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Equilibrium configurations of Pearl vortices in narrow strips
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We have calculated the equilibrium configurations of Pearl vortices in narrow strips of superconducting thin
films, within the large thin-film penetration depth limit of the London theory. The results are reminiscent of
those for Abrikosov vortices in thin films with parallel magnetic fields. The calculations are compared with
recent experimental results of Stan, Field, and Martinis [Phys. Rev. Lett. 92, 097003 (2004)]. Reasonable
agreement with experiment requires refinement of the theoretical model to account for pinning and an often-

neglected contribution to the vortex core energy in thin films identified by Pearl.

DOI: 10.1103/PhysRevB.73.144501

I. INTRODUCTION

The characteristics of the mixed state have significant dif-
ferences for superconducting samples with small dimensions
perpendicular to the applied field when compared to the cor-
responding phenomena in bulk type-II superconductors. For
an infinite sheet of thickness W with the magnetic field di-
rected parallel to the surface of the sheet, Abrikosov!2
showed that the equilibrium critical field for vortices to ap-
pear in the sheet is 2d, In(W/&)/7W?, for E<W<N\. (As
usual, @ is the superconducting flux quantum, £ is the co-
herence length, and \ is the bulk penetration depth.) The
vortices appear first in the center of the sheet, and as the field
increases the spacing between them decreases until a critical
field is reached at which the line of vortices “buckles,” form-
ing two rows. Increasing the field further leads to a sequence
of first-order transitions, at “matching fields,” in which the
number of vortices in a unit cell of the vortex lattice in-
creases by one and the vortex density jumps. Detailed theo-
retical calculations of vortex lattice structures with this ge-
ometry of film and field have been carried out by Carter® and
Carneiro* and Luzhbin,> while experimental studies that re-
veal transitions between vortex structures (though in
multilayer systems rather single films) have been carried out
by Guimpel et al.® and Brongersma et al.” A qualitative fea-
ture of the theory, remarked on by Abrikosov, is that the
vortex density has infinite slope at the critical field, because
the interaction between vortices falls off exponentially at
large intervortex distances.

The present work is motivated by a recent experimental
study of vortices in narrow, thin films of niobium, carried out
by Stan, Field, and Martinis®® (SFM), in which Hall probe
microscopy was used to image films, patterned into strips of
width W, subject to perpendicular magnetic fields. In this
configuration of superconductor and magnetic field, the su-
perconductor develops Pearl vortices'” rather than Abrikosov
vortices. SFM offered the first experimental results for equi-
librium vortex density as a function of magnetic field B.
They found that the threshold field for vortex entry B, scaled
roughly as 1/W?, just as for confined Abrikosov vortices.
However, the vortex density exhibited apparently linear be-
havior in B—B, above threshold. The slopes of the vortex
density versus B data were consistent with 1/®,, as is the
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case for an infinite thin film with a perpendicular field. There
were also vortices appearing at fields below the nominal B,
which were attributed to pinning.

There have been other studies of the physics of vortices in
superconducting films with small lateral dimensions. The
possibility of equilibrium measurements on vortices was es-
tablished by Finnemore and co-workers,!"!? in demonstrat-
ing that, sufficiently close to 7, vortices spontaneously leave
pinning sites and wander through the film. Many transport
measurements that reflect the interactions between vortices
in thin films which have been patterned into parallel narrow
strips of low-pinning superconductor between wider strips of
strong-pinning material have been carried out following the
study of Pruymboom et al.;'* following in that tradition is
the recent work by Grigorieva et al.'* on vortices in a single
narrow thin film strip, which showed that pushing on vorti-
ces in one part of the strip led to vortex flow many inter-
vortex lengths away. What sets SFM apart is its focus on
equilibrium properties in a well-defined narrow thin film
strip geometry; this leads to the consideration of several fun-
damental matters which are not relevant in other experi-
ments.

The equilibrium threshold field for vortices in narrow thin
film strips has been addressed theoretically by both Clem'’
and Likharev.'® (Clem argues that a more relevant threshold
field would be associated with metastability rather than equi-
librium, but see SFM for a discussion of why the equilibrium
condition seems to be more appropriate for that experiment.)
Their arguments are based on calculations, within the Lon-
don theory, of the Gibbs free energy change associated with
the addition of a single vortex to the center of an otherwise
vortex-free strip of width W and thickness d. Clem’s expres-
sion for this is

<I>OBW2+ @
16mA  87°A

AG=- In(2W/mé), (1)

where A=2\?/d is the thin-film penetration depth and it is
assumed that A>W> & (Likharev’s expression differs only
in the constant factors in the logarithm.) The first term is
associated with the interaction of the vortex with the screen-
ing currents in the film, while the second term arises from
the change in the currents due to the vortex; we shall refer to
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these as the Meissner term and the self-energy, respectively.
Clem’s derived Eq. (1) by considering the forces on a vortex
and integrating.

Alternatively, Eq. (1) may be derived by an energetic
approach,'” in which one notes that ®,W?/167A is the mag-
netic moment of a vortex in the center of the strip and that
the self-energy is the free energy of such a vortex in zero
external field, both of which have been calculated within the
London theory by Kogan.'® This perspective on Eq. (1) is
more helpful when considering possible corrections to that
formula, such as those we will suggest in Sec. VL.

Setting AG=0 yields

20,
B.= >
W

In(2W/é). (2)

For later convenience let us define the scale of the vortex
self-energy

g9 = DY8TA, 3)

which has the value g5=0.13 eV in SFM.

The only theoretical work that touches on the density of
vortices for B> B,. is that of Maksimova,!® who treats vorti-
ces in a mean-field manner by considering only the variation
of the currents in the film in the direction across the strip and
ignoring variations along its length. This leads to a result for
AG for adding a vortex to the center of the strip which is a
simple extension of Eq. (1),
DB ( W N,

2
_47TA 5 ﬁ) + gy In2W/mé), (4)

AG =

in which N is the number of vortices in a strip of length L.
Setting this to zero leads to the equilibrium vortex density

N _ 12

Ly = LB~ (BB) FY . &)
For B> B, this gives N/LW ~ B/ ®,,, while just above thresh-
old N/LW=(B-B,)/2®,, that is, the slope is smaller than
observed experimentally by a factor of 2.

The problem is now clear: For bulk samples or thin films
with fields parallel to the surface, theory and experiment
show that just above the threshold for vortex penetration the
vortex density increases very quickly with field (theoreti-
cally, with infinite slope) due to the exponentially weak
vortex-vortex interactions at large distances. However, for
narrow thin film strips with perpendicular fields, both the
experiments of SFM and the mean field approach of Maksi-
mova seem to imply a finite slope in the vortex density as a
function of B just above threshold, of order 1/®,. We will
begin by considering this problem theoretically using ap-
proaches which have previously been applied to the study of
confined Abrikosov vortices. In Sec. II, we construct the
Gibbs potential for the narrow strip, including interactions
between vortices. This serves as the basis for all subsequent
calculations.

We find in Sec. III that the qualitative features of confined
Abrikosov vortices are reproduced in the theoretical analysis
for confined Pearl vortices. In particular, the vortex density
exhibits an infinite slope at B,... A detailed comparison of the
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preceding theoretical calculations with the experiments and
the mean-field approach is offered in Sec. IV, where the dif-
ferences between the theory and the experimental results at
low vortex density are clearly exhibited.

All of the theoretical calculations up to this point treat
superconductors without any pinning sites. In Sec. V the ef-
fects of vortex pinning are approximately modeled in a man-
ner suitable for the low vortex density regime. Pinning can
markedly change the how the vortex density depends on
field. However, pinning cannot increase the threshold field,
and since that is already underestimated by Eq. (2) in two of
the three samples studied by SFM, some other physical
mechanism must be invoked. This motives us to introduce in
Sec. VI another expression for the vortex self-energy, follow-
ing Pearl,'” to account for the contribution of the vortex
cores. Due to theoretical uncertainties we treat this expres-
sion as containing an adjustable parameter. With the freedom
to adjust several model parameters we are able to fit some
experimental data reasonably well, as shown in Sec. VII but
interesting questions remain.

Section VIII offers a summary and conclusions.

II. THE GIBBS POTENTIAL

The derivation of a general expression for the Gibbs po-
tential for an arbitrary configuration of Pearl vortices in a
thin film of width W is fairly straightforward, following the
work of Kogan.!® In constructing a solution within London
theory of the current density associated with an arbitrarily
located vortex, he essentially produced an explicit formula
for the interaction energy between two vortices when A
> W. This condition is satisfied for any strip at temperatures
sufficiently close to 7., and in SFM it is valid for the two
narrower samples they studied.

Let us establish a coordinate system with the z axis per-
pendicular to the film, the y axis directed along its length,
and the x axis across the strip, which is bounded by —W/2
sx<W/2. We will set G=0 for the vortex-free film. The
expression for G for a single vortex at an arbitrary position x,
generalizing Eq. (1), was already found by Clem!® and
Likharev'® and has the form

®,B

G =-
! 167A

(W2 -4x?) + ¢, 1n<27T—v§ cos %) (6)

again taking Clem’s factors in the logarithm.

The interaction free energy between vortices with coordi-
nates (x;,y;) and (x,,y,) is proportional to Kogan’s current
potential, his Eq. (35), which may be written in the mani-
festly symmetric form

cosh m(y; — y;)/W + cos m(x; + x;)/W

()

G,=¢gpln ’
2=%0 cosh (y; — y;)/W = cos m(x; — x;)/ W

For |y,—y|> W, G, decays as exp(-m|y,~y;|/W). For com-
parison, recall that in an infinite film the interaction decays
as 1/r for r=>A.
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III. VORTEX CONFIGURATIONS BY FREE-ENERGY
MINIMIZATION

The problem now is to find the lowest G configuration of
vortices for a given externally applied field. Since we are
considering strips in which the length L is much greater than
all other length scales, it is appropriate to minimize the
Gibbs potential density g=G/L and to explore vortex con-
figurations which are periodic in y. It is useful to introduce
the dimensionless vortex density n=NW/L.

For fields just above B,, the intervortex spacing is large
and G, forces the vortices to lie along the center line of the
strip. Since G, is repulsive, the vortices lie the same distance
W/n apart and the unit cell of the vortex lattice contains just
one vortex. Placing that vortex at (0,0) leads to the expres-
sion g(n,B)=nG,+n2;~,G,[(0,0),(0,iW/n)]. The sum over
the two-body terms is dominated by the first term. Setting
dg/dn=0 and solving for the leading behavior yields
n=—m/In(B-B,): just as in the case of confined Abrikosov
vortices, the vortex density increases with infinite slope at
the threshold field.

To go beyond the behavior at threshold, we turned to nu-
merical evaluation of g and its minimization by Powell’s
method. With increasing field, configurations with more vor-
tices in a unit cell become competitive in free energy. We
explored the same types of configurations as have been con-
sidered for confined Abrikosov lattices,* namely, “slices” of
a triangular lattice, in which the vortices have some freedom
of movement but are not permitted to break the symmetries
that remain in the slice. Some resulting configurations are
sketched in Fig. 1, where we also present a plot of n(B) for
W/ &=30, which is appropriate for the 10 um strips in SEM.
Note that there is one type of configuration corresponding to
every positive number m of vortices in a unit cell. The num-
ber of variables with respect to which g must be minimized
is (14+m)/2 for odd m and 1+m/2 for even m.

Our findings concerning the vortex structure and density
as a function of B are qualitatively the same as previous
results for Abrikosov vortices.>* Similar results are found for
narrow Wigner crystal strips,2 and would probably be found
for almost any repulsive pointlike objects in a strip geometry.
As the field increases, the vortices are eventually forced off
the center line into the “two-row” configuration shown on
the left in Fig. 1(b); this is manifested in the plot of n(B) by
the kink at B.,=2.48B. and n=2.43. This is a classical sec-
ond order phase transition, with the vortex displacement
from the center line serving as the order parameter. Subse-
quent transitions to configurations with more vortices per
unit cell, at fields denoted B, 3,B,4,- .., are first order. We will
denote the arrangement of vortices between B, and B, 1)
as an “n-row” pattern. We did not calculate the domains of
metastability for these phases since they do not bear directly
on the experiment of SFM.

Analogous calculations were carried out for W/&=300
and 5, for comparison with the 100 and 1.6 um strips exam-
ined by SFM. The results for the former look very much like
those in Fig. 1. However, for W/£&=5 there are no transitions
out of the one-row pattern. In such narrow strips B, is much
greater, and hence, the interaction with the Meissner currents
is stronger relative to the intervortex forces.
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FIG. 1. Vortex configurations and density as a function of B/B,,
for W/ £=30. (a) Transverse coordinates of the vortices. (b) Illustra-
tions of the vortex configurations for several values of B. (c) Vortex
density according to the present calculations (solid line) and Mak-
simova’s free energy (dotted line). The dashed line corresponds to
n=BW?/®,.

We also carried out unconstrained minimizations of g by
overdamped molecular dynamics starting from random ini-
tial configurations, to provide further assurance that the cal-
culations described above (which can be characterized as
constrained minimization) found configurations that were
global free-energy minima. We will omit details of these cal-
culations and summarize the results. For fields below B,,, the
unconstrained minimization always converged to the ex-
pected one-row configuration. For B, <B<B_;, they usu-
ally gave vortex configurations matching those predicted by
the constrained minimization, but there were also some re-
sults that deviated from a periodic arrangement. In those
cases a vortex would be trapped near the center of the strip,
causing the other vortices nearby to be pushed towards the
edges. The disturbance in the vortex lattice was localized:
within several W, the vortices returned to a nearly periodic
two-row pattern. Such vortex configurations with defects
were always higher in g than the periodic ones. For B> B, 5,
local minima in g proliferated and the unconstrained mini-
mizations never converged to periodic patterns; and again the
resulting values of g always exceeded those of the periodic
configurations found previously.

IV. ASSESSMENT OF THE THEORY

Now we directly address the questions that motivated this
work. On the purely theoretical side, we may compare the
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FIG. 2. Data of Stan, Field,
and Martinis (see Ref. 8) (circles)
and the corresponding theoretical
results (solid lines) for (a) W
=1.6 um, W/&=5, (b) W=10 um,
W/£=30, and (¢) W=100 um,
W/£=300.
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result for n(B) that follows from Maksimova’s mean-field
treatment of vortices, Eq. (5), with our findings: see Fig.
1(c). There are marked differences near B,, where as noted
earlier the slope of n(B) is infinite in the proper treatment but
is W?/2®, in the mean-field treatment. There are also sig-
nificant differences at larger fields. A straight line—without
any further term that diverges as B — o—fits the calculations
of Sec. III quite well for B=2B,. Fitting n(B) displayed in
Fig. 1(c) gives a slope of 0.96W?/®,. Doing the same with
the corresponding calculations for W/£&=300 yields the
somewhat smaller slope 0.87W?/®,,. The mean-field calcula-
tion yields n(B)=(B—BB,)W*/®,, so dn/dB approaches its
large-B limit rather slowly. It is evident in Fig. 1(c) that the
difference between the exact and mean-field calculations in-
creases with increasing B (except just below some of the
vortex structure transitions).

In order to facilitate a comparison with the experimental
results, in Fig. 2 we have taken the data from Ref. 8 and
plotted it together with the theoretical results, using the pub-
lished experimental estimates of the parameters.

The most obvious disagreements between theory and ex-
periment, already noted by SFM, are in the values of B,: the
theory underestimates it by a factor of about 4 in the 1.6 um
strips and overestimates it by about 50% in the 100 wm
strips. For the 1.6 um strips, W/§ may be too small for the
theory to be quantitatively reliable. For the 100 wm strips the
condition W< A is not satisfied, since SFM estimated A
=24 um. Although a full accounting of the effects of finite A
is beyond the scope of this work, a few remarks are in order.
A calculation by Fetter?! for thin-film disks showed that on
decreasing A from five times the diameter to half the diam-
eter, B, increased by 10%. Thus the finite A should have
only a negligible effect on B, for the 1.6 and 10 um strips;
for the 100 wm strips it should have a small effect but leads
to a greater discrepancy between theory and experiment for
B..

The 1.6 um data is all in the low vortex density regime,
for which the theory predicts n(B) to be nearly vertical, and
which is not consistent with the data. The 10 um data at low
vortex densities are also qualitatively inconsistent with the
theory, but for n=0.6 its slope is reasonably consistent with
the theoretical result. Data at larger values of magnetic field
would have been very interesting to see. The 100 wm data is
too sparse at low vortex density to compare with the theory,
but for larger values of density and field the theory and ex-

0.008

periment are in reasonable agreement. The experimental data
are too scattered to reveal any of the vortex configuration
transitions evident in the theoretical curve.

We suggest that some of the features of the data that can-
not be accounted for yet, such as the finite slope at low
vortex density (n=<0.6) for the 1.6 and 10 wm strips and the
unexpectedly low value of the critical field in the 100 um
strips, are due to pinning. The following section will address
that matter.

V. PINNING

So far we have assumed that the superconducting films
were structurally and chemically perfect. In real materials
this is never true, and in fact disorder that leads to particu-
larly favored locations for vortices, that is, pinning, is nec-
essary for the critical current to be nonzero when vortices are
present. Modeling pinning, in the present context, amounts to
choosing a particular ensemble of functions V(x,y) to add to
G,; one might take, for example, parabolic “dimples.”??
(Vortex entanglement and related phenomena are not pos-
sible when d<<{, so variations of the pinning potential in z
can be averaged.)

While it is certain that pinning has effects on the vortex
configurations and mean density at all fields, we are espe-
cially interested in understanding if pinning can account for
the experimentally observed behavior low values of n, where
the theory for systems without pinning places all vortices
along the strip center line and n(B) rises much more rapidly
with field than observed by SFM. Thus we have constructed
a model for pinning which is appropriate in that regime and
makes possible calculations which are computationally less
intensive than would be necessary for a full treatment.

In this model the vortices are allowed to lie only along
x=0 at discrete values of y separated by W/M; for most
calculations we set M=100. Each of these “sites” has an
associated energy —E. For most of the sites £=0. The re-
mainder are “pinning sites” with £ drawn uniformly from 0
to E,,,. Other choices of distribution could be made; we will
comment on this matter later. The average number of pinning
sites in a length W will be denoted p, so the fraction of sites
which are pinning sites is p/M.

For a given set of parameters and realization of pinning,
approximate ground state configurations for a strip of length
40W with lengthwise periodic boundaries are determined by
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FIG. 3. Vortex density for W/£=30, E,.«/eo=1, at pinning site
densities p of zero (solid line), 0.5 (circles), and 2 (diamonds). The
uncertainties in the Monte Carlo calculations are approximately or
less than the height of the symbols. The dashed lines neglect inter-
vortex interactions, as described in the text.

simulated annealing with a Metropolis Monte Carlo algo-
rithm, following an exponential cooling schedule. Allowed
moves are addition of a vortex to an empty site, removal of a
vortex from a filled site, and displacement of a vortex to an
empty adjacent site. Results for n are averaged over ten re-
alizations of pinning.

(Note that the “cooling” carried out in these calculations
is very different from experimental cooling: in the calcula-
tions the vortex interactions are independent of temperature.
In fact, the Monte Carlo calculations start at temperatures of
order gy/kp, which are well above the superconducting tran-
sition temperature.)

Our present aim is to gain insight into how varying the
disorder model parameters E,,, and p affects the vortex den-
sity. We begin with two analytic calculations. The threshold
field in the presence of pinning, which we will refer to as
BP'" is determined by subtracting E,y,, from the right side of
Eq. (1) and setting AG=0. This yields

BP™/B. =1 - Epy/eq In2W/mE). (8)

The slope of n(B) at BP™ is determined entirely by the pin-
ning site density and the probability distribution of pinning
energies, since just above B the mean intervortex distance
is large and interactions between vortices can be neglected. If
those interactions are neglected completely, then, for a uni-
form distribution of pinning energies, n(B) forms straight
lines from n(BY")=0 to n(B,.)=p.

Let us now examine some numerical calculations. In Fig.
3 we show results for two nonzero values of p, fixing W/§
=30 and E,,,=go. Those two data sets exhibit the same
threshold field, as expected since that depends on the maxi-
mum strength of pinning rather than the density of pinning
sites. The dashed lines (the lower one corresponding to the
p=0.5, the higher to p=2) are the results in the absence of
intervortex interactions, so effects of vortex-vortex interac-
tions are evident in the deviations of the Monte Carlo data
from those lines. For the present set of parameters, interac-
tions begin to noticeably affect the density when the vortices
are on average 3W apart. At that distance G,=3 X 107%g,, so
it is somewhat surprising that interaction effects are evident
then. Randomness in the distances between pinning sites as

PHYSICAL REVIEW B 73, 144501 (2006)

L T I T I;I ll,I | T T 4
1.0 I " -
- 7 K -
= III Iiw@ -
« F $ i
S o5k / o & ]
) OCI'.‘I) '& i
/ o
- /oD oy .
_59 b ]
L © ]
0.0 1 I ]é] 1 1 1 L 1
0.5 1.0
B/B

FIG. 4. Vortex density for W/§=30, pinning site density p=2,
and scaled maximum pinning energies E,,,,/ & of zero (solid line),
1 (diamonds), and 2 (circles). The uncertainties in the Monte Carlo
calculations are approximately or less than the height of the sym-
bols. The dashed lines neglect intervortex interactions.

well as the pinning energies must underlie this behavior.

For fields exceeding B, by as little as 10%, pinning has
only a modest effect on the vortex density. It is interesting to
see that for “low” pinning densities such as 0.5, where an
extrapolation of the low-n part of the n(B) data intersects the
clean-system n(B) curve, there is a distinctive “kink” where
those two meet, as the Monte Carlo data follows the clean-
system theory remarkably well beyond that point. For “high”
pinning densities there is no corresponding feature at B,., just
a decrease in slope when n is large enough that intervortex
interactions become significant.

In Fig. 4 the effects of varying the maximum pinning
energy are illustrated. The most obvious result of increasing
Enax all other things being equal, is the expected downward
shift in BP™. Above B,, where the Monte Carlo data essen-
tially follows the clean-system theory, it appears that increas-
ing E,,. as well as p (as seen on the previous figure) leads to
slightly increased n values, but the effect is modest. If the
pinning site density is low (such as p=0.5) the effect of E,,,,
on n above B, is even weaker, as shown in Fig. 5.

VI. RECONSIDERATION OF THE SINGLE-VORTEX
FREE ENERGY

The fact that the experimental values of the threshold field
for vortex entry in the 1.6 and 10 wm strips are too large in
comparison with the theoretical results shown in Fig. 2 can-
not be accounted for by pinning: B2" is alway less than B... If

1.0

=05

0.0 L) L1 1

FIG. 5. Same as Fig. 4, except p=0.5.
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the experimental results are taken at face value, there must
be something missing in Eq. (1). Either an additional contri-
bution to the vortex self-energy or a reduction in the mag-
netic moment would have the effect of increasing B,. In fact,
both types of corrections to Eq. (1) exist.

Equation (1) is obtained within London theory. The vortex
core is treated as pointlike for the calculation of the magnetic
moment of the vortex, since the moment is finite even with
the divergent current density at the vortex center. For the
calculation of the self-energy, the current density is set to
zero within ¢ of the vortex center.

For a vortex in an infinite film, Pearl'” applied a varia-
tional approximation to Ginzburg-Landau theory to derive an
expression for the vortex self-energy, namely

A1 (r\?
80{lnr_c+i(é> :|, )

where r, is the core radius, outside of which the order pa-
rameter is taken to be constant. The corresponding result
within London theory is just the first term, and if one sets
r.=& then the second term is just a (very small) constant. For
a vortex along the center line of a thin film strip, it seems
natural to replace the first term by In(2W/ 7r,) and again set
r.=§& The contributions to the vortex self-energy beyond
London theory (such as the condensation energy of the core)
would then seem to be insignificant since 1/24 is just 1.5%
of In2QW/7¢)=2.95 for W/£=30 (10 wm strips).

However, in addition to the expression (9), Pearl also
found that the core radius r, for a thin-film vortex is not the
coherence length, but rather, within the same approximation

r.=(12A&)"3, (10)

Although Pearl emphasized that r,. for a thin-film vortex was
not much different than in bulk (in contrast with the strik-
ingly different behaviors of the current far from the core), for
our purposes the ratio r./é=(12A/€)3=9.7 is significantly
different from unity. We are thus led to propose that the self

energy for a thin-film strip has the form

[ 2w ro 1 <r6>2]
golln—-In—+—|— (11)
wé & 24\ ¢

provided that (12A&*)'3<W/2 so that the core structure is
not significantly altered by the strip geometry. Note that for
SFM (12A&)'3=3.1 um, so for the W=1.6 um strips this
condition is strongly violated. Then we cannot use Eq. (11)
for the self-energy. Instead, a full Ginzburg-Landau analysis
is required, which might be done by generalizing Brandt’s
calculations for films.?*> For the W=10 um strips, the condi-
tion barely holds. If we treat Egs. (11) and (10) as exact then
the ratio of the last two terms to the first in Eq. (11) is 65%.
Going beyond London theory thus yields a 65% increase in
the self-energy, which leads directly to a 65% increase in B,
over that given by Eq. (2). For the W=100 um strips, there
is a 30% increase.

Let us now turn to the vortex magnetic moment. The mag-
netic moment of a Pearl vortex in the center of a narrow strip
within London theory is (®,/167A)W? [cf. Eq. (1)]. Assum-
ing that the currents within the vortex core are unaffected by
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FIG. 6. The W=10 um data of SFM (circles) together with
theoretical calculations (line, Monte Carlo uncertainties suppressed
for clarity) for p=0.6, Ep./e9=1.1, r./£=10.7.

the strip geometry, they contribute (®y/167A)r? to the mag-
netic moment. If those currents are simply set to zero, there
is a correction factor 1—(r,/W)? to the magnetic moment,
and if one takes r.=¢ then the correction factor is clearly
negligible for the W=10 um strips. However, as we have
just seen, it is preferable to use Eq. (10). One should also
note that in Pearl’s approximation the current density varies
as r> for r<r, so the correction factor becomes 1
—2(r./W)%. For the W=10 pum strips, 3(r./W)?>=~0.05: this
is just small enough that it is reasonable to neglect. For the
W=100 wm strips the correction to the magnetic moment is
insignificant, but for the W=1.6 um strips one sees again
that a full Ginzburg-Landau treatment is called for.

VIL FITTING THE SFM DATA

Let us now see to what degree we can account for the data
of SFM by including pinning and the improved self-energy
Eq. (11) in the analysis. The W=10 um data cover the most
interesting range in n, so we start with that. We take p,
E /€9, and r./& as fitting parameters. We fit r./ & rather
than fixings its value with Eq. (10) because of the approxi-
mations inherent in both (10) and (11).

Looking at the data in Fig. 2(b), the pinning site density
should be low, since there is a clear increase in slope at about
0.07 mT. (Compare Fig. 5, with low pinning density, to Fig.
4, with high density.) The experimental data directly yields
BP"=0.056 mT=2.7®,/ W?. We carried out Monte Carlo cal-
culations for several sets of parameter values consistent with
that constraint, and what we consider to be the best represen-
tation of the data is shown in Fig. 6. The uncertainties in the
fitting parameters are roughly 0.2 in r./ & and with correlated
variations of about 0.1 in E,,,/&, and p. Note that the fitted
r./ € is in reasonable agreement with the value 9.7 expected
on the basis of Eq. (10). The theoretical curve ends up giving
one a rather different impression of the data than one gets
from the SFM paper, in which the data for B=0.07 mT is fit
with a straight line that is extrapolated to n=0 to estimate B,.
Here, the drop in n with decreasing field at about 0.07 mT is
interpreted as the beginning of the sudden drop one expects
to see in the absence of pinning, but which is masked by
pinning for n<0.4.

The linearity of the experimental data for n=<0.4 is con-
sistent with the assumption of a uniform distribution of pin-
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ning energies. However, none of the good fits were able to
pass through the two data points at the largest values of B.
This may be a consequence of the approximate pinning
model, which should become less reliable as n increases. It
could also be due to the incipient breakdown of the London
theory for vortex-vortex interactions, since r. is not much
less than W/2.

In order to extend the above results for the W=10 um
strips to the other strips, we must consider how the param-
eters of the pinning model should vary with W. Recall that p
is the number of pinning sites, taken to lie on the strip center
line, in a segment of length W. If all the pinning sites in the
experimental samples really were along the center line then
changing W would change p by the same factor and leave
E . unchanged. But that assumption of the model was in-
troduced just for calculational convenience. It is clear that
the effective values of p and E,,, for the model calculations
should be somewhat less than those values for narrower
strips, and somewhat greater for wider strips; a more detailed
analysis requires further assumptions concerning the pinning
sites and is not needed for our present purposes.

For the W=1.6 um strips we have already pointed out
that the London theory is inapplicable, and one can even see
evidence for this in qualitative aspects of the data [see Fig.
2(a)] related to the intervortex interactions. The pinning site
density should be smaller by about a factor of 1.6/10 than
for the W=10 um strips, which puts the W=1.6 um strips
well into the low pinning density regime (p=0.1). One then
expects linear behavior in n(B) between the vortex entry
threshold (B=BF"™,n=0) up to n=~p (at which point B is
presumably B,), which does in fact hold in the experimental
data. But one also expects this to be followed, on increasing
B, by an abrupt jump up to n=0.5—which is notably lack-
ing.

Finally, consider the W=100 wm strips. For these one ex-
pects to have a large pinning site density, perhaps p=6 or
greater, and pinning energies E,,./€o=1 or greater. A de-
tailed comparison between theory and experiment like that in
Fig. 6 is not possible since the model calculations with pin-
ning are restricted to small n, where the data is very sparse.
The calculations also omit the effects of a finite A, except
insofar as it sets the energy scale g, but as remarked earlier
we expect that to give only small corrections. Taking into
account the self-energy beyond the London theory, Eq. (11),
shifts the no-pinning theoretical curve in Fig. 2(c) to the right
by 2X10* mT, which would be barely visible on that
graph. Including pinning should then improve the agreement
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between theory and experiment. Matching the experimental
B, requires accepting a value of E /g, as large as 5. It is
not clear how to square this with the results for the 10 um
strips, but a high density of strong pinning sites might ac-
count for the consistently larger numbers of vortices found in
the experiments compared with the theoretical prediction for
clean systems shown in Fig. 2(c), particularly at B
>0.002 mT.

VIII. CONCLUSIONS

We have carried out an analysis within the London theory
of the equilibrium configurations of Pearl vortices in narrow
thin-film strips. In the absence of pinning, the results for the
vortex configurations and density as a function of magnetic
field bear a strong resemblance to the corresponding results
for Abrikosov vortices in thin films with magnetic fields par-
allel to the film surface. There are notable differences with
the vortex density found using Maksimova’s approximate
treatment'® in which variations in the sheet current density
along the strip length are neglected, and also with that found
in the experimental work of SFM,® particularly near the
threshold field for vortex entry.

When pinning is included in the analysis, it is possible to
account for the finite slope of n(B) seen experimentally at
threshold. However, to construct a reasonable fit to the SFM
data for 10 um strips, it is necessary to go somewhat beyond
London theory by incorporating Pearl’s!” Ginzburg-Landau
analysis of the core structure and free energy of thin-film
vortices. Pearl’s analysis implies that when A> ¢ the core
radius r,. of Pearl vortices can be appreciably greater than the
coherence length, and for the thin films considered by SFM
the effect is about a factor of 10. Thus SFM provides, as far
as we are aware, the first experimental support for this par-
ticular little-known aspect of Pearl’s pioneering study of
thin-film vortices. For SFM’s 1.6 um strips the core diam-
eter, as calculated in an infinite film, is about four times
greater than the strip width, and so the London theory is
inapplicable. A full Ginzburg-Landau treatment for such ex-
tremely narrow strips may be worthwhile.
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