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We consider the critical behavior at an interface which separates two semi-infinite subsystems belonging to
different universality classes, thus having different sets of critical exponents, but having a common transition
temperature. We solve this problem analytically in the frame of �k mean-field theory, which is then generalized
using phenomenological scaling considerations. A large variety of interface critical behavior is obtained which
is checked numerically on the example of two-dimensional q-state Potts models with 2�q�4. Weak interface
couplings are generally irrelevant, resulting in the same critical behavior at the interface as for a free surface.
With strong interface couplings, the interface remains ordered at the bulk transition temperature. More inter-
esting is the intermediate situation, the special interface transition, when the critical behavior at the interface
involves new critical exponents, which, however, can be expressed in terms of the bulk and surface exponents
of the two subsystems. We discuss also the smooth or discontinuous nature of the order parameter profile.
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I. INTRODUCTION

Systems which undergo a second-order phase transition
display singularities in different physical observables which
have been the subject of intensive research, both experimen-
tally and theoretically.1 At the critical temperature, Tc, due to
the existence of a diverging correlation length ���T−Tc�−�,
microscopic inhomogeneities and single defects of finite size
do not modify the critical singularities which are observed in
the perfect systems.2 However, inhomogeneities of infinite
extent, such as the surface of the sample,3–5 internal defect
planes,6 etc., may modify the local critical properties near the
inhomogeneity, within a region with a characteristic size
given by the correlation length. For example, the magnetiza-
tion m, which vanishes in the bulk as m��Tc−T��, behaves
as m1��Tc−T��1 at a free surface3–5 and the two critical
exponents � and �1 are generally different.

Inhomogeneities having a more general form, such as
localized7 and extended defects,8 corners,9 wedges and
edges, parabolic shapes,10 etc., often have exotic local criti-
cal behavior; for a review, see Ref. 11. The local critical
behavior can be nonuniversal, so that the local exponents
vary continuously with some parameters, such as the opening
angle of the corner,9 the amplitude of a localized,7 or ex-
tended defect.8 The inhomogeneity can also reduce the local
order to such an extent that the local magnetization vanishes
with an essential singularity, as observed at the tip of a
parabolic-shaped system.10 On the contrary, for enhanced lo-
cal couplings, a surface or an interface may remain ordered
at or above the bulk critical temperature,3–5 which in a two-
dimensional �2D� system leads to a discontinuous local
transition.12

In the problems we mentioned so far the inhomogeneities
are embedded into a critical system the bulk properties of
which govern, among others, the divergence of the correla-
tion length and the behavior of the order-parameter profile.
There is, however, another class of problems, in which two

�or more� systems meet at an interface, each having different
types of bulk �and surface� critical properties. In this respect
we can mention grain boundaries between two different ma-
terials or the interface between two immiscible liquids, etc.

If the critical temperatures of the two subsystems are
largely different, the nature of the transitions at the interface
is expected to be the same as for a surface.13 At the lower
critical temperature, due to the presence of the nearby or-
dered subsystem, the interface transition has the same prop-
erties as the extraordinary surface transition.3–5 At the upper
critical temperature, the second subsystem being disordered,
the interface transition is actually an ordinary surface
transition.3–5 If the dimension of the system is larger than 2
and if the interface couplings are strong enough, one expects
an interface transition in the presence of the two disordered
subsystems whose properties should depend on the univer-
sality classes of these two subsystems.

Even in 2D, the local critical behavior at the interface can
be more complex if the critical temperatures of the sub-
systems are the same or if their difference is much smaller
than the deviation from their mean value. In this case an
interplay or competition between the two different bulk and
surface critical behaviors can result in a completely new type
of interface critical phenomena. In this paper we study this
problem, assuming that the critical temperatures of the two
subsystems are identical.

The structure of the paper is the following. The mean-
field solution of the problem including �3, �4, and �6 theo-
ries and the interface between them is presented in Sec. II.
The mean-field results are generalized in Sec. III using phe-
nomenological scaling considerations. In Sec. IV these re-
sults are confronted with Monte Carlo simulations in 2D for
interfaces between subsystems belonging to the universality
classes of the Ising model, the three- and four-state Potts
models, as well as the Baxter-Wu �BW� model. Our results
are discussed in Sec. V and some details about the analytical
mean-field calculations are given in the Appendixes A and B.
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II. MEAN-FIELD THEORY

A. Properties of the �k model

1. Free energy

We consider a system with volume V limited by a surface
S in the Landau mean-field approximation. The total free
energy is the sum of bulk and surface contributions which
are functionals of the scalar order parameter ��r� so that:3–5

F��� = �
�V�

fb���dV + �
�S�

fs���dS . �1�

Near a second-order transition, the order parameter is small
and the bulk free energy density fb��� is written as an ex-
pansion in the order parameter and its gradient, limited to the
following terms:

fb��� = fb�0� +
C

2
����2 +

A

2
�2 +

B

k
�k − h� . �2�

The second term, with C�0, gives a positive contribution
associated with the spatial variation of the order parameter.
A=−at �a�0, t=Tc−T� is negative when T	Tc and mea-
sures the deviation from the critical point. The next term
with B�0 ensures the stability of the system in the ordered
phase. In the last term, h is the bulk external field. When k is
odd, the order parameter is supposed to take only non-
negative values; otherwise, the system would be unstable.

In the same way the surface free energy density is written
as

fs��� = fs�0� +
Cs

2

�2



, �3�

where � is the value of the order parameter on �S�. The
constant Cs is positive and 
 is a characteristic length related
to the surface and bulk couplings of the corresponding mi-
croscopic Hamiltonian of the system.3

2. Ginzburg-Landau equation

The mean-field equilibrium value of the order parameter,
��r�, minimizes the free energy in �1�. It is obtained through
a variational method by calculating �F���, the change of the
free energy, which vanishes to first order in the deviation
���r� of the order parameter from its equilibrium value. Us-
ing Eqs. �1�–�3�, one obtains

�F��� = �
�V�

�C�� · ��� + �A� + B�k−1 − h����dV

+ �
�S�
�Cs

�



	��dS . �4�

The first term in the volume integral may be rewritten as

C�� · ��� = � · �C����� − C���2� , �5�

and the contribution to �4� of the first term on the right can
be transformed into a surface integral through Gauss’ theo-
rem. Then

�F��� = �
�V�

�− C�2� + A� + B�k−1 − h���dV

+ �
�S�
�− Cn · �� + Cs

�



	��dS , �6�

where n is a unit vector normal to the surface and pointing
inside the system.

At equilibrium, the first-order variation of the free energy
vanishes. The volume integral leads to the Ginzburg-Landau
equation

− C�2��r� + A��r� + B�k−1�r� = h�r� �7�

governing the equilibrium behavior of the order parameter in
the volume of the system and the surface integral provides
the boundary condition:

� Cn · ���r���S� = Cs
��r�





�S�
. �8�

3. Bulk critical behavior

In the bulk, the first term in �7� vanishes. The zero-field
magnetization vanishes when T�Tc and is given by

�b = �at

B
	�

= �0t�, � =
1

k − 2
, �9�

in the ordered phase �T�Tc, h=0�.
The connected part of order-parameter two-point correla-

tion function is given by

G�r,r�� = kBT
���r�
�h�r��

, �10�

where ��r� is the equilibrium order parameter, solution of the
Ginzburg-Landau equation. Taking the functional derivative
of Eq. �7�, one obtains

− C�r
2G�r,r�� + �A + �k − 1�B�b

k−2�G�r,r�� = kBT��r − r�� .

�11�

This may be rewritten as

�− �r
2 + �−2�G�r,r�� =

kBT

C
��r − r�� , �12�

where the expression of the bulk correlation length � follows
from Eqs. �9� and �11� and reads

� = ��k − 2�
at

C
�−�

= �0t−�, � =
1

2
, �13�

in the ordered phase.

4. Order parameter profiles

We now assume that the surface of the system is located
at z=0 so that �=��z�. Then, according to Eqs. �7�, �9�, and
�13�, the zero-field normalized order-parameter profile
�̂=� /�b is the solution of the following differential
equation:

BAGAMÉRY, TURBAN, AND IGLÓI PHYSICAL REVIEW B 73, 144419 �2006�

144419-2



d2�̂

dz2 =
A

C
�̂ +

B

C
�b

k−2�̂k−1 =
�̂k−1 − �̂

�k − 2��2 . �14�

Multiplying by 2d�̂ /dz and taking into account the bulk
boundary condition, d�̂ /dz→0 when �̂→1, a first integra-
tion leads to

�d�̂

dz
	2

=
2�̂k − k�̂2 + k − 2

k�k − 2��2 . �15�

To go further we have to specify the value of k and to dis-
tinguish between surfaces �or interfaces� which are more or-
dered ��̂�0��1� or less ordered ��̂�0�	1� than the bulk.
Below we list the solutions of Eq. �15� which will be needed
in the sequel. We use the notation �̂+�z� ��̂−�z�� for a system
located in the z�0 �z	0� half-space. The values of the in-
tegration constants l+ and l− are determined by the boundary
conditions at z=0.

�3 model, �̂�0��1:

�̂±�z� =
1

2
�3 coth2� z ± l±

2�±
	 − 1� ,


d�̂±

dz



0
= �

3

2�±
cosh� l±

2�±
	sinh−3� l±

2�±
	 . �16�

�3 model, �̂�0�	1:

�̂±�z� =
1

2
�3 tanh2� z ± l±

2�±
	 − 1� ,


d�̂±

dz



0
= ±

3

2�±
sinh� l±

2�±
	cosh−3� l±

2�±
	 . �17�

�4 model, �̂�0��1:

�̂±�z� = ± coth� z ± l±

2�±
	 ,


d�̂±

dz



0
= �

1

2�±
sinh−2� l±

2�±
	 . �18�

�4 model, �̂�0�	1:

�̂±�z� = ± tanh� z ± l±

2�±
	 ,


d�̂±

dz



0
= ±

1

2�±
cosh−2� l±

2�±
	 . �19�

�6 model, �̂�0��1:

�̂±�z� = 
2�3 tanh2� z ± l±

2�±
	 − 1�−1/2

,


d�̂±

dz



0
= �

3
2

2�±
sinh� l±

2�±
	cosh−3� l±

2�±
	


 �3 tanh2� l±

2�±
	 − 1�−3/2

. �20�

�6 model, �̂�0�	1:

�̂±�z� = ± sinh� z ± l±

2�±
	�sinh2� z ± l±

2�±
	 +

3

2
�−1/2

,


d�̂±

dz



0
= ±

3

4�±
cosh� l±

2�±
	�sinh2� l±

2�±
	 +

3

2
�−3/2

.

�21�

B. Surface critical behavior

In this section we briefly consider, for later use, the criti-
cal behavior at the surface when the bulk is in its ordered
phase �T�Tc�. We suppose that the system is located in the
z�0 half-space. Since there is no ambiguity here, we drop
the index + so that, for example, ��z� stands for �+�z�. In this
geometry, according to Eq. �8�, the boundary condition reads

Cs
�̂�0�



= C
d�̂

dz



0
. �22�

Below we list the values obtained for the integration constant
l and the surface order parameter ��0�.

1. �3 surface

a. 
	0. When 
	0, the surface remains ordered at the
bulk critical point, which corresponds to the extraordinary
surface transition. Thus, the order parameter profile is given
by Eq. �16� and l is obtained by expanding both sides of Eq.
�22� in powers of l /��1. To leading order, one obtains

l = 2
C

Cs
�
� �23�

and

��0� =
3

2
�Cs�0

C�
�	
2

�0. �24�

b. 
�0. In this case the surface is less ordered than the
bulk and we have an ordinary surface transition. The profile
is given by Eq. �17� and the solution is obtained by assuming
that the ratio l /� is a constant. Details of the calculation are
given in Appendix A. The boundary condition in �22� is sat-
isfied with

l = 2 tanh−1� 1

3

	�0t−1/2, �25�

so that

��0� =
1

3

C


Cs�0
�0t3/2. �26�

Thus the surface exponent, �1=3/2, is larger than the bulk
exponent, �=1.
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c. 
→�. The profile is given by either �16� or �17� with
l→�. Then the order parameter is constant, keeps its bulk
value until the surface and ��0�=�b=�0t. We have a special
surface transition, which corresponds to a multicritical point
where the lines of ordinary and extraordinary transitions
meet with the line of surface transition3 in a �T ,1 /
� dia-
gram.

2. �4 surface

a. 
	0. This corresponds as above to the extraordinary
transition where the surface remains ordered at the bulk criti-
cal point. The profile is given by Eq. �18� and the boundary
condition in �22� requires l /��1 so that one obtains

l =
C

Cs
�
� . �27�

The leading contribution to the surface order parameter is
given by

��0� = 2
Cs�0

C�
�
�0. �28�

b. 
�0. At the ordinary surface transition, the profile is
given by Eq. �19�. Here the boundary condition is satisfied
with l /��1, which gives

l =
C

Cs

 . �29�

The surface order parameter vanishes as

��0� =
1

2

C


Cs�0
�0t . �30�

Thus, the surface exponent is �1=1 to be compared to the
bulk exponent, �=1/2.

c. 
→�. Here too, the boundary condition in �22� leads
to l→� and the surface order parameter keeps the bulk value
��0�=�0t1/2 at the special surface transition.

3. �6 surface

a. 
	0. Once more we have an extraordinary surface
transition with a profile given by Eq. �20�. As shown in Ap-
pendix A this is another instance where the boundary condi-
tion in �22� is satisfied with a constant value of the ratio l /�.
Thus, as in �25�, we have

l = 2 tanh−1� 1

3

	�0t−1/2. �31�

The leading contribution to the surface order parameter is
then

��0� = �2
3
Cs�0

C�
�	
1/2

�0. �32�

b. 
�0. The profile at the ordinary surface transition is
given by Eq. �21�. Here we have the standard behavior, l /�
�1, with

l =
C

Cs

 . �33�

The surface order parameter displays the following behavior:

��0� =
1

6

C


Cs�0
�0t3/4. �34�

Thus the surface exponent is �1=3/4 whereas �=1/4 in the
bulk.

c. 
→�. As for the other models, the length l is infinite
at the special transition and the surface order parameter has
the bulk value, ��0�=�0t1/4.

Although the characteristic length l sometimes remains
finite and sometimes diverges at the critical point, the expo-
nent �1 at the ordinary surface transition always satisfies the
scaling relation:

�1 = � + � �ordinary transition� . �35�

In the same way, at the special transition, we have

�1 = � �special transition� . �36�

One should notice that these scaling relations are only valid
in mean-field theory.3

At the extraordinary transition the singular term, govern-
ing the approach to the constant value at Tc of the surface
order parameter, appears at the next order in the expansion. It
vanishes linearly in t for the �3 and �4 models and as t1/2 for
the �6 model. We do not give further details since we shall
not need it in the following. For the same reason, we did not
examine the properties of the surface transition which occurs
in the surface region, above the bulk critical temperature,
when 
	0.

C. Interface critical behavior

In this section, we consider the critical behavior at the
interface between two systems, belonging to different univer-
sality classes, in their ordered phase �T�Tc�. Thus the free
energy densities of the two subsystems are given by �2� with
different values of k. They are coupled through an interface
at z=0 with free energy density

f i��� = f i�0� +
Ci

2

�2



. �37�

We assume that the positive half-space corresponds to the
system which is the more ordered in the bulk when Tc is
approached from below so that �+	�−. The order parameter
profiles, �+�z� for z�0 and �−�z� for z	0, have now to
satisfy

��0� = �+�0� = �−�0� ,

Ci
��0�



= C+
d�+

dz



0
− C−
d�−

dz



0
. �38�

These boundary conditions generalize Eq. �22� for the inter-
face geometry where each subsystem contributes a normal
derivative to the surface integral in Eq. �6�.
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When two subsystems are coupled, the boundary condi-
tions in Eq. �38� determine the integration constants l±—i.e.,
the complete order parameter profile. In the following, we
give these integration constants as well as ��0�, the value of
order parameter at the interface, for the different types of
interface considered. Technical details about the calculations
can be found in Appendix B.

As in the surface case, depending on the value of 
, dif-
ferent types of interface critical behaviors are obtained �see
Figs. 1–3�. When 
	0, the interface remains ordered at the

bulk critical point and we have an extraordinary interface
transition. When d�2, the local order persists above the
bulk critical temperature until a 
-dependent interface tran-
sition temperature is reached. This transition, which always
occurs in mean-field theory, will not be discussed further
here. When 
�0 the interface order parameter vanishes at
the bulk Tc as a power of t. This corresponds to the interface
ordinary transition. When parametrized by 1/
, these two
transition lines meet, together with the interface transition
line when it exists, at a multicritical point corresponding to
the special interface transition located at 1 /
=0,T=Tc.

1. �3-�4 interface

a. 
	0. This corresponds to strong couplings at the in-
terface. The order parameter increases when the interface is
approached so that �−�z� and �+�z� are given by �16� and
�18�, respectively. To leading order in t, we have

l− = f
C−

Ci
�
� ,

l+ =
1

3

�0
+

�0
−� f

C−


Ci�0
−	2

�0
+, �39�

where

f = 1 +
1 + 3

*

�
�
, 
* =

C+Ci�0
−��0

−�2

C−
2�0

+�0
+ . �40�

The leading contribution to the order parameter at the inter-
face,

��0� = 6�1

f

Ci�0
−

C−

	2

�0
−, �41�

is also independent of t; i.e., the interface remains ordered at
the bulk critical point.

FIG. 1. Reduced order parameter profile �=��z� /�b
+ at the

�3-�4 interface as a function of �=z /�+ for different values of
�=
 /�0

+ with 1/�=−0.2, −0.1, 0, 0.1, and 0.5, from top to bottom.
The behavior for ��0 and �	0 is enlarged in the inset where
1/�=0, 0.1, 0.5, 1, and 10, from top to bottom. One may notice the
change of behavior at 1 /�c=�0

+ /
c=1/2. All other parameters have
the same values in the two subsystems: C+=C−=Ci, �0

+=�0
−, �0

+

=�0
−, and t=10−4.

FIG. 2. Reduced order parameter profile �=��z� /�b
+ at the �4

-�6 interface as a function of �=z /�+ for different values of
�=
 /�0

+ with 1/�=−0.1, −0.05, −0.03, 0, and 0.1, from top
to bottom. The behavior for ��0 and �	0 is enlarged in the inset
where 1/�=0, 0.01, 0.02, and 0.1, from top to bottom. All other
parameters have the same values in the two subsystems and
t=10−6.

FIG. 3. Reduced order-parameter profile �=��z� /�b
+ at the

�3-�6 interface as a function of �=z /�+ for different values of
�=
 /�0

+ with 1/�=−0.2, −0.05, −0.02, 0, and 1, from top to bot-
tom. The behavior for ��0 and �	0 is enlarged in the inset where
1/�=0, 0.2, 0.5, 1, and 10, from top to bottom. All other parameters
have the same values in the two subsystems and t=10−3.
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According to �40� and �41�, the asymptotic dependence on
�
� is the following:

��0� � ��
�−2 �
� � 
*,

�
�−1 �
� � 
*.
� �42�

b. 
�0. This corresponds to weak couplings between the
two subsystems. When

0 	 
 	 
c = 2
Ci�0

−

C+�0
+�0

+, �43�

the order parameter decreases from both sides towards the
interface. Then �−�z� is given by �17� and �+�z� by �19� with

l− = 2 tanh−1�
1 + 2
/
c

3
	�0

−t−1/2,

l+ =
C+

Ci

 . �44�

l− diverges when 
=
c. Then �−�z� is a constant and keeps
its bulk value for any z�0.

When 
c	
	�, �+�z� is still given by �19� and l+ keeps
the value given in Eq. �44� but now �−�z�, which increases, is
given by Eq. �16� with

l− = 2 coth−1�
1 + 2
/
c

3
	�0

−t−1/2. �45�

For 0	
	�, the order parameter at the interface is always
given by

��0� =
1

2

C+


Ci�0
+ �0

+t . �46�

c. 
→�. The profile remains monotonously increasing
and keeps the same functional form as for 
�
c although l−
and l+ are now given by

l− = 2�3
C−�0

−

C+�0
+�0

+	1/3

��0
−�2/3t−1/3,

l+ = �3
�0

−

�0
+�0

+	1/3�C+

C−
�0

−	2/3

t−1/3, �47�

so that

��0� =
1

2
�3�0

−�1/3�C+�0
−

C−�0
+�0

+	2/3

t2/3. �48�

2. �4-�6 interface

a. 
	0. The interface is more ordered than the bulk.
Thus �−�z� is given by �18� and �+�z� by �20� with

l− =
f

2

C−

Ci
�
� ,

l+ = 2�tanh−1� 1

3

	 + h�t���0
+t−1/2,

h�t� =

3

32
�C−�0

+�
�
Ci�0

−�0
− f	2

t1/2, �49�

where

f = 1 +
1 +
8

3


*

�
�
, 
* =

CiC+��0
−�0

−�2

�C−�0
+�2�0

+ . �50�

Here and below in Eq. �57� we keep the next-to-leading term
h�t� in l+. This correction is actually needed to obtain the
correct form of the profile in the vicinity of z=0.

The leading contribution to the order parameter at the
interface is constant:

��0� =
4

f

Ci�0
−

C−�
�
�0

−. �51�

Its asymptotic behavior

��0� � ��
�−1 �
� � 
*,

�
�−1/2 �
� � 
*,
� �52�

follows from Eqs. �50� and �51�.
b. 
�0. The profile is always decreasing when the inter-

face is approached. Thus �−�z� is given by �19� and �+�z� by
�21� with the following expressions for the integration con-
stants:

l− =
2

3

C+�0
+�0

−

Ci�0
−�0

+ 
t−1/4,

l+ =
C+

Ci

 . �53�

The interface order parameter behaves as

��0� =
1

6

C+


Ci�0
+ �0

+t3/4. �54�

c. 
→�. Then the profile increases monotonously with z.
�−�z� is given by �18� and �+�z� by �21� with

l− = �2
6
C−�0

−

C+�0
+�0

−�0
+	1/2

t−3/8,

l+ = �2
6
C+�0

−

C−�0
+�0

−�0
+	1/2

t−3/8. �55�

The interface order parameter vanishes as

��0� = �
2

3

C+�0
−

C−�0
+�0

−�0
+	1/2

t3/8. �56�
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3. �3-�6 interface

a. 
	0. As usual in this case, the interface is more or-
dered than the bulk. The profiles �−�z� and �+�z� are given
by Eqs. �16� and �20�. The calculation of l− involves the
solution of an equation of the fourth degree �see Appendix
B�. Here we only report the limiting behavior for large and
small values of �
�:

l− �
C−

Ci
�
�, �
� � 
*,

l− � �2
27
C+�
�
Ci�0

+ 	1/4��0
−

�0
+	1/2

�0
−, �
� � 
*,

l+ = 2�tanh−1� 1

3

	 + h�t���0
+t−1/2,

h�t� =
2
3

9
�C−�
�

Ci�0
− 	4��0

+

�0
−	2

t1/2, �
� � 
*,

h�t� =
1

4

C+�
�
Ci�0

+ t1/2, �
� � 
*. �57�

The crossover is taking place around


* = Ci��0
−

�0
+	2/3�C+

�0
+ 	1/3� �0

−

C−
	4/3

. �58�

The interface order parameter reads

��0� �
3

2
�Ci�0

−

C−

	2

�0
−, �
� � 
*,

��0� � �2
3
Ci�0

+

C+�
�
	1/2

�0
+, �
� � 
*, �59�

b. 
�0. The profile is monotonously increasing. �−�z�
and �+�z� have the form given in Eqs. �16� and �21� with the
following values of the constants:

l− = �6
6
Ci�0

−�0
+

C+�0
+


	1/2

�0
−t−3/8,

l+ =
C+

Ci

 . �60�

The interface order parameter vanishes as

��0� =
1

6

C+


Ci�0
+ �0

+t3/4. �61�

c. 
→�. The profile is still given by Eqs. �16� and �21�
with the following values of the constants:

l− = �12
6
C−�0

−

C+�0
+ ��0

−�2�0
+�1/3

t−1/4,

l+ = 
6�1

2

C+

C−
	2/3��0

−

�0
+ ��0

−�2�0
+�1/3

t−1/4. �62�

At the interface we obtain

��0� = �1

2

C+�0
−

C−�0
+�0

+	2/3

��0
−�1/3t1/2. �63�

III. SCALING CONSIDERATIONS

Here we generalize the mean-field results obtained in the
previous section. First, we consider the order-parameter pro-
files in semi-infinite systems with free and fixed boundary
conditions. These results are used afterwards to study the
scaling behavior at an interface, which separates two differ-
ent semi-infinite systems.

A. Order-parameter profiles in semi-infinite systems

We consider a semi-infinite system, which is located in
the half-space z�0 and which is in its bulk-ordered phase
�T�Tc�; see in Sec. II B. As in mean-field theory, the order
parameter ��z� depends on the distance from the surface, z,
and approaches its bulk value �b� t� for z /��1. The bulk
correlation length asymptotically behaves as ���t�−�. These
expressions generalize the mean-field results in Eqs. �9� and
�13�.

1. Free boundary conditions

At a free surface, due to the missing bonds, the local order
is weaker than in the bulk. The surface order parameter dis-
plays the so-called ordinary transition with the temperature
dependence ��0�� t�1, where generally �1��. The profile
��z�, which interpolates between the surface and bulk values
has the scaling form3–5

��z� = �bford� z + l

�
	 , �64�

and the scaling function, ford�y�, behaves as y��1−��/�, for y
�1.

2. Fixed boundary conditions

For fixed boundary conditions, the system displays the
extraordinary surface transition and stays ordered in the sur-
face region at the bulk critical temperature, so that ��z�
=O�1� as t→0+ and z��. This behavior is formally equiva-
lent to having a surface exponent, �1=0. The magnetization
profile can be written into an analogous form3–5 as in Eq.
�64�:

��z� = �bfext� z + l

�
	; �65�

however, now the scaling function fext�y� has the asymptotic
behavior,14 fext�y��y−�/�, for y�1.

CRITICAL BEHAVIOR AT THE INTERFACE BETWEEN¼ PHYSICAL REVIEW B 73, 144419 �2006�

144419-7



B. Interface critical behavior

Now we join the two semi-infinite systems and study the
behavior of the order parameter in the vicinity of the inter-
face. In general we expect that, depending on the strength of
the interface coupling, at the bulk critical temperature the
interface �i� can stay disordered for weak couplings, which
corresponds to the 
�0 case in mean-field theory, or �ii� can
stay ordered for stronger couplings, which is the case for

	0 in mean-field theory. These two regimes of interface
criticality are expected to be separated by a special transition
point, which corresponds to 
→� in mean-field theory.

To construct the order-parameter profile we start with the
profiles in the semi-infinite systems and join them. First we
require continuous behavior of the profile at z=0, like in
mean-field theory. The second condition in mean-field theory
in Eq. �38� cannot be directly translated; here, we just use its
consequencies for the extrapolation lengths. In the weak- and
strong-coupling regimes in mean-field theory the left-hand
side of Eq. �38� is finite so that the derivative of the profile is
discontinuous at z=0 and at least one of the extrapolation
lengths l± is O�1�. The same behavior of l± is expected to
hold in scaling theory, too. On the other hand, at the special
transition point in mean-field theory the left-hand side of Eq.
�38� is zero and the extrapolation lengths are divergent. In
scaling theory the asymptotic form of the extrapolation
lengths is expected to be deduced from the same condition—
i.e., from the equality of the derivatives of the profiles. This
leads to a relation l±� t−�±�±, in which 0��±�1 is defined
later.

If the subsystem—say, at z�0—displays an ordinary
transition, the interface magnetization follows from Eq. �64�
as

��0� � t�i, �i = �1 − �+��1
+ + �+�+, �66�

and �+��i��1
+. On the other hand, if the subsystem—say,

at z	0—has an extraordinary transition, the interface mag-
netization exponent follows from Eq. �65� as

�i = �−�−. �67�

Evidently, �i calculated form the two joined subsystems
should have the same value. This type of construction of the
order-parameter profiles will lead to a smooth profile at the
interface provided the extrapolation lengths are smaller or, at
most, of the same order than the correlation lengths,
max�l+ , l−��min��+ ,�−�, which holds provided

max��+�+,�−�−� � min��+,�−� . �68�

Otherwise, the profile measured in a length scale,
min��+ ,�−�, has a sharp variation at the interface and as the
critical temperature is approached the profile becomes dis-
continuous. Note that in mean-field theory, with �+=�− and
�±�1, the profile is always smooth.

1. Relevance-irrelevance criterion

Here we generalize the relevance-irrelevance criterion
known to hold at an internal defect plane with weak defect
couplings.6 If two different critical systems are weakly
coupled, the operator corresponding to the junction is the

product of the two surface magnetization operators. Conse-
quently, its anomalous dimension xi is given by the sum of
the dimensions of the two surface operators, xi=x1

−+x1
+,

where x1
±=�1

± /�±. Then the scaling exponent of the defect, yi,
in a d-dimensional system is given by

yi = di − xi = d − 1 −
�1

+

�+
−

�1
−

�−
, �69�

where di=d−1 is the dimension of the interface.
For yi	0 the weak interface coupling is irrelevant so that

the defect coupling renormalizes to zero and the defect acts
as a cut in the system. Consequently the interface critical
behavior is the same as in the uncoupled semi-infinite sys-
tems and the interface magnetization exponent is �i
=min��1

±� since the stronger local order manifests itself at
the interface. In the other case, yi�0, the coupling at the
interface is relevant and the interface critical behavior is ex-
pected to be controlled by a new fixed point.

For the 2D q-state Potts model with 2�q�4 we have15

x1�1/2; thus, weak interface coupling is expected to be
irrelevant according to Eq. �69�.

In mean-field theory, when d appears in a scaling relation,
it has to be replaced by the upper critical dimension dc for
which hyperscaling is verified. However, we have here dif-
ferent values of dc for the two subsystems so that there is
some ambiguity for the value of d in Eq. �69�. The analytical
results of Sec. II C show that a weak interface coupling is
also irrelevant in all the cases studied in mean-field theory.

2. Weakly coupled systems

For weak interface coupling the order parameter profile is
not expected to display a maximum at the interface. Depend-
ing on the relative values of the critical exponents �+, �−, �1

+,
and �1

− it can be either a minimum or an intermediate point
of a monotonously increasing profile. We use the same con-
vention as in Sec. II C, that �+	�−, and treat separately the
different cases.

a. �+	�−	�1
+	�1

−. The order-parameter profile is ob-
tained by joining two ordinary surface profiles in Eq. �64�
both for z	0 and for z�0. In this case the weak coupling
does not modify the asymptotic behavior of the more or-
dered, z�0 subsystem. Consequently we have ��0���1

+,
l+=O�1�, and �+=0; thus, �i=�1

+. From Eq. �66� we obtain

�− =
�1

− − �1
+

�1
− − �−

. �70�

Note that the above reasoning leads to a smooth order-
parameter profile at the interface if according to Eq. �68� we
have �−�−	�+. This type of behavior is realized in mean-
field theory for the �4-�6 interface for 
�0, see in Sec.
II C 2.

b. �+	�−	�1
−	�1

+. In this case the profile is obtained
from two ordinary subprofiles. The order parameter is still
minimum at the interface, but it is determined by the z	0
subsystem, which has the larger surface order parameter.
Consequently, ��0���1

−, l−=O�1�, and �−=0; thus, �i=�1
−.

From Eq. �66� we obtain
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�+ =
�1

+ − �1
−

�1
+ − �+

�71�

and the order-parameter profile is smooth if �+�+	�−. This
type of behavior is never realized in mean-field theory; see
the exponent relation in Eq. �35�.

c. �+	�1
+	�−	�1

−. In this case the order-parameter pro-
file is monotonously increasing and obtained by joining an
extraordinary profile in Eq. �65� for z	0 with an ordinary
profile in Eq. �64� for z�0. The order parameter at the
interface is determined by the surface order parameter of
the z�0 subsystem. Then we have ��0���1

+, l+=O�1� and
�+=0; thus, �i=�1

+. From Eq. �66� we obtain �−=�1
+ /�− and

the interface is smooth, provided �−�−	�+. In mean-field
theory this type of behavior is realized for the �3-�6interface
for 
�0; see in Sec. II C 3.

3. Special transition point

In this case the profile is monotonously increasing and it
is constructed by joining an extraordinary subprofile in Eq.
�65� for z	0 with an ordinary subprofile in Eq. �64� for z
�0. As we argued before, the extrapolation lengths and the
corresponding exponents are obtained �i� from the continuity
of the profile at z=0,

�i = �−�− = �1 − �+��1
+ + �+�+, �72�

and �ii� from the continuity of the derivative at z=0, which
leads to the condition l+� l−—consequently,

�i = �+�+ = �−�−. �73�

The solution of Eqs. �72� and �73� is given by

�i =
�1

+

�1
+ − �+

�+
+

�−

�−

, �i =
�−

�−
�i. �74�

Let us now analyze the condition for the smooth or discon-
tinuous nature of the interface given in Eq. �68�.

a. �−��+. In this case the condition is equivalent to
�− /�−��+ /�+. As we will discuss in Sec. IV this condition
is satisfied in 2D for the three- and the four-state Potts �or
BW� models so that the profile is predicted to be smooth. On
the contrary for the Ising and three-state Potts models this
condition does not hold; thus, the profile is probably sharp
and becomes discontinuous at the critical temperature. Fi-
nally, for the Ising and BW models the relation in Eq. �68� is
just an equality, so that we are in a marginal situation.

b. �−	�+. In this case the profile is smooth, provided

�1
+ 	

�−/�− − �+/�+

1/�− − 1/�+
. �75�

This type of situation seems to be less common in real sys-
tems.

4. Strongly coupled systems

In this case the interface stays ordered at the bulk critical
temperature, so that the profile is expected to be composed

from two extraordinary subprofiles. As a consequence the
interface critical behavior is the same as in two independent
semi-infinite systems, both having an extraordinary surface
transition.

IV. NUMERICAL INVESTIGATIONS

We have studied numerically the critical behavior at the
interface between two q-state Potts models on the square
lattice, with different values of q for the two subsystems. For
a review of the Potts model, see Ref. 16. In particular
we considered the value q=2, which corresponds the Ising
model, as well as q=3 and q=4. All these systems display
a second-order phase transition for a value of the coup-
ling given by eqKc =1+
q, which follows from self-duality.
The associated critical exponents are exactly known18 for
q=2 ��=1/8, �=1, and �1=1/2� and have been conjectured
for q=3 ��=1/9, �=5/6, and �1=5/9� and q=4 ��=1/12,
�=2/3, and �1=2/3�, where they follow from conformal
invariance20 and the Coulomb-gas mapping.21 We have also
considered the BW model,17 which is a triangular lattice
Ising model with three-spin interactions on all the triangular
faces. This model is also self-dual and has the same critical
coupling as the Ising model. This model is exactly solved,18

and it belongs to the universality class of the q=4 state Potts
model, but without logarithmic corrections to scaling, which
facilitates the analysis of the numerical data.

We have performed Monte Carlo simulations on 2D sys-
tems consisting of two L
L subsystems which interact di-
rectly through interface couplings Ki �between adjacent spins
of the two subsystems� such that Ki /K+=�. Here K+ is the
coupling in the half-space z�0, which corresponds to the
subsystem having the larger value of q, thus the larger mag-
netization. Periodic boundary conditions are applied in both
directions. Using the Swendsen-Wang cluster-flip
algorithm19 we have calculated the magnetization profile in
systems with size up to L=300 for different values of the
reduced temperature t= �Tc−T� /Tc and coupling ratio �. De-
pending on the size of the system and the temperature we
have skipped the first 5–20
104 thermalization steps and
the thermal averages were taken over 6–20
106 MC steps.
We have checked that the magnetization profiles, at the re-
duced temperatures we used, does not show any noticeable
finite-size effects. From the magnetization data at the inter-
face we have calculated effective, temperature-dependent in-
terface exponents given by

�i�t� =
ln�m�t + ��/m�t − ���

ln��t + ��/�t − ���
, �76�

which approach the true exponents as �→0 and t→0. For
the Ising-BW interface, we have also made calculations at
the critical temperature in order to check the finite-size scal-
ing properties of the profiles. In the following we present the
numerical results for the q=2–3, q=3–4, and Ising-BW in-
terfaces. In each case we have a different type of special
transition, separating the ordinary and the extraordinary tran-
sition regimes.
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A. q=3–4 interface

We start in Fig. 4 with a presentation of the order-
parameter profiles, in the vicinity of the critical temperature,
for different values of the interface coupling. Here one can
differentiate between the ordinary transition regime for small
�, in which the magnetization at the interface vanishes faster
than in the bulk of the two subsystems, and the extraordinary
transition regime for large �, where the interface magnetiza-
tion keeps a finite value. The special transition separating
these two regimes is located at ��1. The inset of Fig. 4
shows the evolution of the interface at the special transition
point as the bulk transition point is approached. Here the
criterion in Eq. �68� is satisfied, since, as discussed below
Eq. �74�, �− /�−=2/15��+ /�+=1/8. Thus the profile is pre-
dicted to be smooth, which is in accordance with the numeri-
cal results.

The values of the effective, temperature-dependent expo-
nents, as defined in Eq. �76�, are presented in Fig. 5 for three

values of �, corresponding to the different transition re-
gimes. Clearly the values of the effective exponents are af-
fected by strong crossover effects for small t, since the lim-
iting values are �i=�1�q=3�=5/9 for �	1 and �i=0 for
��1, according to scaling theory. Unfortunately, due to
finite-size effects we could not go closer to the critical point.
At the special transition point, however, the crossover effects
are weaker and the effective exponents are close to the the-
oretical prediction in Eq. �74�, �i=32/363=0.088.

B. q=2–3 interface

We have performed a similar investigation for the inter-
face critical behavior of the q=2–3 system and the results
are summarized in Figs. 6 and 7. Here one can also identify
the ordinary and extraordinary transition regimes �see Fig.
6�, which are separated by the special transition around
��0.85. However, as can be seen in the inset of Fig. 6, the
behavior around the special transition point is more complex
than for the q=2–3 interface. The evolution of the profile
suggests the existence of a discontinuity at the transition

FIG. 5. Effective magnetization exponents measured on the two
sides of the q=3–4 interface for three different values of the cou-
pling ratio �. At the special transition point ��1, the theoretical
prediction from Eq. �74� is indicated by a bar.

FIG. 6. The same as in Fig. 4 for the q=2–3 interface with
interface coupling ratio �=2.0,1.0,0.9,0.85,0.8, and 0.5, from top
to bottom, and t=0.06. Inset: profiles around the special transition
point, �c=0.85, for different temperatures. The results indicate that
the profile becomes discontinuous at the critical temperature.

FIG. 4. Order-parameter profiles of the q=3–4 interface at the
reduced temperature t=0.06 and for different values of the interface
coupling ratio, �=2.0,1.1,1.0,0.9, and 0.5, from top to bottom.
Inset: profiles around the special transition point, �=1, for different
temperatures. The results indicate a smooth profile at the transition
point.

FIG. 7. The same as in Fig. 5 for the q=2–3 interface.
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temperature. This is in accordance with the scaling criterion
in Eq. �68� since, as discussed below Eq. �74�, �− /�−=1/8
	�+ /�+=2/15 leads to a discontinuous profile. Due to this
discontinuity, it is more difficult to locate precisely the spe-
cial transition point and to determine the associated interface
exponent �i. The measured effective interface exponents are
shown in Fig. 7 for three values of � corresponding to the
different interface fixed points. The crossover effects are
strong but, at the special transition point, our estimates are
compatible with the scaling prediction in Eq. �74�, �i
=25/237=0.105.

C. Ising-BW interface

The interface between the Ising model and BW model �or
the four-state Potts model� has some special features. These
are mainly due to the fact that the anomalous dimension of
the bulk magnetization in the two systems has the same
value, �− /�−=�+ /�+=1/8. Consequently one can define and
numerically study the finite-size scaling properties of the
magnetization profile at the phase-transition point, since it is
expected to scale as m�z ,L�=L−1/8f�z /L�. The scaling func-
tion f�y� is expected to depend on the value of the interface
coupling ratio �, and we have studied this quantity numeri-
cally.

The magnetization profiles at the critical temperature for
different values of the interface coupling ratio � are given in
Fig. 8. It is interesting to notice that the shape of the curves
as well as the relative heights of the profiles in the two sub-
systems vary with the interface coupling. For �	�c�1, the
interface stays disordered and the interface critical behavior
is governed by the surface exponent of the Ising model. The
larger bulk value on the Ising side is understandable since the
profile on the right side is more singular, �1

− /�−��1
+ /�+; see

below Eq. �64�. On the contrary, for ���c the interface is
ordered at the bulk critical temperature and the profiles decay
towards the bulk values.

At the special transition point �=�c, the profile has a
universal form in terms of L1/8m�z /L�. This is illustrated in
Fig. 9, in which for each finite system a critical value �c�L�

is calculated from the condition that the two maxima of the
curves have identical values and the profile be measured at
that interface coupling. The size-dependent effective inter-
face coupling ratio �c�L�, shown in the inset of Fig. 9, seems
to tend to a limiting value, �c�1. The scaled magnetization
profiles have different characteristics in the two subsystems.
In the BW model, having the smaller correlation length, the
profile has a smooth variation. On the contrary, on the Ising
side, the profile has a quasidiscontinuous nature at the inter-
face, which is probably related to the fact that in the criterion
of Eq. �68� the equality holds.

V. DISCUSSION

In this paper we have studied the critical behavior at the
interface between two subsystems displaying a second-order
phase transition. We assumed that the critical temperatures
are identical but the sets of critical exponents �i.e., the uni-
versality classes of the transitions� are different for the two
subsystems. By varying the interface couplings, we moni-
tored the order at the interface and studied the behavior of
the order-parameter profile as the critical temperature is ap-
proached. We provided a detailed analytical solution of the
problem in the framework of mean-field theory, which leads
to a physical picture which is useful for the study of realistic
systems. Solutions of the mean-field equations are obtained
by adjusting the order-parameter profiles of the two semi-
infinite subsystems through the introduction of appropriate
extrapolation lengths on the two sides. The same strategy has
been applied in the frame of a phenomenological scaling
approach. As a result, basically three types of interface criti-
cal behavior are observed. For weak interface couplings the
interface renormalizes to an effective cut and we are left with
the surface critical behavior of the subsystems. In the limit of
strong interface couplings, the renormalization leads to infi-
nitely strong local couplings and thus interface order at the

FIG. 8. Critical magnetization profiles in the Ising-BW system
with two symmetrically placed interfaces for different values of the
coupling ratio �.

FIG. 9. Scaled magnetization profiles for the coupled Ising-BW
systems at the common critical temperature for L=90–300. The
interface coupling ratio is fixed at the critical value, �c�L�, for
which the two maxima of the curves are identical. The inset gives
the effective critical interface coupling as a function of the inverse
size.
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bulk critical point. Finally, for some intermediate value of
the interface couplings, the interface displays a special tran-
sition, which is characterized by a new critical exponent for
the order parameter in the interface region. In the scaling
theory this exponent can be expressed in terms of the bulk
and surface exponents of the semi-infinite subsystems.

These results have been tested through large scale Monte
Carlo simulations, in which the critical behavior at the inter-
face between 2D Ising, Potts, and BW models was studied
and satisfactory agreement has been found. However, it
would be interesting to confirm the analytical expressions for
the interface exponents through a field-theoretical renormal-
ization group study, using the methods of Ref. 4.

The results obtained in this paper can be generalized into
different directions. First we mention the case when the criti-
cal temperatures of the subsystems are not exactly equal but
differ by an amount �Tc. If the deviation in temperature
from the average value, Tc= �Tc

−+Tc
+� /2, is small but satisfies

Tc−T��Tc, then our results are still valid. Our second re-
mark concerns 3D systems in which sufficiently enhanced
interface couplings may lead to an independent ordering of
the interface above the bulk critical temperatures. In semi-
infinite systems this phenomena is called the surface
transition.3–5 At the bulk critical temperature the ordered in-
terface then shows a singularity, which is analogous to the
extraordinary transition in semi-infinite systems. The singu-
larities at the interface and extraordinary interface transi-
tions remain to be determined, even in the mean-field ap-
proach. Third, we can mention that nontrivial interface
critical behavior could be observed when one of the sub-
systems displays a first-order transition. It is known for semi-
infinite systems that the surface may undergo a continuous
transition, which, however, has an anisotropic scaling char-
acter, even if the bulk transition is discontinuous.22,23 Similar
phenomena can happen at an interface, too. Our final remark
concerns the localization-delocalization transition of the in-
terface provided an external ordering field is applied. For
two subsystems having the same �4 mean-field theory and
the same24 or different25 critical temperatures, this wetting
problem has already been solved. This solution could be gen-
eralized for subsystems having different field-theoretical de-
scriptions.
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APPENDIX A: SURFACE CRITICAL BEHAVIOR

The calculation of the surface behavior is straightforward
when l /�→0 at the critical point. Here we give some details

about the two cases where the surface boundary condition
leads to a constant value for l /�.

1. �3 model with ��0

Using the results of Eq. �17�, the boundary condition in
�22� is rewritten as

Cs

2

�3 tanh2� l

2�
	 − 1� =

3C

2�
sinh� l

2�
	cosh−3� l

2�
	 .

�A1�

Let

3 tanh2� l

2�
	 − 1 = �t1/2, �̂�0� =

�

2
t1/2. �A2�

Then, to leading order,

tanh� l

2�
	 =

1

3

, cosh−2� l

2�
	 =

2

3
. �A3�

The first relation gives l in Eq. �25�, and Eq. �A1� leads to

� =
2C



3Cs�0

. �A4�

Finally, combining Eqs. �A1� and �A4�, one obtains the value
of ��0� given in Eq. �26�.

2. �6 model with �	0

Since the surface is ordered, the profile is given by Eq.
�17�. The boundary condition in �22� translates into


2Cs

�
� �3 tanh2� l

2�
	 − 1�−1/2

=
3
2C

2�
sinh� l

2�
	cosh−3� l

2�
	�3 tanh2� l

2�
	 − 1�−3/2

.

�A5�

The boundary condition is satisfied when


3 tanh2� l

2�
	 − 1 = �t1/4, �A6�

so that

�̂�0� =

2

�
t−1/4. �A7�

Equation �A6� gives the value of l in Eq. �31�. Using the
values given in �A3� which remain valid here together with
Eq. �A6� in Eq. �A5�, one obtains

� = � 2C�
�

3Cs�0

	1/2

. �A8�

Inserting this expression in �A7� leads to the surface order
parameter given in Eq. �32�.

BAGAMÉRY, TURBAN, AND IGLÓI PHYSICAL REVIEW B 73, 144419 �2006�

144419-12



APPENDIX B: INTERFACE CRITICAL BEHAVIOR

In this appendix we give some details about the calcula-
tions of l± and ��0�, limiting ourselves to three representa-
tive cases. Other results are easily obtained using similar
methods.

1. l± /�±™1

This situation is encountered for the �3-�4 interface with

	0 and 
→� as well as for the �4-�6 and �3-�6 inter-
faces with 
�0 and 
→�. Here we consider as an ex-
ample the �3-�4 interface with 
	0.

The boundary conditions in Eq. �38� are satisfied with
�−�z� and �+�z� given by �16� and �18� and reads

��0� = �0
+t1/2coth� l+

2�+
	 =

�0
−t

2
�3 coth2� l−

2�−
	 − 1� ,

C+�0
+t1/2

2�+
sinh−2� l+

2�+
	 +

3C−�0
−t

2�−
cosh� l−

2�−
	sinh−3� l−

2�−
	

=
Ci�0

+t1/2

�
�
coth� l+

2�+
	 . �B1�

With l± /�±�1, one may expand the hyperbolic functions
in powers of l± / �2�±�. To leading order, the first equation in
�B1� gives

��0� =
3�0

−t

2
�2�−

l−
	2

=
2�0

+�0
+

l+
, �B2�

so that

l−

2�−
=
3�0

−l+t

4�0
+�0

+ . �B3�

Introducing this result in the second equation, one obtains an
equation of the second degree in x=
l+:

− x2 + 2
C−�
�
Ci�0

− 
�0
+�0

+

3�0
− x +

C+�
�
Ci

= 0. �B4�

Thus we have


l+ = f
C−�
�
Ci�0

− 
�0
+�0

+

3�0
− ,

f =
1 + 3
C+Ci�0

−��0
−�2

C−
2�0

+�0
+�
�

. �B5�

This last result together with Eqs. �B3� and �B2� leads to the
expressions given in �39� and �41�.

2. l− /�−\ const, l+ /�+™1

This behavior is obtained only for the �3-�4 interface
with 
�0. When 
 is smaller than a critical value 
c to be
determined later, the profiles �−�z� and �+�z� are given by

�17� and �19�. They lead to the following boundary condi-
tions:

��0� = �0
+t1/2tanh� l+

2�+
	 =

�0
−t

2
�3 tanh2� l−

2�−
	 − 1� ,

C+�0
+t1/2

2�+
cosh−2� l+

2�+
	 +

3C−�0
−t

2�−
sinh� l−

2�−
	cosh−3� l−

2�−
	

=
Ci�0

+t1/2



tanh� l+

2�+
	 . �B6�

With

l−

2�−
= K	, �B7�

the first equation in �B6� gives

��0� = �0
+t� l+

2�0
+	 =

�0
−t

2
�3 tanh2K	 − 1� . �B8�

It follows that

l+ =
�0

−

�0
+ �3 tanh2K	 − 1��0

+. �B9�

The second equation in �B6� can be rewritten as

C+�0
+ + 3C−�0

− �0
+sinh K	

�0
−cosh3K	

t1/2 = Ci�0
+ l+



. �B10�

Close to the critical point, the second term can be neglected
so that

l+ =
C+

Ci

 . �B11�

Combining this result with �B9�, one obtains

tanh K	 =
1 + 2
/
c

3
, 
c = 2

Ci�0
−

C+�0
+�0

+. �B12�

Since tanh K	�1, this solution remains acceptable as long
as 
�
c. Equations �B7�, �B8�, �B11�, and �B12� immedi-
ately lead to the expressions given in �44� and �46�.

When 
=
c, l− diverges and the order parameter remains
constant, keeping its bulk value on the �3 side of the inter-
face.

When 
�
c, the profile is always increasing. Then �−�z�
is given by Eq. �16� and the boundary conditions are changed
into

��0� = �0
+t1/2tanh� l+

2�+
	 =

�0
−t

2
�3 coth2� l−

2�−
	 − 1� ,

C+�0
+t1/2

2�+
cosh−2� l+

2�+
	 −

3C−�0
−t

2�−
cosh� l−

2�−
	sinh−3� l−

2�−
	

=
Ci�0

+t1/2



tanh� l+

2�+
	 . �B13�

Inserting
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l−

2�−
= K� �B14�

into the first equation of �B6� leads to

��0� = �0
+t� l+

2�0
+	 =

�0
−t

2
�3 coth2K� − 1� �B15�

and

l+ =
�0

−

�0
+ �3 coth2K� − 1��0

+. �B16�

From the second equation in �B13� one deduces

C+�0
+ − 3C−�0

−�0
+cosh K�

�0
−sinh3K�

t1/2 = Ci�0
+ l+



, �B17�

where the second term can be neglected close to the critical
point. Thus l+ is still given by

l+ =
C+

Ci

 . �B18�

Comparing with �B16�, one obtains

coth K� =
1 + 2
/
c

3
, �B19�

with the value of 
c given in Eq. �B12�. Since coth K��1,
this new solution replaces the preceding one when 
�
c.
The results given in �45� and �46� follow from Eqs. �B14�,
�B15�, �B18�, and �B19�.

3. l− /�−™1, l+ /�+\ const

This is the situation encountered for the
�4-�6 and �3 -�6 interfaces with 
	0. The treatment is
similar in both cases but we give some details for the �3

−�6 interface which is a little more complicated. The inter-
face is more ordered than the bulk so that the profiles are
given by �16� for z	0 and �20� for z�0. They lead to the
following boundary conditions:

��0� = 
2�0
+t1/4�3 tanh2� l+

2�+
	 − 1�−1/2

=
�0

−t

2
�3coth2� l−

2�−
	 − 1� ,

3
2C+�0
+t1/4

2�+
sinh� l+

2�+
	cosh−3� l+

2�+
	


�3 tanh2� l+

2�+
	 − 1�−3/2

+
3C−�0

−t

2�−
cosh� l−

2�−
	sinh−3� l−

2�−
	

=

2Ci�0

+t1/4

�
� �3tanh2� l+

2�+
	 − 1�−1/2

. �B20�

As in Appendix A 2, the solution is obtained by assuming
that close to the critical point:


3 tanh2� l+

2�+
	 − 1 = �t1/4. �B21�

From this expression one deduces the leading contribution to
l+ given in �57�.

With l− /�−�1 the first equation in �B20� can be rewritten
as

��0� =

2�0

+

�
= 6�0

−� �0
−

l−
	2

. �B22�

Thus we have

l− = �0
−
3
2�

�0
−

�0
+ . �B23�

The second equation in �B20� allows us to determine the
value of �. Actually, we obtain the following equation for
x=1/
�:

x4 + ax − b = 0,

a = 23/4C−�0
+

C+�0
−
�0

+

�0
− , b = 
3

Ci�0
+

C+�
�
. �B24�

It is easy to verify that this equation has a single real positive
root x0. Below, we evaluate x0 in the two limiting cases x0
�1 and x0�1.

When x0�1, one can iterate the relation

x0 =
b − x0

4

a
=

b

a
�1 −

x0
4

b
	 , �B25�

following from Eq. �B24�. We obtain

x0 =
b

a
�1 + O�b3

a4	� �

3Ci�0

−

23/4C−�
�

�0

−

�0
+ = �−1/2. �B26�

This result is valid as long as b3�a4—i.e., when

�
� � 
* = Ci��0
−

�0
+	2/3�C+

�0
+ 	1/3� �0

−

C−
	4/3

. �B27�

Combining �B22�, �B23�, and �B26� one easily obtains the
results given in Eqs. �57� and �59� for �
 � �
*.

The relation following from Eq. �B24� which is appropri-
ate when x0�1 is

x0 = b1/4�1 −
ax0

b
	1/4

� b1/4�1 −
ax0

4b
	 , �B28�

so that

x0 = b1/4�1 + O� a

b3/4	� � �
3
Ci�0

+

C+�
�
	1/4

= �−1/2.

�B29�

The correction term can be neglected when a4�b3—i.e.,
when �
 � �
*. Then Eqs. �B22� and �B23� together with
Eq. �B29� lead to the results given in �57� and �59� for
�
 � �
*.
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