would be zero, see the
discussion at the beginning of Sec. II C.

Similar conclusions can be obtained in the generic 2D
case, in which the decay rate has the same form �36�, where,
instead of Eq. �37�, we now have

�a =
1

8�2NF��vk��−�

�

dp�ln	1 +
�2�2

K2�p�
2 + wa

2/vk
2�2
 .

�42�

If wa�0, then

��k̂,�� =
1

16�

�vk
2

NFK2w̃3�2, �43�

where w̃−3=�a �wa�−3. Using ��1/hc and K�vF
2 /hc

2, we ob-
tain

��k̂,��
�0

�
�0


F
	 �

�0

2

. �44�

At the points on the Fermi surface where wa=0, we have the
expression

��k̂,�� =
�2

4�

1

NF�vk���K
�1/2, �45�

whose magnitude can be estimated as

��k̂,��
�0

�
�0


F
	 �

�0

1/2

. �46�

Similar to the generic 3D case, the fluctuation contribution to
the decay rate strongly depends on the direction of the Fermi
momentum, showing non-Fermi-liquid behavior along some
directions. Although the overall magnitude of the correction
is larger than in the generic 3D case, it is still proportional to
the small parameter �0 /
F. It is interesting to note that the
same frequency dependence of the decay rate can be ob-
tained in the model of a nearly antiferromagnetic Fermi liq-
uid in 2D, where the quasiparticle interaction with spin fluc-
tuations becomes anomalously strong near some points, the
“hot spots,” on the Fermi line.67

Let us now compare our results with the decay rate at the
second-order phase transition into the uniform superconduct-
ing state. Setting qc=0 and assuming an isotropic band dis-
persion, we have

���� =
�

NF
� dDq

�2��D

� − Wk

K2q4 + �2�� − Wk�2 , �47�

instead of Eq. �36�. In the 3D case, repeating the calculation
steps leading to Eq. �38�, one obtains

���� =
1

64�2

�vF

NFK2h̃c
2
�2. �48�

Similarly, in the 2D case,

���� =
1

128�

�vF
2

NFK2hc
3�2. �49�

Thus, the Fermi-liquid character of quasiparticle excitations
is not destroyed by the quantum fluctuations at the normal
metal-to-uniform superconductor transition.

IV. CONCLUSIONS AND OUTLOOK

We have studied the order parameter fluctuations near the
quantum phase transition at H=Hc from the normal state to
the LOFF superconducting state. We derived the general
form of the fluctuation propagator L�q ,�m� at finite q and
�m. In the systems suggested as good candidates for the ex-
perimental realization of the LOFF state, disorder is small or
absent altogether. In the absence of impurity effects, we ana-
lyzed the momentum and frequency dependence of the fluc-
tuation propagator in both isotropic 3D and 2D cases, as well
as in the case of generic spectrum.

The fluctuation effects are more pronounced in the isotro-
pic 3D case compared to the generic situation. This is be-
cause in the isotropic case the LOFF states are infinitely
degenerate leading to the large phase volume of fluctuations.
The fluctuation contribution to the spin susceptibility di-
verges at H→Hc, 
�� �H−Hc�−1/2, and the quasiparticle de-
cay rate shows a non-Fermi-liquid behavior, ������1/2, at
the quantum critical point. The magnitude of the fluctuation
corrections is determined by the parameter ��0 /
F�2. Al-
though this ratio is very small in conventional bulk supercon-
ductors, it can vary in a wide range in the atomic Fermi
gases. It should be noted that our results rely on the assump-
tion that the LOFF transition at T=0 is of second order. As
mentioned in the Introduction, this might not be the case in
clean isotropic systems in the weak-coupling limit. However,
as the ratio �0 /
F grows so do the strong-coupling correc-
tions to the mean-field free energy, which could stabilize the
second-order LOFF transition. More theoretical work is
needed to check if this possibility can indeed be realized.

In the generic case, which is expected to be applicable to
crystalline paramagnetically limited superconductors, or to
the atomic Fermi gases in optical lattices, the equilibrium
wave vectors of the LOFF state form a set of isolated points
in the momentum space. The phase volume of fluctuations is
reduced, resulting in a nonsingular spin susceptibility in the
3D case, and a weak, logarithmic, divergence of 
� in the 2D
case. Interestingly, the fluctuations in the generic case are
still strong enough to cause the breakdown of the Fermi liq-
uid at the quantum critical point, which manifests itself in a
highly anisotropic energy dependence of the quasiparticle
decay rate on the Fermi surface: ������ on some lines in
3D, and ������1/2 at some points in 2D. We expect that the
Fermi-liquid behavior, ������2, will be restored throughout
the Fermi surface away from the quantum critical point or in
the presence of disorder, leaving the details for a future pub-
lication.
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There is a number of open questions concerning the as-
sumptions we made and the effects we neglected in the
present study, the order of the quantum phase transition into
the LOFF state being particularly important. Even if the
mean-field transition is of second order, this might no longer
be the case if one takes into account the fluctuation renor-
malization of the free energy. Additional complications arise
in realistic crystalline superconductors, in which the orbital
effects and disorder should be included. Finally, it would be

interesting to extend our calculation of the fluctuation correc-
tions to nonzero temperatures in the critical region around
the LOFF transition.
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