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Vibrationally modulated electron transfer in polar media is considered in the framework of a modified
spin-boson approach when modulation and solvation degrees of freedom are independent of each other. The
transition probability is presented in terms of the infinite series of multidimensional integrals. The solution is
rigorously derived in the noninteracting blip approximation for symmetric electron transfer. It is proved that in
this approximation the procedure of the direct averaging of the rate constant over modulation bath appears to
be correct. Possible applications in molecular electronics, vibrational coherence, long range electron transfer,
and solar cells are discussed.
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I. INTRODUCTION

In the last two decades there has been a growing interest
in proton transfer modulated by nuclear vibrations1–6 as well
as electron transfer through a bridge.7–16 However, with in-
creasing complexity of the systems under investigation in
chemistry7,8,17–21 and biology,22–32 the evidence of vibra-
tional modulation has become more convincing and many
new results justify the increasing interest in this field.

In many systems a bridge undergoes conformational
changes and alters the charge transfer dynamics, i.e., controls
the electron motion by modulating a transition matrix
element.1–6,11–16 Sometimes this effect is called conforma-
tional gating in the rate constant.11,33 In the fast reactions of
electron transfer in photosynthetic bacteria,22–32 the confor-
mational gating manifests itself in strong oscillations of the
transition probability.

A non-Condon effect is important in the context of elec-
tron transfer in biological membranes discussed by
Medvedev and Stuchebrukhov12,13 and Daizadeh et al.34 and
in molecular electronics discussed by Ranter.35,36 In this con-
text, Nitzan showed that there is an intrinsic connection be-
tween the electron transfer rate and electrical current in mo-
lecular wires.37,38 Thus, the study of modulation in an
electron transfer reaction becomes an important problem in
molecular electronics as well.

There is another fundamental issue that should be ad-
dressed to this problem, i.e., how to average over modulation
degrees of freedom. Indeed, in quantum mechanics a time-
dependent absolute value of the square of the electron wave
function, ��↑

*�t��↑�t��T �rather than the reaction rate� thermo-
dynamically averaged over both modulation and solvation
nuclear degrees of freedom, represents the true transition
probability for the electron to be in the initial electronic
state.39,40 There is a group of the authors who directly aver-
age the rate constant.1–6,13 This issue should be resolved by
direct solution of the whole time-dependent quantum me-
chanical problem. In the context of the modulated electron
transfer, the former approach was employed by several
groups14–16 where Creechley and Dahnovsky14 found the ex-
act solution for the transition probability for an electron shut-
tling between the levels. As shown by them, in the absence

of solvation degrees of freedom, the electron evolution re-
veals strong oscillations with �or without� decay depending
on temperature, the frequencies, and the vibronic coupling
constants of the modulation oscillators. Such a behavior was
also found in numerical solutions by Coalson and Evans.15

Kilin and coworkers16 discussed a different model where the
same nuclear oscillator participates in both modulation and
solvation interactions with the electron. In all of this re-
search, a spin-boson model was employed. In this model a
Hamiltonian describing both types of nuclear vibrations for
the symmetric electron transfer ��=0�, can be written as
follows:

H = −
1

2���0 + �
i

Ciqi��x +
1

2�
i
� pi

2

Mi
+ Mi�i

2qi
2�

−
1

2
�z�

k

gkxk +
1

2�
i
� pi

2

mi
+ mi�i

2xi
2� , �1�

where pi, qi �or pk, xk� are the momentum and coordinate of
a mediated ith oscillator �or a solvation kth oscillator� with
the frequency �i �or �k�, the mass Mi �or mk�, and the
coupling constant Ci �or gk�. In the absence of modulation
�Ci=0�, the electron dynamics obey the exponential evolu-
tion described by the golden rule expression for the rate con-
stant with the transition matrix element �0. The main as-
sumptions made in Eq. �1� is the independence of the
mediation and solvation degrees of freedom. No oscillators
from the modulation oscillator group participate in the
solvation process and vice versa. Usually it is a good
approximation for a polar environment where the main con-
tribution to the rate constant is owing to a continuous polar
environment.

This work differs from the previous research of Creechley
and Dahnovsky14 where only a modulation bath �qi	 was
included. It was found that the transition probability never
exhibits exponential evolution described by the rate constant.
Moreover, strong oscillations in the time-dependent transi-
tion probability were found. In the most studied case of
electron-solvation bath interaction, the transition probability
evolution is exponential in the noninteracting blip
approximation.39 It becomes unclear how strong coherence
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oscillations and slow nonexponentional decay due to a
modulation bath will change the transition probability of a
system that includes interaction with a solvation bath as
well. It is unclear either whether a frequently employed pro-
cedure of the averaging of the electron transfer constant with
respect to modulation vibrations is correct since according to
statistical mechanics one should average an observable
operator—a transition probability—in a manner, for ex-
ample, presented by Leggett and coworkers.39 Thus, it is
methodologically important to find the limits where a ther-
modynamic averaging of the rate constant is true procedure.

To study a time-dependent behavior of a transferring elec-
tron, we employ the Hamiltonian �1� that is capable of de-
scribing non-Condon effects in fast electron transfer �vibra-
tional coherence�, long-range electron transfer in proteins,
and electrical current in molecular electronics, and find the
exact expression for the time-dependent transition probabil-
ity for the electron transfer in Sec. II by making use of a
path-integral technique �the same approach was used by Leg-
gett et al. in Ref. 39�. For the Hamiltonian �1�, derivation
becomes more complicated and technical details are moved
to the Appendix. In Sec. III, a solution is rigorously found in
the noninteracting-blip approximation �NIBA� �such an ap-
proximation results in the golden rule expression for the rate
constant39,40 
see Eq. �1�� using the method of asymptotic
symmetrization. The obtained results are discussed in Sec.
IV. Possible applications to molecular electronics, long-range
electron transfer, and solar cells are also discussed.

II. TIME-DEPENDENT TRANSITION PROBABILITY

A. General expression

The probability to find an electron in the initial state �↑ � is
determined from the thermodynamic averaging of the
��↑�t��2. The electron wave function depends on two types of
variables �qi	 and �xk	. Thus, the thermodynamic averaging
should be performed with respect to both sets of the coordi-
nates. Such an average can be presented in terms of a path
integral over the electron and oscillator trajectories. This
method works well for oscillator environments. According to
Feynman and Vernon,41 the oscillator paths can be integrated
out simplifying the expression for the transition probability
with

W↑�t� =  Dx�t�Dy�t�A
�x�t��A*
�̃x�t��

�FM
�x�t�,�̃x�t��FS
�z�t�,�̃z�t�� , �2�

where the amplitudes of electron motion in the absence of an
environment are defined as follows:39

A
�x�t�� = exp�− ı
�0

2


0

t

�xd	� ,

A*
�̃x�t�� = exp�+ ı
�0

2


0

t

�̃xd	� . �3�

The double path 
x�	� ,y�	��, defined in the same way as in
Ref. 39, corresponds to 
+, + �, 
+,−�, 
−, + �, and 
−,−�

where the initial and final states are the same

x�	� = y�	� = + q0

for 	
0, and

x�t� = y�t� = + q0

for 	= t. In Eq. �2� FM
�x�t� , �̃x�t�� is a modulation influence
functional
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�x�t��t�,�̃x�t��

= exp�−
1
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�
�x�s� − �̃x�s��‡� , �4�

where the functions M1 and M2 are defined as

M1�	 − s� � 
0

�

d�JM���sin
��	 − s�� ,

M2�	 − s� � 
0

�

d�JM���cos
��	 − s��coth��

2
� . �5�

The effect of the interaction with the modulation medium is
determined by the spectral density JM���39

JM��� �
�

2 �
i

Ci
2

Mi�i
��� − �i� . �6�

The solvation influence functional FS
�z�t��t� , �̃z�t�� is de-
fined in an usual manner39,40

FS
�z�t��t�,�̃z�t��

= exp�−
1

��


0

t

d	
0

	

ds†− iL1�	 − s�
�z�	� − �̃z�	��

�
�z�s� + �̃z�s�� + L2�	 − s�
�z�	� − �̃z�	��

�
�z�s� − �̃z�s��‡� , �7�

where the functions L1 and L2 are given by the following
equations:

L1�	 − s� � 
0

�

d�JS���sin
��	 − s�� ,

L2�	 − s� � 
0

�

d�JS���cos
��	 − s��coth��

2
� . �8�

As in Eq. �6�, the interaction with the solvation medium is
determined by the spectral density, JS���39,40
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JS��� �
�

2 �
i

gi
2

mi�i
��� − �i� . �9�

The term FS
�z�t��t� , �̃z�t��, is a familiar influence functional
that causes the solvation and reorganization in the electron
transfer while the less known modulation influence func-
tional, FM
�x�t��t� , �̃x�t��, corresponds to the double electron
flips at different moments.14 The flips can be due to the am-
plitudes �3� as well. Thus, the two transitions at the times ti
and tj are due to the following terms:

�±i
�0

2
��±i

�0

2
�dtidtj, ±

i

��
M1dtidtj ,

and

±
1

��
M2dtidtj . �10�

The signs “+” or “−” in the pairs of the flips are determined
by the signs of � and �̃x in the influence functional �4�. All of
the flips due to the terms �10� should be presented in the
expression �2� for the transition probability. As shown in Ref.
14, the contribution from the M1 flips vanishes for symmetry
reasons �see the proof in the Appendix�. However, the M2
flips do not cancel despite having both signs, “+” or “−.”
Such a choice stems from the fact that the number of � as
well as �̃x should be even since the electron starts from the
state �++ � and ends up in the same state, �++ �. The complete
discussion of this property is given in the Appendix .

Just as in Ref. 14, the transition probability difference
P�t�= 
1+W↑�t�� /2 yields

P�t� = �
n=0

�

�
p1=0

n

�− �0
2�p1

0

t

dt2n ¯ 
0

t2

dt1Sp2
�t1, . . . ,t2n�

�Fn�t1, . . . ,t2n� . �11�

Here

p1 + p2 = n .

The function, Sp2
�t1 , . . . , t2n�, is symmetric with respect to the

times t1 , . . . , t2n and the index p2 determines the number of
the terms in the product

Sp2
�t1, . . . ,t2n�

� �
�t−perm	

�−
1

��
M2�ti1

− tj1
��¯ �−

1

��
M2�tip2

− tjp2
�� .

�12�

The term Fn�t1 , . . . , t2n� is defined in the way presented by
Leggett et al.39

F =
1

2nexp�−
1

��
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j=1

n

Sj� �
�j=±1

�exp�−
1

�
· �

j�k=1

n

� jk� j�k�
��

k=0

n−1

cos� 1

�
� jXjk�cos� 1

��
�
j=1

n

� jXj0�� . �13�

The functions Sj, � jk, and Xjk are given by

Sj � Q2�t2j − t2j−1� ,

� jk � Q2�t2k − t2j−1� + Q2�t2k−1 − t2j�

− Q2�t2k − t2j� − Q2�t2k−1 − t2j−1� ,

Xjk � Q1�t2j − t2k+1� + Q1�t2j−1 − t2k�

− Q1�t2j − t2k� − Q1�t2j−1 − t2k−1� , �14�

where the functions Q1 and Q2 stand for39,40

Q1�t� � 
0

� d�

�2 JS���sin��t� ,

Q2�t� � 
0

� d�

�2 JS���
1 − cos��t��coth��

2
� . �15�

Equations �11�–�15� describe the complete dynamics of the
transfer an electron interacting with the modulation and sol-
vation oscillator baths.

B. Exact solution

In this section we prove that the solution given by Eqs.
�11�–�15� reproduces the well-known exact result14,42,43 that
describes vibrational coherence in the framework of a model
which only includes the modulation of the transition matrix
element by vibrational modes. This model does not consider
the effect of dissipation due to a solvation or polaron mecha-
nism, i.e.,

gi = 0 �16�

for all i. In this section we follow the description given by
the authors in Ref. 14.

The number of M2 terms is p2 with the relation
n= p1+ p2. The M2 terms are distributed in all time positions
in the integrand. The sum over these terms makes the inte-
grand a symmetric function with respect to all time permu-
tations. Hence, the upper limits of the multiple integral �11�
can be taken as t for all integrals with the respective combi-
natorial denominator �2n�!. Finally, we rewrite Eqs. �11� and
�12� in a more convenient form

P�t� = �
n=0

�

�
p1=0

2n
�2n� ! 22p1

�2n� ! �2p1� ! p2 ! 2p2
�−

�0
2

4
�p1

�
0

t

dt2n
0

t

dt2n−1 ¯ 
0

t

dt1 ¯ �−
1

��
M2�tpi1

− tpj1
��

¯ �−
1

��
M2�tpi2

− tpj2
��¯ . �17�

The combinatorial multiplier requires some additional expla-
nation. The term �2n�! in the denominator is due to the sym-
metrization of the multidimensional integral �the change of
the upper limits from ti to t�. The term �2n� ! / �2p1� ! p2! ap-
pears because of the combinatorial distribution in time of
terms with �0 and M2 in the integrand. Since all �0
�2p1 terms� and M2 �p2 terms� contributions are distinguish-
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able, the total number of permutations �2n�! should be di-
vided by 2p1! and p2!, respectively. The term 22p1 in the
numerator is due to identical contributions from amplitudes
�x and �̃x. Term 2p2 in the denominator appears due to the
irrelevance of the time order for all M2 terms in the integrand
of Eq. �17� where each M2 term should be divided by two.

The series �17� can be calculated exactly. Indeed, instead
of the summation over n and p1, we can change the param-
eters of the summation to p1 and p2. Thus, the transition
probability yields

P�t� = �
p1=0

�

�
p2=0

�
�− �0

2�p1t2p1

�2p1�!
1

p2!

��−
1

2��


0

t

dtt1
0

t

dt1M2�t2 − t1��p2

. �18�

After the summation, one obtains the following expression
for the transition probability difference:

P�t� = cos��0t�exp
− �m�t�� , �19�

where14,42,43

�m�t� �
1

2��


0

t

dtt1
0

t

dt1M2�t2 − t1� . �20�

Equations �19� and �20� coincide with the expression for the
transition probability obtained by two different methods:14 �i�
a canonical transformation method and �ii� a Keldysh func-
tion technique.

Another important particular case that will be considered
here is the transition probability in the noninteracting blip
approximation. In the noninteracting blip approximation for
the solvation modes, we first symmetrize these equations and
then demonstrate how to solve them to obtain exponential
evolution with the golden rule expression for the rate
constant.39,40

III. METHOD OF ASYMPTOTIC SYMMETRIZATION

To find a solution of Eqs. �11�–�15�, we employ the non-
interacting blip approximation �NIBA�. The validity condi-
tion for the NIBA was described by Leggett et al. in Ref. 39.
The main assumption of the NIBA is that the ratio satisfies

�0

�c
� 1, �21�

where �c is a cut-off frequency for the relaxation of the
solvation medium. This equation implies slow tunneling with
respect to fast bath relaxation. Such an assumption enor-
mously simplifies the solution of the problem resulting in the
following expression for the transition probability
difference:39,40,44

P�t� = �
n=0

�

�
p1=0

n

�− �0
2�p1

0

t

dt2n ¯ 
0

t2

dt1Sp2
�t1, . . . ,t2n�

��
j=1

n

f�t2j − t2j−1� , �22�

where the function f�t2j − t2j−1� stands for

f�t� = cos� 1

��
Q1�t��exp�−

1

��
Q2�t�� . �23�

In the absence of the modulation �Sp2
=0�, the standard ap-

proach for solution is to employ a Laplace transform.39 This
method becomes useless for the solution of Eq. �22� due to
the symmetric function Sp2

modulating the integrand. To find
a solution, we modify the product of f functions �23� in Eq.
�22� by the complete symmetrization of this product with
respect to the time differences, i.e., we introduce additional
terms such as f�ti− tj� where i and j are arbitrary rather than
t2j − t2j−1. According to the validity condition �21� for the
NIBA, these additional terms in the symmetric sum of the
different products do not essentially change the original
product in Eq. �22� since these extra terms go to zero for
larger time differences.44 In accordance with Refs. 39 and 45,
only the terms with the time difference of t2j − t2j−1 �the blips�
survive at longer times ��0t�1�. Thus, we follow the pre-
scription that consists of �a� complete symmetrization of the
integrand in Eq. �22� and �b� taking the limit t→� in order
to nullify the contribution of the additional terms artificially
introduced into Eq. �22�. Such a procedure is called
asymptotic symmetrization.

To ensure that the asymptotic symmetrization works well,
we rederive the golden-rule �NIBA� rate constant for the ex-
ponential evolution by using the method of asymptotic sym-
metrization. With no modulation �all the Sp2

equal zero�, the
symmetrized expression for the transition probability differ-
ence yields

P�t� = �
n=0

�

�− �0
2�n

0

t

dt2n ¯ 
0

t2

dt1F̃n�t1, . . . ,t2n� , �24�

where the symmetric function F̃n is defined in the following
manner:

F̃n�t1, . . . ,t2n� � �
i,j−perm

f�ti1
− tj1

� ¯ f�tin
− tjn

� . �25�

There are n terms in the product �25�. Since the function F̃n
is symmetric with regard to variables t1 , . . . , t2n, we present
the multiintegral in a symmetric form where all of the upper
limits in the integrals are the same and equal t
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P�t� = �
n=0

�

�− �0
2�n

0

t

dt2n ¯ 
0

t2

dt1F̃n�t1, . . . ,t2n�

= �
n=0

�
1

n!
�− �0

2�n
0

t

dt2n ¯ 
0

t

dt1F̃n�t1, . . . ,t2n�

= �
n=0

�
1

n!�−
�0

2

2


0

t

dt2
0

t

dt1f�t2 − t1��n

. �26�

Consequently, the series in Eq. �26� can readily be found

P�t� = exp�−
�0

2

2


0

t

dt2
0

t

dt1f�t2 − t1�� , �27�

where f�t� is defined by Eq. �23�. In the limit of t→�, the
double integral can be asymptotically evaluated by parts. In-
deed,

�0
2

2


0

t

dt2
0

t

dt1f�t2 − t1� = �0
2

0

t

dt2
0

t2

dt1f�t2 − t1�

� t · �0
2

0

�

f�	�d	 − �0
2

0

�

	 · f�	�d	 .

�28�

The latter integral is convergent and therefore, at a longer
time it is much lesser than the former term. Moreover, it was
proved by Leggett et al.45 that the latter integral is much
lesser than one. Hence, it can be safely neglected. Then the
former term in Eq. �28� represents the exponent with the
golden-rule rate constant.39

Thus, we have proved that the NIBA solution39 can be
obtained from Eq. �24� by applying the asymptotic symme-
trization technique:

PNIBA�t� = exp�− �NIBAt� , �29�

where

�NIBA = �0
2

0

�

f�	�d	

= �0
2

0

�

cos� 1

��
Q1�t��exp� 1

��
Q2�t��dt . �30�

Since the asymptotic symmetrization works well for the
NIBA, we apply this method to find the solution of Eq. �22�
with F̃p2

instead of Fp2
in the integrand. In the same manner

as in Ref. 14, we present the integral in the following form:

P�t� = �
n=0

�

�
p1=0

2n
�2n� ! �− �0

2�p1

�2n� ! �2p1� ! p2 ! 2p2


0

t

dt2n ¯

�
0

t

dt1�−
1

��
M2�tpi1

− tpj1
��¯

��−
1

��
M2�tpi2

− tpj2
��¯

� �
i,j−perm

f�ti1
− tj1

� ¯ f�tin
− tjn

� . �31�

The combinatorial multiplier requires some additional expla-
nation. The term �2n�! in the denominator is due to the sym-
metrization of the multidimensional integral �the change of
the upper limits from ti to t�. The term �2n� ! / �2p1� ! p2! ap-
pears because of the combinatorial distribution in time of
terms with �0 and M2 in the integrand. Since all �0 �2p1
terms� and M2 �p2 terms� contributions are distinguishable,
the total number of permutations ��2n�! should be divided by
2p1! and p2!, respectively. Term 2p2 in the denominator ap-
pears due to the irrelevance of the time order for all M2 terms
in the integrand of Eq. �31� where each M2 term should be
divided by two. Equation �31� can be rewritten in the same
manner as Eq. �27�

P�t� = exp�−
�0

2

2


0

t

dt2
0

t

dt1f�t2 − t1�

−
1

2��


0

t

dt2
0

t

dt1M2�t2 − t1�f�t2 − t1� , �32�

At �0t�1, the former term results in the golden-rule expres-
sion described by Eqs. �29� and �30�. Additionally, there is
the second rate constant �M that is due to the latter term in
Eq. �32�

�M =
1

��


0

�

dtM2�t�f�t�

=
1

2�
�

i

Ci
2

Mi�i
coth��i

2
�

0

�

dt cos��it�

�cos� 1

��
Q1�t��exp�−

1

��
Q2�t�� . �33�

Hence, the evolution of the transition modulated for the elec-
tron by vibrations is given by

P�t� = exp�− �NIBAt�exp�− �Mt� �34�

where �NIBA is given by Eq. �30�. The integrand in the ex-
pression for �M can be viewed as the partial rate constant
with the bias �or reaction heat� equal to ��i.

To analyze the result described by Eqs. �33� and �34�, we
assume that only a single mediation mode with the frequency
�0 modulates the electron transfer. Thus, the rate constant
�33� becomes

�M = �M
2 

0

�

dt cos��0t�cos� 1

��
Q1�t��exp�−

1

��
Q2�t�� ,

�35�

where

�M
2 �

C0
2

2 � M0�0
coth��0

2
� . �36�

In this equation the modulation rate constant has the same
form as the golden-rule rate constant with the bias
�= ��0.39,40
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Following the standard procedure, the integral �35� can be
performed in the saddle point approximation resulting in the
effective golden-rule formula

�M =
��M

2 �q�
4

� �

ErkBT
�exp�−

�Er − � �0�2

4ErkBT
�

+ exp�−
�Er + � �0�2

4ErkBT
�� . �37�

The expression for the rate constant in the non-Condon ap-
proximation was obtained by Medvedev and
Stuchebrukhov,13 Cukier,6 Suarez and Silbey,4 and Borgis
and Hynes5 where the interaction between the electron and
modulating vibrations was chosen to be exponential. The lat-
ter interaction is valid when the electron modulation oscilla-
tor reservoir is strong. In this work the modulation bath how-
ever, has been presented by a set of oscillators �qi	 linearly
interacting with the electron 
see Eq. �1��. The rate constant
described by Eqs. �33� and �37� coincides with the expres-
sion obtained by Medvedev and Suchebrukhov13 and
Cukier.6 With the proper expansion of their results we arrive
at the expression obtained in this work.

The direct averaging of the rate constant over modulation
oscillators6,13 requires an additional justification since in sta-
tistical mechanics only observables operators can be aver-
aged. In this problem such an operator is the quantum tran-
sition probability ���t� ���t��T, rather than the rate constant
�. Thus, we have rigorously proved that the direct averaging
of the rate constant is correct in the NIBA, and consequently,
the Hamiltonian �1� can be generalized to an anharmonic
bath as well.13 It is not obvious that such an assumption is
valid due to the strong correlations between the M terms �the
modulation terms� and the F terms �the solvation terms� in
the exact expression for the transition probability 
see Eqs.
�11�–�15��. In the derivation described by Eqs. �31�–�36� it
has been assumed that inequality �21� is valid, i.e., the dis-
sipation �c due to the interaction with vibrations is much
faster than the electron shuttling frequency �. This assump-
tion allows us to neglect the correlations between different
blips, or different tunneling events �see Leggett et al.39�. In
the NIBA each tunneling transition is treated independently,
i.e., a short memory has been assumed due to the strong
dissipation.39,40

IV. CONCLUSIONS

In this work we have found the exact expression for total
time-dependent probability described by Eqs. �11�–�15�. This
allows us to analyze fast �with a nonequilibrium bath� elec-
tron transfer reactions where vibrational coherence was
found.19,21–33 The main feature of the experimental depen-
dencies is strong coherent oscillations and nonexponential
�slower� decay. Since this research is focused only on sym-
metric electron transfer we still are not able to provide a
complete quantitative description of primary electron trans-
fer in photosynthetic bacteria and fast nonequilibrium pro-
cesses taking place in electron injection on TiO2 nanoelec-
trodes in solar cells.46,47 A generalization of the theory to
biased tunneling is necessary.

The method we have used to derive the exact expression
for the transition probability described by Eqs. �11�–�15�, is
the extension of the path-integral technique developed by
Feynmann and Vernon41 for a polaron problem and later em-
ployed by Leggett et al.39 for electron tunneling between two
states. As in the Feynman-Vernon approach we have inte-
grated out the coordinates of oscillators for the two oscillator
baths reducing the transition probability to a simpler expres-
sion that is described by a series of multidimensional inte-
grals that excludes all the path integrals over oscillator tra-
jectories 
see Eqs. �11�–�15��. For the future research such a
representation can be useful for numerical calculations.

As a particular case of the absence of the solvation bath
�xi	 we have demonstrated that the transition probability can
be exactly derived exhibiting coherent oscillations and non-
exponential decay 
see Eqs. �19� and �20��. Thus, for a weak
solvation bath the transition probability cannot be simply
described by exponential function with the rate constant.14

The main difference between the results found in Ref. 14 and
those of obtained in this work is that an additional �solva-
tion� oscillator bath was introduced that provides more effi-
cient relaxation for the electron dynamics. Indeed, in this
case the electron evolution is exponential while in the ab-
sence of the solvation bath the relaxation is much slower.14

The rate constant in the non-Condon approximation was
also studied by Medvedev and Stuchebrukhov,13 Cukier,6

Suarez and Silbey,4 and Borgis and Hynes.5 The modulation
effect was introduced by the direct averaging of the rate con-
stant over the modulation degrees of freedom.6,13 Such an
approximation requires an additional justification of their
thermodynamic averaging procedure since in statistical me-
chanics only observables operators can be averaged. In this
problem such an operator is the transition probability
���t� ���t��T rather than the rate constant �. Thus, it is im-
portant to understand if the rate constant, obtained by
Medvedev and Stuchebrukhov13 provides the correct expres-
sion. However, there are some differences in the description
for the electron-vibration interaction introduced in this re-
search and in Ref. 13. In this work, the modulation bath has
been chosen as a set of oscillators �qi	 linearly interacting
with the electron 
see Eq. �1�� rather than more general ex-
ponential interaction employed by Medvedev and
Suchebrukhov13,50 and Cukier.6 However, it is still possible
to compare the results obtained by these authors with the rate
constant described by Eqs. �33� and �37� after a proper ex-
pansion for small interaction coefficients Ci in the Hamil-
tonian �1�. As a result of such comparison, we conclude that
Eqs. �33� and �37� coincide with the expression obtained by
Medvedev and Suchebrukhov13 where the interaction be-
tween the electron and modulating vibration was chosen to
be both exponential �see also Cukier6� and linear. The former
interaction is valid when the electron modulation oscillator
reservoir is strong. Thus, we have rigorously proved that the
direct averaging of the rate constant is correct in the NIBA.
Moreover, Medvedev and Stuchebrukhov13 used an anhar-
monic bath as a reservoir. This allows them to extend the
Hamiltonian to anharmonic potential energy surfaces. In the
beginning it is not obvious that a direct averaging of the rate
constant by the modulation modes would provide the correct
result. Such a procedure is only valid when inequality �21�
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holds. In the NIBA the tunneling events �blips� are consid-
ered independent due to the fast and strong interaction of the
electron with the bath modes.39,40 If there are some slow
degrees of freedom, the NIBA becomes unphysical. Indeed
the reaction has already been over but some degrees of free-
dom are not in equilibrium. The details of electron transfer in
a nonequilibrium bath were given by Hornbach and
Dakhnovskii48 and Dakhnovskii.49

Symmetric electron transfer studied in this work can be
applied to electron transport in molecular wires. The symme-
try of the donor and acceptor states implies that molecular
bridges should be polyene chains. There is an important con-
nection between the rate constant and electrical current found
by Nitzan,37,38 where incoherent electrical current can be ex-
pressed in terms of the rate constant calculated for a proper
electron transfer reaction. This connection facilitates the cal-
culations of a current for polyene molecular wires. Such sys-
tems were intensively studied theoretically51,52 and
experimentally.53 In particular, the experimental current volt-
age characteristics for carotenoid polyene chains attached to
gold electrodes were obtained by Lindsay and coworkers.53

They used a conducting atomic force microscope to measure
the electrical properties of carotenoid molecules attached to a
gold electrode where thiolated carotene molecules were em-
bedded in insulating n-alkanethiol self-assembled monolay-
ers. The results of the present research indicate that the
modulation of the electron transport by vibrations enhances
the electron tunneling increasing the electrical current. How-
ever, a quantitative application of the present research to par-
ticular molecular wires requires quantum chemical calcula-
tions of the parameters for particular systems.
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APPENDIX: DOUBLE FLIPS

In this Appendix we discuss the reasons why M1 terms do
not contribute to the integrand of Eq. �11� in contrast to
M2-terms contributions.

Indeed, the two transitions taking place at the times ti and
ti�i� j� can be due to the following terms:14�a� �x�ti��x�tj�,
�b� �x�ti��̃x�tj�, �c� �̃x�ti��x�tj�, and �d� �̃x�ti��̃x�tj�. Case �a�
can occur because of the transitions from bare amplitude, A,
M1, and M2

�1 − ı
�0

2
dti��1 − ı

�0

2
dtj� ,

�1 +
ı

��
M1�ti − tj�dtidtj� ,

�1 −
1

��
M2�ti − tj�dtidtj� . �A1�

Case �b� can occur because of the following transitions:

�1 − ı
�0

2
dti��1 + ı

�0

2
dtj� ,

�1 +
ı

��
M1�ti − tj�dtidtj� ,

�1 +
1

��
M2�ti − tj�dtidtj� . �A2�

Case �c� can occur because of the following transitions:

�1 + ı
�0

2
dti��1 − ı

�0

2
dtj� ,

�1 −
ı

��
M1�ti − tj�dtidtj� ,

�1 +
1

��
M2�ti − tj�dtidtj� . �A3�

Finally, case �d� can occur because of the following transi-
tions:

�1 + ı
�0

2
dti��1 + ı

�0

2
dtj� ,

�1 −
ı

��
M1�ti − tj�dtidtj� ,

�1 −
1

��
M2�ti − tj�dtidtj� . �A4�

Consider the flips due to M1�ti− tj�. The flips with �x�ti��x�tj�
cancel out with the flips due to �̃x�ti��̃x�tj� if all the remain-
ing flips are unchanged. The sum is true for the flips due to
�x�ti��̃x�tj�, and �̃x�ti��x�tj�. Consequently, all the flips due to
the M1�ti− tj� terms vanish.

Consider the M2�ti− tj� terms. Such terms also have alter-
ing signs. We prove that the contribution from these terms
does not vanish. The total number of �x �or �̃x� is even since
the trajectory begins at “++” and ends at the same state. The
cases �a� and �d� contribute to the transitions with the minus
sign “−” �we remember that the rest of the terms remain
unchanged�.

Analysis of the M2 contribution should be considered in
conjunction with the �0 terms. For the cases �b� and �c�, M2
transitions should be complemented by the pair of �0 transi-
tions

�x�ti��̃x�tj� ¯ �x�tk��̃x�tl� ¯ . �A5�

The first two terms correspond to a M2 transition while the
second two terms correspond to �−i�0 /2� and �+i�0 /2� for
case �b�. In case �c�, the appropriate transition �x↔ �̃x for
these four transitions is

�̃x�ti��x�tj� ¯ �̃x�tk��x�tl� ¯ . �A6�

The total contribution from these two transitions does not
vanish resulting in
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+
1

��
M2�ti − tj�dtidtj ¯ �− i

�0

2
��+ i

�0

2
�dtkdtl �A7�

for case �b� and

+
1

��
M2�ti − tj�dtidtj ¯ �+ i

�0

2
��− i

�0

2
�dtkdtl �A8�

for case �c�. Thus these two transitions doubly contribute.
Similarly, the sign “+” appears for

�x�ti��x�tj� ¯ �x�tk��x�tl�¯ �A9�

in case �a� and

�̃x�ti��̃x�tj� ¯ �̃x�tk��̃x�tl�¯ �A10�

in case �d� corresponding to the following terms:

−
1

��
M2�ti − tj�dtidtj ¯ �− i

�0

2
��− i

�0

2
�dtkdtl

�A11�

for case �a� and

−
1

��
M2�ti − tj�dtidtj ¯ �+ i

�0

2
��+ i

�0

2
�dtkdtl

�A12�

for case �d�. Hence, all four transitions make the same con-
tribution independent of the sign for M2 �“+” or “−”�. We
adopt the sign “−” for M2 flips and the sign “−” for the �0
double transition �−�0

2 /4�—the same as in Eqs. �11� and
�12�.
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