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Size effects on domain configuration and polarization switching in two-dimensional epitaxial ferroelectric
islands and in thin films are investigated by using a continuum phase field model that incorporates long-range
elastic and electrostatic interactions. The simulations exhibit spatial polarization distributions with different
types of domain walls in the epitaxial ferroelectric islands and find two critical thicknesses, at which the
simulated material changes from a multidomain state to a single-domain state and from ferroelectric phase to
paraelectric phase, respectively. The two critical thicknesses and the domain wall types vary with the length-
to-thickness ratio. The simulations show that macroscopic polarization switching in thin films under an external
electric field is processed through the nucleation of new domains and domain wall motion. The remanent
polarization and the coercive field of the simulated ferroelectric films both decrease with decreasing film
thickness.
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I. INTRODUCTION

Currently, material properties of ferroelectric epitaxial
islands and thin films at the nanometer scale receive consid-
erable attention from academics and industries due to the
potential integration of nanoferroelectrics into micro-
electronics.1–3 Ferroelectric properties substantially deviate
from the bulk behavior as the particle size or the film thick-
ness is reduced to nanometers. For example,4,5 a PbTiO3 par-
ticle is a single domain when its diameter is less than 20 nm
and the ferroelectricity may eventually disappear when the
diameter is below 4.2 nm. Obviously, to understand the size-
dependent behavior of ferroelectrics is academically signifi-
cant and practically important. Therefore, different theoreti-
cal approaches, including phenomenological Landau theories
and atomic-level first-principles calculations, have been used
to study the size-dependent ferroelectric properties in quan-
tum dots,6 thin films,7,8 nanodisks, and nanorods.9 First-
principles calculations have greatly contributed to the under-
standing of the origin of ferroelectric structures and
properties and to mechanisms of ferroelectric instabilities.10

Based on first-principles calculations, Junuera and Ghosez8

showed that a BaTiO3 film between two metallic SrRuO3
electrodes in short circuit lost the ferroelectric properties
when its thickness was thinner than a critical thickness of
about six unit cells ��2.4 nm�. Recently, Fu et al. used a
first-principles-derived effective Hamiltonian approach to
study the size-dependent properties in ferroelectric nanodisks
and nanorods and found an unusual phase transition.9 To
account for the surface effect, the interaction between the
local modes at surface and the vacuum, and the interaction
between the inhomogeneous strains and the vacuum are
added into the Hamiltonian.

In addition to the first-principles calculations, continuum
theories may be also powerful in studying ferroelectric par-
ticles and films at the nanoscale.2 For example, one-
dimensional Landau-Ginzburg theories have successfully ex-
plored the critical size for polarization instability in stress-

free ferroelectric particles and in ferroelectric thin films.5,11,12

In the study of nanoferroelectrics by continuum theories, ap-
propriate boundary conditions must be applied along sur-
faces of a finite-size particle. The boundary condition for
polarization, P, is usually given by dP /dn=−P /�,5,11,12

where n refers to a unit length in the outward normal direc-
tion of the surface and � is the so-called extrapolation length,
which is introduced to describe the difference in polariza-
tions between the surface and the interior of the material.
The polarization is reduced at the surface when � is positive
or zero, while the polarization is enhanced at the surface
when � is negative. Therefore, the value of � determines the
intrinsic size effect. When � approaches infinity, the bound-
ary condition becomes dP /dn=0, which is called the free
boundary condition,13 and the intrinsic size effect vanishes
because in this case, there is no difference for polarizations
in the media between the surface and the interior. When �
equals zero, polarizations are completely suppressed, i.e., P
=0, at the surface, which is called the zero boundary
condition,13 thereby generating the most significant size ef-
fect. The � value should be determined by first-principles
calculations and/or by carefully designed experiments, which
will be the future task of research. Currently, various values
of � are approximately used in the literature for simplicity.

Phase field models of ferroelectrics are based on the
Landau-Ginzburg theory and take the long-range electro-
static and elastic interactions into account.14–16 To simplify
numerical calculations, periodic boundary conditions are
usually employed in phase field simulations of
ferroelectrics17–19 with the highly efficient fast Fourier trans-
form technique such that elastic solution for a given polar-
ization distribution can be obtained analytically in reciprocal
space. However, periodic boundary conditions may be inap-
propriate in simulations of nanoferroelectrics because a
nanoferroelectric material has a finite size and thus boundary
conditions should, in general, not be periodic. Therefore, it is
necessary for phase field simulations of nanoferroelectrics to
develop novel simulation models and methods that allow di-
rect applications of arbitrary mechanical and electrical
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boundary conditions and make the computation size physi-
cally meaningful and practically implemental. By using the
finite element method, Cao et al.20 made such an effort to
simulate domain formation in a finite ferroelectric system
without taking periodic boundary conditions. In their simu-
lations, however, the long-range electrostatic and elastic in-
teractions were not taken into account.20 Zhang and
Bhattacharya21 developed a computational model for ferro-
electrics subjected to realistic electromechanical boundary
conditions and studied the nucleation of domains and propa-
gation of domain walls in thin films under combined electro-
mechanical loading. In the present work, we consider the
long-range electrostatic and elastic interactions without using
periodic boundary conditions to simulate material behaviors
and electrical domain structures of ferroelectric islands and
thin films, which are grown on substrates, as shown in Figs.
1�a� and 1�b�, respectively.

II. SIMULATION METHODOLOGY

A. General approach of the phase field model for
nanoferroelectrics

Spontaneous polarization occurs in a ferroelectric material
when the temperature is lower than its Curie point, thereby
leading to the paraelectric-to-ferroelectric phase transition. In
the present phase field simulations, we may regard that spon-
taneous polarizations associated with spontaneous strains are
embedded in a background material, i.e., in the paraelectric
phase material. When an electric field, E, is present, the elec-
tric field will induce a polarization field. Thus, the total po-
larization, P�t�, can be divided into two components, the
spontaneous polarization, P, and the induced polarization,
P�i�. For simplicity, the induced polarization may be assumed
to be linearly proportional to the electric field.22 In this case,
the electric displacement vector, D, can be given by

D = �0E + P�t� = �0E + P�i� + P = �0�E + P , �1�

where �0=8.85�10−12 Fm−1 is the dielectric constant of the
vacuum and � denotes the relative dielectric constant tensor

of the background material. Since the background material is
the paraelectric phase, which has a cubic crystal structure,
the relative dielectric constant matrix is diagonal and the
relative dielectric constants in three axis directions are the
same, i.e., �=�11=�22=�33 and �ij =0�i� j�. The spontane-
ous polarization vector, P= �P1 , P2 , P3�, is usually used as
the order parameter to calculate thermodynamic energies of
the ferroelectric phase in the Laudau phase transformation
theory. The standard Landau-Devonshire energy density is23

fLD�Pi,�ij� = �1�P1
2 + P2
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where �1= �T−T0� /2�0C0 is the dielectric stiffness,
�11,�12,�111,�112,�123 are higher order dielectric stiff-
nesses, T and T0 denote temperature and the Curie-Weiss
temperature, respectively, C0 is the Curie constant; sij are the
elastic compliance coefficients, Qij are electrostrictive con-
stants, and �ij denote mechanical stresses. Note that me-

chanical stresses include applied and internal stresses in-
duced by spontaneous strains.

In the Ginzburg-Landau theory, the free energy function
also depends on the gradient of the order parameter. For
ferroelectric materials, the polarization gradient energy rep-
resents also the domain wall energy. For simplicity, the low-

FIG. 1. Schematic diagram of a nanoscale ferroelectric �a� is-
land or �b� thin film grown on a substrate, where “w” and “d”
denote the length and the thickness, respectively. The elastic defor-
mation of the substrate inside the area surrounded by dotted lines is
calculated in the simulations and a /d=0.6.

J. WANG AND T.-Y. ZHANG PHYSICAL REVIEW B 73, 144107 �2006�

144107-2



est order of the gradient energy density is used here, which
takes the form:

fG�Pi,j� =
1

2
G11�P1,1

2 + P2,2
2 + P3,3

2 � + G12�P1,1P2,2 + P2,2P3,3

+ P1,1P3,3� +
1

2
G44��P1,2 + P2,1�2 + �P2,3 + P3,2�2

+ �P1,3 + P3,1�2� +
1

2
G44� ��P1,2 − P2,1�2

+ �P2,3 − P3,2�2 + �P1,3 − P3,1�2� , �3�

where G11, G12, G44, and G44� are gradient energy coeffi-
cients, and Pi,j denotes the derivative of the ith component of
the polarization vector, Pi, with respect to the jth coordinate
and i, j=1,2 ,3.

To describe the finite-size ferroelectrics with multidomain
structures, the total free energy should include depolarization
energy induced by spatially inhomogeneous spontaneous po-
larizations. The depolarization field is a self-electrostatic
field which is dependent on the spontaneous polarizations.
The depolarization energy is a self-electrostatic energy cor-
responding to the long-range electrostatic interaction of
spontaneous polarizations and is calculated by22,24,25

fdep = − 1
2 �E1

dP1 + E2
dP2 + E3

dP3� , �4�

where E1
d, E2

d, and E3
d are the components of the depolariza-

tion field along the x1, x2, and x3 axes, respectively. The
self-electrostatic field is the negative gradient of the electro-
static potential, �, induced by spontaneous polarizations, i.e.,
Ei

d=−�,i. The electrostatic potential can be obtained by solv-
ing the following electrostatic equilibrium equation:

Di,i = ��0�E + P�i,i = 0, or �5a�

�0���,11 + �,22 + �,33� = P1,1 + P2,2 + P3,3, �5b�

for a body-charge-free paraelectric medium.11,22,25 Note that
the dielectric constant, �, in Eq. �5� denotes the relative di-
electric constant of the background paraelectric material,
which is a scale. The same homogeneous and isotropic as-
sumption was used in Refs. 14 and 25. Equation �5� is solved
by using the finite difference method for a given polarization
distribution and predescribed boundary conditions. If an ex-
ternally electric field, Ei

a, is applied to the system, the applied
field generates an additional electrical energy density,

felec = − Ei
aPi. �6�

Integrating all free energy densities over the entire vol-
ume of a simulated ferroelectric material yields the total free
energy, F, of the simulated ferroelectric material:

F = �
V

�fLD�Pi,�ij� + fG�Pi,j� + fdep�Pi,Ei
d� + felec�Pi,Ei

a��dV ,

�7�

where V denotes the volume of the simulated ferroelectric
material.

In phase-field simulations,14–18 it is usually assumed that
the mechanical and electric equilibrium be established in-
stantaneously once a spontaneous polarization distribution is
set down. If no external stresses and electric fields are ap-
plied to the system, inhomogeneously distributed polariza-
tions induce an internal stress field, �ij, and a depolarization
field, Ei

d. In this case, the total free energy is determined by
the spontaneous polarization field.

The temporal evolution of the spontaneous polarization
field is described by the time-dependent Ginzburg-Landau
equation,

�Pi�r,t�
�t

= − L
�F

�Pi�r,t�
�i = 1,2,3� , �8�

where L is the kinetic coefficient, �F /�Pi�r , t� represents the
thermodynamic driving force of the spatial and temporal
evolution of the simulated system, r= �x1 ,x2 ,x3� is the spatial
vector, and t denotes time.

B. Dimensionless equations for a two-dimensional system with
the zero surface spontaneous polarization

Two-dimensional �2D� simulations are conducted in the
present work under the plane-stress condition along the x3
axis, although the methodology described in Sec. II A can be
applied to three-dimensional simulations. For a finite size 2D
ferroelectric material coherently constrained by an elastic
substrate, as shown in Fig. 1�a� or 1�b�, we adopt the zero
boundary condition for spontaneous polarizations for sim-
plicity. This means that for a 2D island shown in Fig. 1�a�,
we set P1=0 and P2=0 along the three surfaces and the
interface between the simulated ferroelectric material and the
substrate. For a 2D thin film shown in Fig. 1�b�, we set P1
=0 and P2=0 at the top surface and the interface and use the
periodic boundary condition in the x2 direction. The zero
boundary condition is obviously approximate, but it is
simple, because the surface energy term vanishes, and it can
explain some experimental observations.26 The zero bound-
ary condition has been used by other researchers in the simu-
lations of 2D fully constrained ferroelectrics16 and in the
study of ferroelectric thin films.13 Moreover, the spontaneous
polarization component, P3, and the electric field component,
E3, are treated as zeros in the present 2D simulations. For
convenience, we employ the following set of the dimension-
less variables for Eq. �8� �Ref. 14�:

r* = ���0�/G110r, t* = ��0�Lt, P* = P/P0, �0
* = �0��0�

�1
* = �1/��0�, �11

* = �11P0
2/��0�, �12

* = �12P0
2/��0� ,

�111
* = �111P0

4/��0�, �112
* = �112P0

4/��0�, �123
* = �123P0

4/��0� ,

Q11
* = Q11P0

2, Q12
* = Q12P0

2, Q44
* = Q44P0

2,

s11
* = s11„��0�P0

2
…, s12

* = s12„��0�P0
2
…, s44

* = s44���0�P0
2� ,
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G11
* = G11/G110, G12

* = G12/G110, G44
* = G44/G110,

G44�
* = G44� /G110, �9�

where P0 is the magnitude of the spontaneous polarization at
room temperature, G110 is a reference value of the gradient
energy coefficients, and �0 represents the value of �1 at
25 °C. The superscript asterisk, *, denotes the dimensionless
value of the corresponding variable.

With the dimensionless variables and ignoring the surface
energy term, we explicitly express the 2D time-dependent
Ginzburg-Landau equation as follows:

�P1
*

�t* = − �2�1
*P1

* + 4�11
* P1

*3 + 2�12
* P1

*P2
*2 + 6�111

* P1
*5

+ �112
* �4P1

*3P2
*2 + 2P1

*P2
*4� − 2Q11

* �11P1
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*
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* + G44

* − G44�
*�P2,xy

*
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* + G44�

*�P1,yy
* − 1

2E1
d*

− E1
a*� , �10a�
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�t* = − �2�1
*P2

* + 4�11
* P2

*3 + 2�12
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+ �112
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*2 + 2P2

*P1
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* − G44�
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*

− �G44
* + G44�

*�P2,xx
* − 1

2E2
d*

− E2
a*� . �10b�

The finite difference method for spatial derivatives and the
Runge-Kutta method of order four for temporal derivatives
are employed to solve Eq. �10� in real space with the zero
boundary condition. At the beginning of the evolution, a
Gaussian random fluctuation is introduced to initiate the
spontaneous polarization evolution process.

C. Boundary conditions for static electrical and mechanical
equilibrium equations

The electrical and mechanical boundary conditions have a
significant effect on the equilibrium domain structures and
spontaneous polarization instability. To obtain the electro-
static potential from Eq. �5�, the boundary condition of the
electrostatic potential should be specified. For a simulated
ferroelectroic island, we set the electrostatic potential �=0 at
the three free surfaces and the interface between the island
and the substrate, as shown in Fig. 1�a�, which is called the
short circuit condition. For a simulated thin film without any
applied field, the periodic boundary condition for the electro-
static potential is adopted in the x2 direction and the electro-
static potential is set at zero, i.e., �=0, at the top free surface
and the interface between the film and the substrate, as
shown in Fig. 1�b�. When an external field, E1

a, is applied
along the thickness direction of thin films, the electrostatic

potential is zero at the surface and −E1
ad at the interface

between the film and the substrate �E1
d=−�,1−E1

a in this
case�. With the electric boundary condition, Eq. �5� is nu-
merically solved by using the finite difference method.

A spontaneous polarization field in a ferroelectric island
or film can induce inhomogeneous elastic fields in both the
ferroelectric material and the substrate due to the constraint
of the substrate. The mechanical boundary conditions for a
ferroelectric island are taken as: the three free surfaces are
traction-free and the interface between the island and the
substrate is mechanically coherent, which means the traction
continuity and the displacement continuity. At the paraelec-
tric state, the entire system including the simulated ferroelec-
tric material and the substrate is treated to be stress-free,
indicating no lattice mismatch between the island or film and
the substrate at the paraelectric phase. The elastic deforma-
tion of the substrate is calculated only in the area surrounded
by the dotted lines, as shown in Fig. 1, meaning that the
deformation of the substrate outside the dotted lines should
be ignorable. For a thin film, the traction-free and the coher-
ent boundary conditions are applied along the free surface
and the interface, respectively, and the periodic boundary
condition is used along the x2 direction. With these boundary
conditions, we employ the finite element method to solve the
mechanical governing equation for a given spontaneous po-
larization field �see the Appendix for details�.

D. Parameters used in the simulations

The material parameters of PbTiO3 are taken as an ex-
ample in the present simulations. We set the magnitude of the
spontaneous polarization at room temperature to be P0
= �P0�=0.757 C/m2, the reference value of the gradient
energy coefficients as G110=1.73�10−10 m4N/C2, the
relative dielectric constant, �=66.0, and the value of �1 at
25 °C to be �0=�1,25 °C= �T−T0� / �2�0C0�= �25–479��3.8
�105 m2N/C2, where T is in units of °C. The values of the
dimensionless �normalized� material coefficients used in the
simulations are listed in Table I.

In the simulations, we use N1�N2 discrete grids for a
ferroelectric material with a cell size of �x1

*=�x2
*=�l*. The

different length-to-thickness ratios and different sizes of the
ferroelectrics can be realized by giving different numbers to
N1 and N2, and/or by giving different unit lengths to �l*.
The domain structure is represented by the spontaneous po-
larization field, in which spontaneous polarizations vary spa-
tially and each spontaneous polarization is characterized by a
two-component vector in the 2D simulations, i.e., by an elec-
tric dipole. The length and direction of the electric dipole
denote the magnitude and direction of local polarization, re-
spectively. The rectangular element size in the finite element
calculations is also set as �x1

*=�x2
*=�l* for both ferroelec-

tric material and substrate.

TABLE I. Values of the normalized coefficients used in the simulations.

�11
* �12

* �111
* �112

* �123
* Q11

* Q12
* Q44

* s11
* s12

* s44
* G11

* G12
* G44

* G44�
*

−0.24 2.5 0.49 1.2 −7.0 0.05 −0.015 0.038 7.9�10−4 −2.5�10−4 8.9�10−4 2 0.0 1 1
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III. SIMULATION RESULTS AND DISCUSSION

A. Size effect in epitaxial islands with w=d

For a 2D ferroelectric epitaxial island with the same size
in thickness and length, i.e., w=d, as shown in Fig. 1�a�, the
discrete grids are N1=N2=40 in both thickness and length
directions, and the grid length �l* changes from 0.8 to 0.13,
which corresponds a real grid length �l ranging from
0.8 nm to 0.13 nm. The time step is set at �t*=0.004 and
total number of steps is 8000 in solving Eq. �10�, which
ensures that the domain structure reaches its steady state.15

Figure 2 shows that the mean magnitude and the maxi-
mum magnitude of polarizations as functions of the ferro-
electric size. The mean magnitude of the polarization, 	Ps

*
,
is obtained by averaging the dipole magnitude, Ps

*

=�P1
*2+ P2

*2, at each grid over the entire simulated ferroelec-
tric material. Figure 2 indicates that both mean magnitude
and maximum magnitude approach zero as the island size is
reduced to 5.2 nm, thereby showing that spontaneous polar-
izations disappear when the island size is equal to or smaller
than 5.2 nm. Since the � value plays a crucial role in the
estimation of the critical size for the disappearance of polar-
izations, we will not pay too much attention to the critical

size because of the uncertainness of the � value used by
different researchers. Figure 2 shows also a sudden increase
in the mean �or maximum� magnitude curve when the island
size is reduced from 22 nm to 21 nm. The sudden increase is
caused by the change from a multidomain state to a mon-
odomain state in the simulated island, as evidenced by the
domain structures shown in Figs. 3�a� and 3�b� for the island
sizes of 22 nm and 21 nm, respectively, where one of every
two dipoles is plotted for clarity. When w=d=22 nm, the
ferroelectric island forms a two-domain structure with a 180°
domain wall, as shown in Fig. 3�a�. The formation of a 180°
domain wall rather than a 90° domain wall indicates that the
electrostatic interaction is predominant in this case in com-
parison with the elastic interaction. The directions of the di-
poles in the two domains are parallel or antiparallel to the x1
direction due to no mechanical constraint along the x1 direc-
tion. The dipole magnitude inside the domains is much larger
than that near the domain wall. The two-domain structure
changes to a monodomain structure when the island size de-
creases from 22 nm to 21 nm, and the change in the domain
structure induces the sudden increase in both mean and
maximum magnitudes because of the elimination of the 180°
domain wall. After that, further decreasing the island size
reduces both magnitudes of spontaneous polarizations, as
shown in Fig. 2. Eventually, both magnitudes of polariza-
tions approach zero in a second phase transformation man-
ner. Experimentally, Jiang et al. observed that the PbTiO3
particles are in the monodomain structure when the particle
size is less than 20 nm.4 The critical size, for the transition
from the multidomain state to the monodomain state, deter-
mined from the phase field simulation is consistent with the
experimental result.

B. Size effect in epitaxial islands with w=2d

Ferroelectric 2D islands with length being twice the thick-
ness, i.e., w=2d, are simulated to study the lateral size effect
on domain structures. The discrete grids are taken as N1
=30 and N2=60 in thickness and length directions, respec-
tively. The grid length �l* changes from 0.13 to 0.7, corre-
sponding to a real length ranging from 0.13 nm to 0.7 nm.
Figure 4 shows the mean magnitude and the maximum mag-
nitude of polarizations as functions of the island thickness.
The critical size for the transition from a multidomain state
to a monodomain state and the critical size for the disappear-

FIG. 2. �Color online� The dependence of dipole magnitude on
the ferroelectric island size �w /d=1�.

FIG. 3. Domain structures with island sizes of
�a� 22 nm and �b� 21 nm, which correspond to
points A and B in Fig. 2, respectively.
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ance of polarizations are found to be 15 nm and 3.9 nm,
respectively. Figures 5�a� and 5�b� show the ferroelectric do-
main structures for the island thicknesses of d=15 nm and
14.1 nm, respectively, where again, one of every two dipoles
is plotted for clarity. When d=15 nm, the polarizations form
a two-domain structure with a 90° domain wall, as shown as
Fig. 5�a�, and the corresponding mean and maximum mag-
nitudes of polarizations are marked by A in Fig. 4. The for-
mation of the 90° domain wall indicates that the elastic in-
teraction is predominant in this case in comparison with the
electrostatic interaction. Figure 5�a� shows that dipoles in
one domain are antiparallel to the x1 direction and dipoles in
another domain are parallel to the x2 direction. The dipoles
parallel to the x2 direction are subjected to more mechanical

constraint from the substrate than the dipoles antiparallel to
the x1 direction. In general, a tensile or compressive stress
along the dipole direction can enhance or reduce the magni-
tude of the dipole. Therefore, the average magnitude of the
dipoles parallel to the x2 direction is smaller than that of the
dipoles antiparallel to the x1 direction. When the island thick-
ness is reduced to 14.1 nm, a monodomain structure occurs
with all dipoles parallel to the x2 direction, as shown in Fig.
5�b�. The corresponding mean and maximum magnitudes of
polarizations are suddenly decreased from point A to point B
in Fig. 4 due to the elimination of the 90° domain wall and
the switch of the dipoles antiparallel to the x1 direction to
parallel to the x2 direction. After this critical thickness, both
magnitudes of polarizations decrease as the island thickness
is reduced, as shown in Fig. 4, and eventually to zero at the
thickness of 3.9 nm. The critical size for the transition from
the multidomain state to the monodomain state in the case of
w /d=2 are much smaller than that in the case of w /d=1,
thereby illustrating that the length-to-thickness ratio has a
significant influence on the domain instability in epitaxial
ferroelectric islands.

C. Size effect in epitaxial thin films

A thin film can be regarded to have an infinitely large
value of the length-to-thickness ratio. In the present study of
ferroelectric thin films, the discrete grids are taken as N1
=20 and N2=80 in the thickness direction and along the film
direction, respectively. The dimensionless unit length, �l*,
changes from 0.17 to 1, corresponding to a real length rang-
ing from 0.17 nm to 1 nm. Figure 6 shows that the mean
magnitude and the maximum magnitude of polarizations as
functions of the film thickness. The critical size for the tran-
sition from a multidomain state to a monodomain state and
the critical size for the disappearance of polarizations are
found to be 8 nm and 3.4 nm, respectively. Figures 7�a� and
7�b� show the ferroelectric domain structures for the film
thicknesses of d=8 nm and 7.4 nm, respectively, where
again, one of every two dipoles is plotted for clarity. For the

FIG. 4. �Color online� The dependence of dipole magnitude on
the thickness of ferroelectric islands of w /d=2.

FIG. 5. Domain structures with different thickness �a� 15 nm
and �b� 14.1 nm, which correspond to points A and B in Fig. 4,
respectively.

FIG. 6. �Color online� The dependence of dipole magnitude on
the film thickness.
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film with a thickness of d=8 nm, the polarizations form an
a /c /a type multidomain structure with 90° domain walls be-
tween a and c domains, in which the dipoles are parallel to
the x2 and x1 directions, respectively, and the corresponding
magnitudes are marked by A in Fig. 6. The main driving
force for the formation of the a /c /a multidomain structure is
the reduction of the elastic energy in the thin film. For the
film with a thickness of 7.4 nm, the polarizations appear in a
single domain with all dipoles parallel to the x2 direction, as
shown in Fig. 7�b�, which gives the polarization magnitudes
marked by B in Fig. 6. Comparing Fig. 6 with Fig. 4 indi-
cates that the sudden decrease in both mean magnitude and
maximum magnitude of polarizations is more significant
when the length-to-thickness ratio increases from two to in-
finity due to a more mechanical constraint from the substrate.
Further reducing the film thickness, the monodomain struc-
ture remains unchanged, but the polarization magnitudes de-
crease because of the intrinsic edge effect related to the ex-
trapolation length. The appearance of the monodomain
structure rather than a multidomain structure in thin films
indicates that a thin film/substrate system can tolerate a large
mismatch strain induced by polarizations as long as the film
is thinner than a critical thickness. Both critical sizes for the
transition from the multidomain state to the monodomain
state and for the disappearance of polarizations in the case of
thin films are smaller than those in both cases of islands. This
is because the lateral constraint is the strongest in thin films.

D. Size effect of polarization switching
in epitaxial thin films

It is polarization switching that causes ferroelectric mate-
rials to exhibit ferroelectric and nonlinear dielectric behav-
iors. In order to characterize the ferroelectric and nonlinear
dielectric behaviors of ferroelectric epitaxial thin films, we
simulate the polarization response of a thin film under an
external electric loading with a sine form at room tempera-
ture, 25 °C. The external electric field E1

a* is applied along
the thickness direction, i.e., the x1 axis, where a positive or

negative electric field means that the field is parallel or anti-
parallel to the x1 direction. At each iteration step i, the ap-
plied electric field changes as sine function: E1

a*

=0.8 sin�2	i /50 000�. When i increases from zero to 12 500,
25 000, 37 500, 50 000, and 62 500, the electric field E1

a*

changes from zero to 0.8, 0.0, −0.8, 0.0, and 0.8. At each
applied electric field, the simulated ferroelectric film is al-
lowed to evolve one step with the step time of �t*=0.004,
which corresponds a loading frequency of 0.005. The aver-
age polarization along the x1 direction is taken as the mac-
roscopic response of the simulated ferroelectric thin film.

Figure 8 shows simulated results of the average polariza-
tion 	P1

*
 versus the electric field E1
a* for ferroelectric thin

films with thicknesses of 6 nm, 8 nm, and 16 nm. Under the
applied electric field, the polarizations in each of the films
are all parallel or/and antiparallel to the electric field. Taking
the 8 nm thick film as an example, we plot the polarization
distributions in the thin film at the electric fields of 0, −4.3,
−4.7, and −5.1 in Figs. 9�a�–9�d�, respectively, which corre-
spond to points A–D in Fig. 8. When the applied field is
reduced to zero from a highly positive value of 0.8, the po-
larization distribution is in a single domain, as shown in Fig.
9�a�, where the magnitudes of dipoles in the middle region is
much higher than in the regions near the surface and the
interface, which is caused by the used zero boundary condi-
tion. When the applied negative field increases its magnitude
to −4.3, the average polarization reduces its magnitude, but
the polarization pattern remains unchanged, as shown in Fig.
9�b�. After this, when the applied negative field increases its
magnitude to −4.7, polarization switching takes place by
nucleate new domains at the surface and the interface of the
thin film, as illustrated in Fig. 9�c�. In the 2D simulations, the
new domains are homogeneously nucleated along the surface
and the interface because in these regions, the polarization
magnitude is small such that the energy barrier for the polar-
izations to switch 180° must be low. After the nucleation of
new domains, the new domains will grow by domain wall
motion. When the applied field increases its magnitude to
−5.1, the macroscopic polarization switching is completed

FIG. 7. Domain structures for the thicknesses of �a� 8 nm and
�b� 7.4 nm, which correspond to points A and B in Fig. 6,
respectively.

FIG. 8. �Color online� Hysteresis loops in ferroelectric thin films
with thicknesses of 6, 8, and 16 nm.
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and a single domain is formed. Comparing Figs. 9�d� with
9�a� indicates that the two single domain structures are simi-
lar except of the 180° switching in the polarizations.

Figure 8 shows that the smaller the film thickness is, the
smaller the hysterisis loop of the average polarization versus
the electric field will be. Each hysteresis loop gives a rema-
nent polarization, Pr

*, which is defined as the average polar-
ization along the applied field direction when the applied
field is reduced to zero from its high magnitude, and a coer-
cive field, which is defined as the critical value of the applied
field, at which macroscopic polarization switch occurs.
Clearly, both the remanent polarization and coercive field
decrease their magnitudes as the film thickness is reduced.

The remanent polarization can be predicted from thermo-
dynamics. In the thermodynamic calculations,27 the free en-
ergy of a thin film with spatially inhomogeneous polariza-
tions is expressed in terms of renormalized coefficients a, b,

and c as F̄=a	P
2+b	P
4+c	P
6, where 	P
 denotes the av-
erage polarization in the thin film. The renormalized coeffi-
cients, a, b, and c, depend on temperature, film thickness, the
extrapolation length, and the gradient coefficients.28 The
remanent polarization in the thin film is calculated from the
free energy and given by 	P
2= �−b+ �b2−3ac�1/2� /3c. Using
the same material constants as used in the simulations, we
calculate the remanent polarizations and plot them with a
solid line in Fig. 10. For comparison, the remanent polariza-
tions determined from the phase field simulations are also
illustrated with square points in Fig. 10. Figure 10 shows that
the remanent polarization obtained from the phase field
simulations is more or less the same as that obtained from

the thermodynamic calculation. The inconsistency between
the two predictions may be attributed to the lack of the long-
range elastic interaction in the thermodynamic calculation.
Nevertheless, the decrease of remanent polarization with de-
creasing film thickness has been observed in recent experi-
ments on ultrathin ferroelectric BaTiO3 films,29 which is in
agreement with the theoretical predictions.

IV. CONCLUDING REMARKS

In summary, the present phase field simulations exhibit
two size-dependent behaviors. The first critical size is for the
transition from a multidomain structure to a monodomain
structure and the second critical size is for the disappearance
of spontaneous polarizations. Both critical sizes will be small
if the laterally mechanical constraint is strong, i.e., if the
length-to-thickness ratio is large. For the simulated perfect
ferroelectric films without other defects, macroscopic polar-
ization switching is through nucleation of new domains at
the surface and the interface and domain wall motion �new
domains grow and the parent domain shrinks�. The remanent
polarization and the coercive field both decrease as the film
thickness is reduced. If the long-range electrostatic interac-
tion is dominated in comparison to the long-range elastic
interaction, a 180° domain wall will be formed, which occurs
in the epitaxial ferroelectric inlands of length equaling thick-
ness. On the other hand, if the long-range elastic interaction
is dominated in comparison to the long-range electrostatic
interaction, a 90° domain wall�s� will be formed, which oc-
curs in the epitaxial ferroelectric inlands with length-to-
thickness being equal to or larger than two. The present
simulation results are consistent with the experimental
observations30 that PbTiO3 grains in a dense film contain
laminar 90° domain walls, whereas separated PbTiO3 grains
have mainly 180° domain walls.

FIG. 9. The polarization distribution of the 8 nm thick film un-
der applied electric fields of �a� 0, �b� −4.3, �c� −4.7, and �d� −5.1,
which correspond to points A, B, C, and D in Fig. 8, respectively.

FIG. 10. �Color online� The remanent polarization versus the
film thickness. The solid line is obtained from the thermodynamic
calculations24 and the square points are obtained from the present
phase field simulations.
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It should be noted that the present work is based on the
Landau-Ginzburg thermodynamic theory. The critical size
for the disappearance of spontaneous polarizations is
strongly dependent on the boundary condition of spontane-
ous polarizations adopted in the simulations. As mentioned
above, the present study does not discuss the absolute value
of the critical size for the disappearance of spontaneous po-
larizations. In addition, the present simulations do not con-
sider any defects. When defects are present, new domains are
usually nucleated from the defects and this type of nucleation
is called heterogeneous nucleation, which is different from
the homogeneous nucleation observed in the simulations.
Heterogeneous nucleation generally leads to a much lower
coercive field. Therefore, the thickness-dependent coercive
field observed in the present simulations represents the in-
trinsic coercive field, which scales linearly with the
polarizations.31 In real ferroelectric thin films there exist de-
fects and the number of defects is, in general, increased with
the film thickness. That is why the coercive field observed in
experiments could be lower when the film is thicker.32
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APPENDIX

For materials with the perovskite crystal structure, the
phase transition from paraelectric phase to ferroelectric
phase changes the crystal system from cubic to tetragonal
and generates spontaneous polarizations and spontaneous
strains. The spontaneous strains at a stress-free state, which
are called eigenstrains, are associated with the spontaneous
polarizations in the following form �Ref. 22�:

�11
0 = Q11P1

2 + Q12�P2
2 + P3

2� ,

�22
0 = Q11P2

2 + Q12�P3
2 + P1

2� ,

�33
0 = Q11P3

2 + Q12�P1
2 + P2

2� ,

�23
0 = Q44P2P3,

�13
0 = Q44P1P3,

�12
0 = Q44P1P2, �A1�

where Q11, Q12, and Q44 are the electrostrictive coefficients.
Elastic strains are usually generated in a ferroelectric mate-
rial, which are calculated by

eij = �ij − �ij
0 , �A2�

where �ij are total strains, which must be compatible and are
defined by

�ij =
1

2
�ui,j + uj,i� , �A3�

in which ui are displacements. In linear elasticity, stresses,
�ij, are related to elastic strains through Hooke’s law:

�ij = cijklekl = cijkl��ij − �ij
0 � . �A4�

Without any body forces, the mechanical equilibrium equa-
tions are expressed as follows:

�ij,j = 0. �A5�

With the periodic boundary condition, Eq. �A5� can be
solved in Fourier space analytically. However, it is impos-
sible to solve Eq. �A5� analytically in real space for a finite-
size ferroelectric material with arbitrary boundary condi-
tions. Instead the finite element method is used to solve Eq.
�A5� numerically. Using the variation relationship, Eq. �A5�
is changed into

�
V

�ij��ijdV = �
S

tk�ukdS , �A6�

where tk=ni�ik are tractions on the surface.
For simplicity, the substrate is assumed to have the same

elastic properties as the ferroelectric material. Thus, letting
polarizations be zeros allows Eq. �A4� to be applied to the
substrate. For 2D calculations, �A4� can be rewritten in ma-
trix form as

��� = �C���� − �C��Q��P� , �A7�

where

��� = �11

�22

�12
�, ��� =  �11

�22

2�12
�, �P� =  P1

2

P2
2

P1 P2
� ,

�C� = �c11 c12 0

c12 c11 0

0 0 c44
�, and �Q� = �Q11 Q12 0

Q12 Q11 0

0 0 Q44
� .

�A8�

Four-node plane square elements are employed to the dis-
crete simulated structure. Letting �i= �ui vi� �i=1,2 ,3 ,4�, in
which ui and vi denote the displacement of ith node in the x1
and x2 directions, respectively, the displacement vector of the
four nodes in each element is expressed by

��e� = ��1 �2 �3 �4�T. �A9�

The displacements in the element are expressed in terms of
the node displacements:

u = �
i=1

4

Nuiui and v = �
i=1

4

Nvivi, �A10�

where Nui and Nvi are the interpolation functions. Equation
�A10� can be rewritten in matrix form as

�u

v
� = �N1 N2 N3 N4�

�1
T

�2
T

�3
T

�4
T
� = �N���e� , �A11�

in which
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Ni = �Nui

Nvi
� . �A12�

The strain of the element can then be obtained from the
displacements as

��� = �L��u

v
� = �L��N���e� = �B���e� , �A13�

where

�L� = �
�

�x
0

0
�

�y

�

�y

�

�x

� and �B� = �L��N� .

Because the surface is traction-free, i.e., tk=0, and the sub-
strate boundary denoted by dot lines is fixed, i.e., �uk=0, Eq.
�A6� is reduced to

� �
A

���T����dA =� �
A

��C���� − �C��Q��P��T����dA

=� �
A

��C��B���e�

− �C��Q��P��TB���e�dA = 0. �A14�

Based on the variation principle, the following element equa-
tion can be obtained:

�Ke���e� = �Fe� , �A15�

where

�Ke� =� �
Ae

BT�C�BdA and �Fe� =� �
Ae

BT�C��Q�

��P�dA �A16�

are the element stiffness matrix and element node force vec-
tor, respectively. Assembling all the stiffness matrix, dis-
placement vector, and force vector of the elements together
yields the globe equation:

KU = F , �A17�

where

K = �
e

�Ke� and F = �
e

�Fe� �A18�

are the globe stiffness matrix and the node force matrix,
respectively, and U is the vector containing all node dis-
placements. The node displacements are obtained by solving
the linear array Eq. �A17�, with the LAPACK routines for a
symmetric positive definite banded system.
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