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Phase transitions in a square Ising model with exchange and dipole interactions
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Competition between dipole and nearest neighbor exchange interaction in the square Ising model is respon-
sible for the occurrence of antiferromagnetic and striped configurations the width of which, %, increases at
increasing J/g, where J and g are the strength of the exchange and the dipole interaction, respectively.
Extensive Monte Carlo simulations and finite-size scaling analysis are performed to investigate the nature of
the order-disorder phase transition for selected values of J/g supporting the antiferromagnetic configuration
and the striped configurations with 2=1, 2, 3, 4. Both continuous and first order phase transitions are

recognized.
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I. INTRODUCTION

Frustration caused by competing interactions supports
complex spin configurations and rich phase diagrams are
found even though any single interaction is simple in nature.

A famous example is the anisotropic next nearest neigh-
bor Ising (ANNNI) model! in two and three dimensions
where the competition between the nearest neighbor (NN)
interaction J; and the next nearest neighbor (NNN) interac-
tion J, is restricted to one direction (i.e., the x axis) of a
square or a simple cubic lattice. The phase diagram of the
three-dimensional (3D) ANNNI model is divided in three
regions of the (x=-J,/J,,kgT/J,) plane corresponding to
ferromagnetic (K<%), sinusoidal (K>%), and paramagnetic
phase [T>T.(k)].

The ground state of the sinusoidal phase consists of a
stacking of two ferromagnetic planes of spins up followed by
two ferromagnetic planes of spins down and so on ((2)
phase). Mean field theory, high temperature series expansion,
and Monte Carlo (MC) simulations were developed in order
to draw the transition lines of the phase diagram and to in-
vestigate the main features of the sinusoidal phase.?

The Fourier analysis of the magnetization obtained by
MC simulation for k=0.6 pointed out that the wave vector
characterizing the ground state configuration (¢=7/2) does
not change up to 7==0.8T, then it falls off to a critical value
q.=1.2 between 0.8 and 0.97.. The value of g. no longer
changes up to the critical temperature.”

In the two-dimensional (2D) ANNNI model the scenario
is more complex because a modulated “floating incommen-
surate” (Kosterlitz-Thoulesslike®) phase intervenes between
the low temperature ordered phase and the high temperature
paramagnetic one.* The ground state configuration ({2)
phase) is a striped configuration where two rows (columns)
of spins down alternate with two rows (columns) of spins up.
No change of the wave vector was observed in the ordered
phase.

A 2D isotropic Ising model with competing NN J; and
(diagonal) NNN J, exchange interactions was carefully stud-
ied by MC simulation and critical exponents out of the Ising
universality class were found.> An explanation was tried
based on the possible mapping of this model into the 2D
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planar model with a fourfold breaking symmetry field for
which nonuniversal critical indices were obtained by renor-
malization group calculation® and confirmed by MC
simulation.”

The square Ising model with the spins pointing out of the
plane, coupled by NN exchange interaction J and dipole in-
teraction g, shows a variety of ground state configurations®
depending on the ratio J/g. Indeed for J=0 (pure dipole
interaction) the ground state corresponds to an antiferromag-
netic (AF) Néel configuration. As the ratio J/g increases, the
ground state is characterized by “striped” configurations with
alternating rows (columns) of spins up and down of width £,
where h increases with J/g. This model is suitable to catch
the qualitative features of the spin configurations observed in
ultrathin films of magnetic atoms on metal substrates.’

As for the nature of the order-disorder transition, not well
established conclusions exist. For J=0 a continuous phase
transition with critical exponents of the 2D NN Ising univer-
sality class was not excluded on the basis of MC
simulations.!® On the other hand, a first order phase transi-
tion was clearly!! indicated for J/g=4 (h=2). The first order
nature of the order-disorder transition was extended to any
striped configuration by a self-consistent Hartree-Fock
(SCHF) approximation applied to the continuous version of
the Hamiltonian model.'' The SCHF approximation was pre-
viously introduced for a model with an excitation energy
spectrum showing a rotonlike minimum'? and subsequently
applied to a 3D Ising model with ferromagnetic NN coupling
and long range Coulomb interaction.'? Also for this model a
first order phase transition was found for any value of the
Coulomb interaction Q, including Q=0. For Q=0 the model
reduces to the 3D NN Ising model for which the transition is
continuous. The conclusion could be that the mean field ap-
proximation leads always to continuous phase transitions; the
fluctuations accounted for by the SCHF approximation drive
always the transition to first order.

Since the order of the transition is a debated question we
have performed extensive MC simulations for selected val-
ues of J/g=0, 1.7, 3.4, 5, 6, for which the low temperature
phase corresponds to the AF configuration and to the striped
configurations with h=1, 2, 3, 4, respectively. Continuous
order-disorder phase transitions are found for the AF phase
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FIG. 1. (Color online) Thermodynamic quantities for J/g=0 (AF phase): (a) specific heat C, (b) staggered magnetization mg, (c)
staggered susceptibility x,;, (d) fourth order energy cumulant V; vs temperature for L=16 (diamonds), L=32 (squares), L=48 (stars), and

L=64 (circles).

and for the striped configurations with 2=1 and h=4. A clear
first order phase transition occurs for #=2 while for 2=3 the
transition appears to be weakly first order.

For all values of J/g investigated no change in the wave
vector characterizing the low temperature spin configuration
was recorded and no intermediate Kosterlitz-Thoulesslike
phase between the low temperature ordered phase and the
paramagnetic one was singled out.

The critical exponents for the AF phase with J=0 (pure
dipole interaction) are consistent with the critical exponents
of the 2D Ising model with NN interaction in agreement with
the previous suggestion.!® The order-disorder phase transi-
tion for the striped configuration for J/g=1.7 (h=1) is con-
tinuous but a careful examination of the finite-size scaling
behavior of the staggered susceptibility, the order parameter,
and the specific heat suggests critical exponents out of any
known universality class. Indeed we find v=1, y=1.75 (as
for the 2D NN Ising model) but 8=0.08. The value of «
=0.09 obtained by the scaling law y+28=2-a compares
favorably with the finite-size scaling analysis of the specific
heat. Also the hyperscaling law dv=2—-a is satisfied within
the error bars.

For J/g=3.4 (h=2) the transition is unambiguously first
order, while for J/g=5 (h=3) it seems to be only weakly
first order even though the numerical uncertainty does not
allow a definite conclusion. Finally, for J/g=6 (h=4) the
transition is continuous with critical exponents undistin-
guishable from the NN Ising ones. Obviously, for J/g—
critical exponents and critical amplitudes of the 2D NN Ising
model are recovered.

II. MONTE CARLO SIMULATION

The Hamiltonian of the model is

H=-J2 Uin"'gE %Uﬂj, (1)

@i.j) i=j ij
where the first sum is restricted to distinct pairs of NN spins
and a ferromagnetic interaction J>0 is assumed; in the sec-
ond sum i and j run over all the sites of a square lattice L
X L. The spins o;==+1 are supposed to be aligned out-of-
plane. The ground state configurations are AF for 0<J/g
<0.86; striped configurations of width h=1 for 0.86<<J/g
<2.52, of width h=2 for 2.52<<J/g<4.35, of width h=3
for 4.35<J/g<5.63, of width h=4 for 5.63<J/g<6.92,
and so on.%14

We have performed extensive MC simulations for J/g
=0 (AF phase), J/g=1.7 (h=1), J/g=3.4 (h=2), J/g=5 (h
=3), J/g=6 (h=4), for lattice sizes L=16, 24, 32, 48, 60, 64,
96 with periodic boundary conditions. Note that the lattice
sizes 24, 48, 60, 96 are convenient to describe lattices in
which stripes of width =3 occur in order to satisfy the
periodic boundary conditions.

Eight independent MC runs of 10° MC steps per spin
(MCS) have been performed at each temperature. The final
configuration of the previous temperature is assumed as the
starting configuration for the next temperature disregarding
10 000 MCS for thermalization. Because of the long range
nature of the dipole interactions the computing time is rap-
idly increasing. For example, for a lattice size L=96 each
data point takes more than one day of computing time. For
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FIG. 2. (Color online) Finite-size scaling functions for J/g=0: (a) staggered susceptibility x, (b) staggered magnetization my, for L

=16 (diamonds), L=32 (squares), L=48 (stars), and L=64 (circles).

any MC simulation we evaluate the specific heat

(H?) = (1)
=T onr (2
the internal energy per spin

0 5

=2

the fourth-order energy cumulant'?

(H)

Vi=1- 30 (4)

the order parameter!®

Ohv=< >s (5)

where n;, (n,) is the number of horizontal (vertical) pairs of
NN antiparallel spins. Note that this parameter is zero in the
AF phase where it is replaced by the conventional staggered

magnetization
1
My =13 )

where labels 1 and 2 refer to the two sublattices of the anti-
ferromagnetic configuration. For the h=1 striped phase we
have evaluated the staggered magnetization introduced by
Binder and Landau to study the Ising model with NN and
NNN interactions,’ that is

n,—n,

n,+n,

E‘Ti—E‘Tj

iel je2

(6)

my = (M) + (M7)*]), (7)
where
MY =M, +M;— (Ms+M,) /4 (8)
and
ML =[M,+M,~ (M, +M)]/4, 9)

where M,=4/L2;_,(0;) (\=1,2,3,4) are the four sublat-
tice magnetizations appropriate to describe the configuration
with alternating rows (columns) of spins up and down. We
have also investigated the staggered susceptibility

L2
Xst=7

- kBT(<m?t> - <mst>2)

(10)
for the AF and striped configuration with 2=1.

A careful investigation of the lattice size dependence of
the MC data was performed in order to recognize whether
the order-disorder phase transition is continuous or first or-
der. For continuous transitions the finite-size scaling theory
makes it possible to evaluate the critical temperature and to
predict the critical exponents.

The finite-size scaling theory is based on the assumption
that near the transition the singular part of the free energy
can be written as a product of L-?#*Y” times a “scaling”
function of x=L""|1-T/T,|, where T.=T,() is the infinite-
lattice critical temperature. This assumption leads to the
relationships'’

m=L"P"X%x),
XT=L""Y"(x),

C=LY7x), (11)

where m, x, and C are the order parameter, susceptibility,
and specific heat, respectively. The functions X°(x), Y°(x),
Z%(x) are “universal” functions of the variable x. Equations
(11) are used by varying simultaneously the critical tempera-
ture and the critical exponents until the curves obtained from
MC simulation for different lattice size fall on a single “uni-
versal” curve. For large x (i.e., |1 -T/T,| <1 but L— =), Egs.
(11) are expected to show a power law behavior

X(x) — BxP,

Yo(x) — C*x77,

Z%(x) — A%, (12)

in order to ensure the correct asymptotic behavior of the
correspondent thermodynamic quantities in the thermody-
namic limit. B, C*, and A* are the critical amplitudes (C* and
A* for T>T, and C~ and A~ for T<T,) of the infinite-lattice
model.

Finally, the structure factor
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FIG. 3. (Color online) Thermodynamic quantities for J/g=1.7 (h=1): (a) specific heat C, (b) staggered magnetization my, (c) staggered
susceptibility x, (d) fourth order energy cumulant V; vs temperature for L=16 (diamonds), L=32 (squares), L=48 (stars), and L=64

(circles).

SO =(M@BP, ME=7S o 13)

vs k= (kx,ky) was evaluated to check whether the wave vec-
tor of the striped configuration changes with temperature.
In Fig. 1 we show the specific heat, the staggered magne-
tization, the staggered susceptibility, and the fourth order en-
ergy cumulant for J/g=0 (AF phase). The finite-size scaling
of all these quantities about kz7/g=2.4 points out the exis-
tence of a continuous phase transition. In particular, the
fourth order energy cumulant V; is expected to show a sharp
minimum in correspondence of a first order phase transition
and to be flat when the transition is continuous.'> As one can
see from Fig. 1(d) V, shows a minimum for small lattices
becoming less pronounced as the lattice size increases, dis-
appearing for lattices of a size greater than 64. In a first order
phase transition'> the maximum of the specific heat and of
the staggered susceptibility is expected to diverge as LY (d
=2 in the present case). The finite-size scaling shown in Figs.
1(a) and 1(c) indicates a much weaker divergence.
Assuming that the transition is continuous, in order to get
an insight into the critical behavior of the model we look for
the functions ¥°(x) and X°(x) for the staggered susceptibility
and for the order parameter. As one can see from Figs. 2(a)
and 2(b) the MC data points for different lattice size (L
=16, 32,48, 64) fall on the universal curves Y°(x) and
X%(x) as predicted by the finite-size scaling theory [Eq. (11)]
and a straight line behavior is found in the log-log plot for
large x according to Eq. (12). The critical temperature ob-

tained by the fitting is kg7,./g=2.37+0.01, in good agree-
ment with the critical temperature estimated by Maclsaac et
al.'® kyT,/g=2.39+0.05 obtained by extrapolation to L—
of the plot of T.(L) vs 1/L. As for the critical exponents we
find y=9'=1.75+0.02, »=1.0£0.02, 8=0.125+0.005 that
coincide with those of the 2D NN Ising model and agree
with B/v=0.14+0.1 and y/v=1.8+0.1 obtained from a pre-
vious MC simulation.'” The critical amplitudes obtained
from Fig. 2(a) are C*=0.39 and C"=0.017. From Fig. 2(b)
we obtain B=1.22. In this figure it is also shown the univer-
sal function for T>T, expected to show the asymptotic
behavior'® X*(x) — B*x~"*# for large x. As for the maximum
of the specific heat [Fig. 1(a)] a least-square fit of the MC
data with the function Cp,=A¢InL+B, leads to A,
=0.55+0.01, B,,=0.05+£0.03. Note that for the 2D NN
Ising model the exact values'® of A, and B,,, are A,
=0.494 538 6, B,,,x=0.201 359. Incidentally, our MC simu-
lations performed for J/g—o (NN Ising model) give A,
=0.493+£0.008, B,,x=0.20+£0.03, a result that gives cre-
dence to our MC simulation.

In Fig. 3 we show the finite-size scaling of C, x,;, my, V;
for J/g=1.7 (h=1). The divergence of the maximum of both
specific heat and staggered susceptibility together with the
vanishing of the minimum in the fourth order energy cumu-
lant for large L entitle us to believe that the transition is still
continuous. To investigate the critical behavior in more detail
we try to fit MC data for yx,, and m,, with universal functions
as given by Eq. (11). As shown in Fig. 4 the universal be-
havior is obtained for kz7./g=0.82, y=v'=1.75+0.05, v
=1.0+£0.05, and B=0.08+0.01. Note the linear behavior of
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Y%(x) and X°(x) at large x in the log-log plot. The critical
exponents vy and v coincide with those of the 2D NN Ising
model. On the other hand, B differs from the Ising value 8
=0.125 outside the error uncertainty.

The scaling law a=2-2[8—y suggests a value of the spe-
cific heat critical exponent a=0.09+0.07. In Fig. 5(a) we
give the universal function for the specific heat assuming «
=0.09, v=1, and kzT,./g=0.82 as obtained from the finite-
size scaling analysis of the susceptibility and of the order
parameter. Because of the very weak divergence of the spe-
cific heat at the transition, a background has to be subtracted
in order to single out the singular part of the specific heat.'®
A satisfactory universal behavior is obtained for a back-
ground value B,=-5.3. Note that even the hyperscaling law
dv=2-« is satisfied within the error bars.

An interesting check can be done about the critical behav-
ior of the order parameter'® O, [Eq. (5)], which is particu-
larly convenient for the striped configurations, and the stag-
gered magnetization m, [Eq. (7)]. The temperature
dependence of Oy, is very similar to that of m, shown in Fig.
3(b). As shown in Fig. 5(b) even the critical behavior is quite
similar. The critical temperature and the critical exponents
for Oy, are the same as those deduced from the universal
function for mg,. Only the critical amplitudes differ somewhat
as can be seen comparing Figs. 4(b) and 5(b) but it is well
known that the critical amplitudes are not universal.

This is an interesting point: for striped configurations two
different thermodynamic quantities as O, and the staggered
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magnetization mg, can be chosen as order parameter. Indeed
both are different from zero in the ordered phase (T<T,) and
vanish in the paramagnetic phase (7>T,). However, the
nonuniversal choice of the order parameter does not change
the universal character of a continuous phase transition.

In Fig. 6 we show the structure factor [Eq. (13)] for J/g
=1.7. A single MC run of 10° MCS is performed for each
temperature shown. The lattice chosen for the simulation is a
square lattice of edge L=64 so that the finite Fourier trans-
form wave vectors are k=2/ 64(Q,.0,) where Q..,0,
=-31,-30,...,0,...,32 corresponding to —7<k,, k<.
We have obtained the structure factor for several tempera-
tures. From T=0 to kzT/g=0.80 [see Fig. 6(a)] the structure
factor has a single peak at k=(,0) corresponding to col-
umns of parallel spins that alternate moving along a row: (1)
phase. The intensity of the peak decreases very slowly mov-
ing from the saturation value S(7,0)/L?>=1 at T=0 as the
temperature increases. Close to the critical temperature
kgT./ g=0.82 the drop is very sharp: the height of the peak is
0.922, 0.853, 0.691 at kzT/g=0.70, 0.75, 0.80, respectively.
Above T, a symmetric peak at k=(0,m) appears as shown in
Fig. 6(b) for kzT/g=0.83, indicating that the system can
move freely from vertical to horizontal stripes. For tempera-
tures slightly above T, the peaks become very weak (0.06 at
kgT/g=0.86, 0.02 at kzT/g=0.89) but their location does not
change.

In Fig. 7 we show the finite-size scaling of the specific
heat C, the order parameter O,,,, the energy per spin E/g, and
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FIG. 5. (Color online) Finite-size scaling functions for J/g=1.7: (a) specific heat, (b) order parameter Oy, for L=16 (diamonds), L

=32 (squares), L=48 (stars), and L=64 (circles).
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FIG. 6. Structure factor vs wave vector for J/g=1.7 and L=64 at (a) kzT/g=0.80, (b) 0.83 (T,), (c) 0.86, and (d) 0.89.

the fourth order energy cumulant V; for J/g=3.4 (h=2). As
one can see in Fig. 7(a) the maximum of the specific heat
diverges as L — o with a power lesser than but not far from
2. For instance, C(64)/C(48)=1.67=(64/48)¢ with d

=1.8+0.2. The order parameter O, shows a steep drop
about T, at increasing lattice size L as shown in Fig. 7(b).
Any attempt to find a universal function X°(x) failed. The
internal energy seems to point out a discontinuity as L in-
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FIG. 7. (Color online) Thermodynamic quantities for J/g=3.4 (h=2): (a) specific heat, (b) order parameter, (c) internal energy, (d) fourth
order energy cumulant vs temperature for L=16 (diamonds), L=32 (squares), L=48 (stars), and L=64 (circles).
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FIG. 8. Structure factor vs wave vector for J/g=3.4 and L=64 at (a) kzT/g=1.44, (b) 1.45 (T,), (c) 1.46, and (d) 1.48.

creases as shown in Fig. 7(c). Finally, V; shows a deep mini-
mum even for the largest lattice size L=64. Note that the
minimum of the fourth order energy cumulant V,, for the
infinite-lattice model at T, is given by

2 2
(E°+E3)?

—_— 14
12E%E? (14)

szl_

where E. are the energies of the high temperature paramag-
netic (+) and low temperature ordered (—) phase that coexist
at the transition. We have performed a MC run at kzT./g
=1.45 in order to obtain the energy density distribution D(E).
A two-peak structure is found and we have fitted D(E) by the
sum of two Gaussians

A’Le(E—E+)2/2(ri’ (15)

D(E) - Ai;e(E - E_)2/2(rz + :
o2

o2

obtaining E_/g=-1.603+0.004, o0_=0.061+0.004, A_
=0.45+0.02, and E,/g=-1.384+0.001, 0,=0.072+0.001,
A,=0.57+0.02. Inserting these data in Eq. (14) and evaluat-
ing the error in the standard way

Avm_\/((gE_)(AE_) + E (AE,?,  (16)

we obtain
V,,=0.6594 + 0.0003, (17)

which compares very well with the value deduced by MC
data for L=64. Indeed from Fig. 7(d) one has

V(L =64)=0.6593 £ 0.0003. (18)

For all these reasons we conclude that the transition is first
order.

In Fig. 8 we give the structure factor for a lattice with L
=64 at several temperatures around kz7,./g=1.45. The loca-
tion of the peaks is k=(+m/2,0) corresponding to the (2)
phase characterized by vertical stripes of width h=2. The
intensity of each peak is 1/2 at 7=0 and moves from the
saturation value very slowly: indeed the intensity is 0.497,
0.436, 0.418, 0.381 at kgzT/g=1,1.40,1.42,1.44, respec-
tively. At the transition temperature four peaks of intensity
~0.07 located at the symmetric positions k=(x7/2, +7/2)
occur reflecting the free motion of the stripes. In order to
enlighten on the dynamics of the stripes during the MC evo-
Iution we show in Fig. 9 some snapshots of the lattice con-
figurations representative of the hundreds taken during the
MC run. The structure factor of Fig. 8(b) is the average over
the 10* instantaneous configurations (out of 10° MCS) of
which the snapshots of Fig. 9 are a sample. Figure 9(a)
shows horizontal stripes with  S(0,7/2)/L*=0.36,
S(mw/2,0)/L*>=0, n,—n,/n,+n,=-0.68 and energy per
spin E/g=-1.61. Figure 9(b) shows a mixing of horizontal
and vertical stripes (tetragonal'® phase) with S(0,7/2)/L>
=S(m/2,0)/L*=0, n,—-n,/n,+n,=-0.15 and energy per
spin E/g=-1.39. Figure 9(c) shows vertical stripes configu-
rations  with  S(0,7/2)/L*=0,  S(/2,0)/L>=0.39,
n,—n,/n,+n,=0.76 and energy per spin E/g=-1.66. Note
that the values of the energy per spin of the striped configu-
rations and of the tetragonal one correspond to the jump
observed at T=T. in Fig. 7(c). Also the values of the order
parameter O, in the striped configuration (~0.7) and in the
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FIG. 9. Snapshots for J/g=3.4 and L=64 at kzT./g=1.45.

tetragonal one (~0.15) correspond to the jump shown in Fig.
7(b). In Fig. 8(d) at kzT,./g=1.48 a crown appears connect-
ing the four symmetric peaks dramatically reduced in inten-
sity (0.006). In conclusion, for J/g=3.4 (h=2) we obtain a
scenario in agreement with Cannas et al.,'" that is a strong
indication of a first order phase transition.

In Fig. 10 we show the finite-size scaling of the specific
heat C, the order parameter O,,,, the energy per spin E/g, and
the fourth order energy cumulant V; for J/g=5 (h=3). As
one can see in Fig. 10(a) the maximum of the specific heat
diverges as L— o with a power between 1 and 2. For in-
stance, C(96)/C(48)=2.25+0.13=2¢ with d=1.17=0.08.
This value is certainly far from 2, however, it is larger than
the critical exponent of any known continuous transition.
The order parameter Oy, shows a steep decrease at T, [Fig.
10(b)]. On the other hand, no jump at T, occurs in the inter-
nal energy versus T even for the largest lattice size (L=96)
[Fig. 10(c)]. The fourth order energy cumulant V; shows a
deep minimum that survives even for L=96 [Fig. 10(d)].
These conflicting results lead us to believe that the transition
is weakly first order in agreement with the expectation of
Cannas et al.!!

In Fig. 11 we give the structure factor for J/g=5 obtained
by a MC simulation performed on a lattice of size L=96 at

30

40

White and black squares represent spin up and down, respectively.

several temperatures around kzT,./g=2.12. The peaks are lo-
cated at k=(+7/3,0) (main peaks) and (,0) corresponding
to the (3) phase characterized by vertical stripes of width A
=3. At 7=0 the intensity of the two main peaks is 4/9 and
that of the lower peak is 1/9. At k3T/g=2.10 the intensities
become 0.310 and 0.036, respectively. The peak at (77,0) has
an intensity about 1/10 of that of the peaks at (x7/3,0)
while at T=0 the ratio is 1/4. At the critical temperature the
peak at (7,0) disappears and four peaks located at
(x7/3,+a/3) occur, the intensity of which is between 0.02
and 0.05.

In Fig. 12 we show the finite-size scaling of the specific
heat C, the order parameter O,,, the energy per spin E£/g, and
the fourth order energy cumulant V; for J/g=6 (h=4). The
maximum of the specific heat [Fig. 12(a)] increases as e
with d<2. For instance C(64)/C(48)=1.2+0.1=(4/3)¢
with d=0.6+0.3. The smoothness of the order parameter
[Fig. 12(b)] and of the energy per spin [Fig. 12(c)] together
with the vanishing of the minimum in the fourth order energy
cumulant [Fig. 12(d)] at increasing L leads us to conclude
that the transition is continuous.

In Fig. 13 we give the structure factor for a lattice with
L=064 at several temperatures around kzT,./g=2.71. At T=0
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FIG. 10. (Color online) Thermodynamic quantities for J/g=5 (h=3): (a) specific heat, (b) order parameter, (c) internal energy, (d) fourth
order energy cumulant vs temperature for L=24 (diamonds), L=48 (squares), L=60 (stars), and L=96 (circles).

the peaks are located at k=(xm/4,0) and (£37/4,0) with
intensity (2+12)/2=0.4268 and (2— \5)/2:0.0732, respec-
tively. These peaks correspond to the (4) phase characterized
by vertical stripes of width h=4. At kzT/g=2.69 [Fig. 13(a)]

the intensity of the higher peaks reduce to 0.226 and the
lower peaks disappear in the background. At the critical tem-
perature a four-peak structure occurs with symmetric peaks
located at (£m/4,+7/4) with an intensity that drops very

J/g=5Xk,T/2=2.10,L=96 7{

s(q)/L?

J/g=5%,T/g=2.13,L.=96

;8(@)/1.%

J/g=5kyT/g=2.12,L=96

fgS(Q)/LZ

J/g=5kyT/g=2.16,L.=96

O
i

FIG. 11. Structure factor vs wave vector for J/g=5 (h=3) and L=96 at (a) kzT/g=2.10, (b) 2.12 (T,), (c) 2.13, and (d) 2.16.
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FIG. 12. (Color online) Thermodynamic quantities for J/g=6 (h=4): (a) specific heat, (b) order parameter, (c) internal energy, (d) fourth
order energy cumulant vs temperature for L=16 (diamonds), L=32 (squares), L=48 (stars), and L=64 (circles).

quickly. For instance at kzT/g=2.77 the main peak intensity
is ~0.02.

The finite-size scaling analysis of O, is consistent with
B=1/8 and v=1 with kzT./g=2.71. Even the maximum of

the specific heat is consistent with the logarithmic behavior
C,=AgInL+B,,  with A;=048+0.04 and B,
=-0.80+0.17. The scenario is undistinguishable from that of
the 2D NN Ising model. Note that for J/g— % we recover

J/g=6k,T/g=2.69,1L=64" S(Q)/L?

1/g=6kyT/g=2.74,L=64 .S(q)/L?

J/g=6kyT/g=2.71,L=64

1/g=6kyT/g=2.77,L=64

FIG. 13. Structure factor vs wave vector for J/g=6 and L=64 at (a) kzT/g=2.69, (b) 2.71 (T,), (c) 2.74, and (d) 2.77.
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the Ising values'® A;=0.493+0.008 and B,,,,=0.20+0.03.

III. CONCLUSIONS

Frustration caused by the simultaneous presence of NN
ferromagnetic exchange and dipole interaction in a square
Ising model gives a variety of spin configurations. Indeed for
pure dipole interaction (/=0) the stable state corresponds to
an antiferromagnetic Néel configuration while for pure ex-
change interaction (g=0) a ferromagnetic spin configuration
sets up. For J/g#0 the stable states correspond to striped
configurations of /4 columns (rows) with spins up followed
by h columns (rows) with spins down, the width / increasing
as J/g increases. Continuous phase transitions of the 2D NN
Ising model universality class occur for /=0 and for J/g
=6. For large J/g a first order transition driven by fluctua-
tions was suggested on the basis of the self-consistent
Hartree-Fock approximation!! applied to a continuum ver-
sion of Hamiltonian (1). However, this approximation leads
to a first order phase transition even for g=0 (2D NN Ising

PHYSICAL REVIEW B 73, 144418 (2006)

model) where the transition is certainly continuous.

The h=1 spin configuration undergoes a continuous
order-disorder phase transition with critical exponents out of
any known universality class. Indeed we find B=0.08, y
=1.75, v=1, and a=0.09 by a careful finite-size scaling
analysis of MC data. A first order phase transition for the &
=2 striped configuration is unambiguously recognized, while
a weakly discontinuous phase transition is suggested in h
=3 striped configuration. In all MC simulations we have per-
formed no change of the wave vector characterizing the spin
configuration at increasing temperature was recorded and no
intermediate Kosterlitz-Thouless phase between the low tem-
perature ordered phase and the paramagnetic one was singled
out in contrast with the behavior of the 3D and 2D ANNNI
model.!
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