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The elastic field induced by a screw dislocation embedded in an anisotropic elastic multilayered medium is
presented in this study. A linear coordinate transformation is introduced in this study to simplify the problem.
The explicit complete solutions of shear stresses and displacement for this problem consist only of the simplest
solutions for a screw dislocation in an infinite homogeneous medium. The physical meaning of the solution is
the image method and the magnitudes and locations of image screw dislocations are determined automatically
from the mathematical method presented in this study. With the aid of the Peach-Koehler equation, the explicit
forms of image forces exerted on screw dislocations are easily derived from the full-field solutions of stresses.
Numerical results for full-field stress distributions in multilayered media subjected to a screw dislocation are
presented. The image forces and equilibrium positions of a screw dislocation, two screw dislocations, and an
array of screw dislocations are presented by numerical calculations and are discussed in detail.
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I. INTRODUCTION

The layered half-plane subjected to surface traction is of
very wide applicability in a number of engineering fields.
For example, the coating of a thin layer to protect soft ma-
trices under contact and friction is a particular case of the
problem. Furthermore, a wide range of electronic compo-
nents are now manufactured by depositing semiconducting
layers on supporting substrates. Because of the rapid expan-
sion in the use of structural components made of laminated
materials, predictions of the behavior of multilayered media
subjected to arbitrary loads or dislocations are needed. In
multilayered structure, each layer is bonded to either sub-
strate or another layer already bonded to the substrate. Dis-
locations can degrade the physical properties in semiconduc-
tor devices where the multilayered structures are commonly
used. There exists the misfit dislocation which accommo-
dates the lattice mismatch between the two layers. The pre-
diction of the critical film thickness to get dislocation-free
films has been an important subject of many investigations.
Dislocation-free crystalline films grown epitaxially on sub-
strates of different crystals are of considerable interest due to
their important applications in the semiconductor and
electro-optical device industry. The film and substrate gener-
ally have different crystal lattice parameters and the lattice
mismatch produces internal stress in the system. This inter-
nal stress is the driving force for the formation of misfit
dislocation. The dislocation-free film is energetically unfa-
vorable above a critical thickness and misfit dislocations are
introduced spontaneously into the epitaxial interface, which
cause the degradation of the device performance. Modeling
of dislocation behavior in thin films promises provide a bet-
ter insight into device design using epitaxy technology. Also
important is the investigation of the movement of the dislo-
cation, which in turn entails the determination of force on a
dislocation due to the interface and the free surface. In order
to understand the motion of a dislocation in an elastic mate-
rial, one needs to calculate the stress distribution induced by
the dislocation. The materials having multilayered structures
such as the thin film on films or substrate used in semi-

conductor devices are usually anisotropic, therefore, it is be-
lieved that the analysis for the anisotropic multilayered me-
dium is required. Solutions for the elasticity field induced by
a dislocation are useful to provide a direct means of deter-
mining the Peach-Koehler �or image� force, which is of di-
rect relevance in understanding the characteristics of the be-
havior of real dislocations.

Anti-plane shear deformations are the two-dimensional
problem that has many applications in anisotropic or isotro-
pic elastic bodies. For the anti-plane shear deformation, the
displacement is parallel to the axial coordinate that is normal
to the plane and is dependent only on the coordinates in the
plane. Such deformation field characterized by a single axial
displacement can be regarded as complementary to that of
plane strain deformation. The anti-plane problem plays a
useful role as a pilot problem that reveals simpler aspects of
elasticity solutions. Anisotropic elasticity has been an active
research subject for recent years due to its applications to
composite materials. Ting1 provided many basic discussions
and investigated some fundamental problems for anisotropic
anti-plane deformations. Analysis of anisotropic elasticity
problems is often tedious due to the presence of many elastic
constants. It is desirable to reduce the dependence on elastic
constants through theoretical considerations in advance of
the analysis of a given boundary value problem. For aniso-
tropic elasticity, Lekhnitskii’s formulation2 and Stroh’s
formulation3 are the two widely used methods. The general
solutions obtained by these methods showed that the anti-
plane anisotropic problem can be converted to a correspond-
ing isotropic problem by properly changing the geometry of
the original configuration and the tractions on the boundary.
In other words, the anisotropic anti-plane problem can be
simplified to an isotropic problem with the aid of a suitable
coordinate transformation. The properties of the coordinate
transformations for anti-plane deformations have been inves-
tigated by Ma4 and Horgan and Miller.5 An orthotropic trans-
formation concept was introduced by Yang and Ma6 to ana-
lyze the very complicated and difficult in-plane deformations
for planar anisotropic solids.
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For homogeneous elastic material in an unbounded me-
dium, the elastic field around dislocations or concentrated
loadings is generally well known. Many research ventures
start by addressing problems in a semi-infinite plane sub-
jected to concentrated forces or dislocations, the simplest
example of medium with boundary, for the first step of
analysis. Heed7 solved the problem for the isotropic half-
plane. Ting and Barnett8 discussed the relation between the
image force on dislocation and the half-plane with fixed
boundary for anisotropic material. Further work on the bima-
terial which is perfectly bonded of two semi-infinite materi-
als, had been done by Dundurs and Sendeckyj9 for isotropic
material and Barnett and Lothe,10 Suo,11 and Ting 12 for the
anisotropic case. Barnett and Lothe13 studied the Peach-
Koehler image force for a straight dislocation parallel to the
interface of two perfectly bonded dissimilar elastic half-
spaces. They proved that for proportional anisotropic bioma-
terial, the dislocation is repelled from the interface when it is
located in the elastically softer half-space and is attracted to
the interface when it is located in the stiffer half-space. The
advance and more complicated problem is supplied by a
loading in an infinite strip or in an infinite layer bonded on a
semi-infinite substrate. Nabano and Kostlan14 and Moss and
Hoover15 solved the problem of an edge dislocation in an
isotropic strip with free surfaces simultaneously. A similar
problem of an orthotropic strip was completed by Chou.16

Stagni and Lizzio17 obtained the elastic field of an isotropic
infinite strip by means of the complex variable method. Wu
and Chiu18 and Chiu and Wu19 obtained the solution of an
anisotropic infinite strip subjected to dislocations and con-
centrated forces from eigenfunction expansion by residue
theory, respectively. The stress distribution of an edge dislo-
cation in an isotropic layered half-plane was investigated by
Weeks et al.20 and Lee and Dundurs.21 Chu22 investigated the
problem of a screw dislocation lying in two perfectly bonded
layers, each of which is isotropic with the same finite thick-
ness.

The use of the image method in solving two-dimensional
isotropic problems dealing with screw dislocations is well
known and has been used successfully for simple cases. It
was found that an infinite number of image screw disloca-
tions were required for finite configurations. The concepts of
semi-reflection and semi-transmission mirrors were used to
determined the magnitudes and locations of the image screw
dislocations without solving the boundary value
problem.23–25 The multiple image problem for screw disloca-
tions then becomes combinatorial problem of counting re-
flections and transmissions for a given image path length.
Basically, one can extend this methodology to include any
number of layers, but as the number of layers increases, ob-
taining an explicit solution becomes extremely laborious and
time consuming. Hence the work was not extended beyond
the five-layer case �with three finite lengths� by Kamat et
al.24 and Öveçoğlu et al.25 It is impossible to use the con-
ventional image method to obtain the solution of anisotropic
multilayered problem directly. Thus, the Green’s function
method to solve the elasticity problem is more general and
applicable to various geometries, although the mathematics
involved may become tedious. However, the existing meth-
ods are difficult to apply directly to solve complicated prob-
lems.

The most complicated problem of the interaction between
a screw dislocation and an anisotropic multilayered medium,
which is the object of the present paper, has not been previ-
ously confronted. The material properties and the thickness
in each layer are different. By using the Fourier transform
technique and a series expansion, an effective analytical
methodology developed by Lin and Ma26 is used in this
study to construct explicit analytical solutions for an aniso-
tropic multilayered medium with n layers due to a screw
dislocation in an arbitrary layer. A general linear coordinate
transformation is introduced in this study to simplify the
problem. This linear coordinate transformation will simplify
the governing equilibrium equation without complicating the
boundary and interface continuity conditions. Based on this
transformation, the original anisotropic multilayered problem
is converted to an equivalent isotropic multilayered problem.
The analytical solutions for the stresses and displacement
obtained in this study are exact and are expressed in an ex-
plicit closed form. The complete solutions consist only of the
simplest solutions for an infinite homogeneous medium with
a screw dislocation. It can be shown that the physical mean-
ing of the solution obtained in this study is the image
method. The magnitudes and locations of image singularities
will be determined automatically from the mathematic
method presented in the study. Based on the full-field solu-
tions of stresses and the Peach-Koehler equation, the explicit
expressions of image forces exerted on screw dislocations
�one dislocation, two dislocations, and an array of disloca-
tions� are easily derived and can be used for numerical cal-
culation with extreme accuracy. For numerical examples, a
multilayered medium with ten layers for isotropic materials
and eight layers for anisotropic material are discussed in de-
tail. We focus our attention mainly on the numerical calcu-
lation of image forces for a screw dislocation, two screw
dislocations and an array of screw dislocations. The number
of equilibrium point, the equilibrium position and the stabil-
ity of screw dislocations embedded in the anisotropic multi-
layered medium are investigated and interesting phenomena
of image forces are presented.

II. BASIC EQUATIONS AND LINEAR COORDINATE
TRANSFORMATION

Anisotropic material having a symmetric plane at z=0 is
considered in this study, in which the in-plane and anti-plane
deformations are uncoupled. For two-dimensional problems,
the Cartesian coordinate system is chosen such that the anti-
plane deformation is in the z direction. Let u, v, and w,
respectively, represent the displacement components in the x,
y, and z directions of the Cartesian coordinate system. For
anti-plane shear deformations,

u = v = 0, w = w�x,y� , �1�

the relevant shear stresses are denoted by �yz and �xz. The
shear stresses are related to the displacement as follows

�yz = C45
�w

�x
+ C44

�w

�y
, �2�
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�xz = C55
�w

�x
+ C45

�w

�y
. �3�

In the absence of body forces, the equilibrium equation in the
Cartesian coordinate can be written in terms of the displace-
ment w as

C55
�2w

�x2 + 2C45
�2w

�x�y
+ C44

�2w

�y2 = 0. �4�

Equation �4� is the governing equation for an anisotropic
anti-plane deformation problem and is a homogeneous
second-order partial differential equation for displacement w.
Such a linear partial differential equation can be transformed
into the Laplace equation by a linear coordinate
transformation.4,5 A special linear coordinate transformation
is introduced as

�X

Y
� = �1 �

0 �
��x

y
� , �5�

where �=−
C45

C44
, �= �

C44
, and �=�C44C55−C45

2 . Assume that
C44 and C55 as well as �C44C55−C45

2 are all positive. � can
be considered as the effective material constant for the an-
isotropic solid. After the coordinate transformation, Eq. �4�
can be rewritten as the standard Laplace equation in the
�X ,Y� coordinate system

�� �2w

�X2 +
�2w

�Y2� = 0. �6�

It is interesting to note that the mixed derivative disappears
from Eq. �4� and Eq. �6� has the same form as the equilib-
rium equation for the isotropic material in the �X ,Y� coordi-
nate. The relationships between the displacement and shear
stresses in the two coordinate systems �x ,y� and �X ,Y� are
given by

w�x,y� = w�X,Y� , �7�

�yz�x,y� = �
�w�X,Y�

�Y
= �YZ�X,Y� , �8�

�xz�x,y� = ��
�w�X,Y�

�X
− ��

�w�X,Y�
�Y

= ��XZ�X,Y� − ��YZ�X,Y� . �9�

We can see that the expression of w�X ,Y� and �YZ�X ,Y� in
Eqs. �7� and �8� in the �X ,Y� coordinate have the same forms
as that in the isotropic material with the effective shear
modulus �. Hence for the boundary value problems, such as
the anisotropic multilayered medium considered, only the
displacement w and the shear stress �yz are involved in the
boundary and continuity conditions. In a mathematical sense,
Eqs. �1�–�4� are transformed to Eqs. �6�–�9� by the linear
coordinate transformation expressed in Eq. �5�, or in a physi-
cal sense, the governing equation �4� and the stress displace-
ment relations �2� and �3� of an anisotropic anti-plane prob-
lem are converted into an equivalent isotropic problem by
properly changing the geometry of the body using the linear

coordinate transformation, Eq. �5�. The coordinate transfor-
mation in Eq. �5� has the following characteristics: �a� it is
linear and continuous, �b� an anisotropic problem is con-
verted to an isotropic problem after the transformation, and
�c� there is no stretching and rotation in the horizontal direc-
tion. These important features offer advantages in dealing
with straight boundaries and interfaces in the multilayered
system discussed in the present study. The most interesting
feature is that a straight line �x1 ,y0�, �x2 ,y0� that is parallel to
the x axis will remain a straight line �X1 ,Y0�, �X2 ,Y0� parallel
to the X axis after the transformation, and the length of the
line will not change, i.e., X2−X1=x2−x1.

III. FULL-FIELD SOLUTIONS FOR A SCREW
DISLOCATION IN AN ANISOTROPIC MULTILAYERED

MEDIUM

In this section, the Green’s function for an anisotropic
n-layered medium with a screw dislocation located in an
arbitrary layer will be constructed. Consider an anisotropic
multilayered medium with n layers subjected to a screw dis-
location of magnitude bz along the z-axis located in the mth
layer as shown in Fig. 1. Here n and m are arbitrary integers.
The location of this screw dislocation is �dm , pm�. The dis-
placement equilibrium equation in each layer is expressed as

C55
j �2wj

�x2 + 2C44
j �2wj

�x�y
+ C44

j �2wj

�y2 = 0, j = 1,2, . . . ,n .

�10�

The traction-free boundary conditions on the top and bottom
surfaces of the multilayered medium are

�yz
1 �x,0� = 0, �yz

n �x,hn� = 0. �11�

The jump condition for the displacement at the mth layer is

wm+
�x,pm

+ � − wm−
�x,pm

− � = bzH�x − dm� , �12�

where H� � is the Heaviside function. In Eq. �12�, wm+
and

wm−
indicate the displacement above and below the plane of

the applied screw dislocation in the mth layer; pm
+ and pm

−

denote the positions just above and below the applied screw

FIG. 1. Configuration and x-y coordinates system of an aniso-
tropic multilayered medium.

THEORETICAL ANALYSIS OF SCREW DISLOCATIONS¼ PHYSICAL REVIEW B 73, 144102 �2006�

144102-3



dislocation at y= pm �see Fig. 1�. Application of the traction
and displacement continuity conditions at the interface be-
tween the jth and j+1-th layer yields

�yz
j �x,hj� = �yz

j+1�x,hj� ,

wj�x,hj� = wj+1�x,hj� .
j = 1,2, . . . ,n − 1. �13�

The linear coordinate transformation described by Eq. �5�
can be used to solve the anisotropic anti-plane problem for
only a single material constant in each layer. However, for a
multilayered anisotropic medium with straight interfaces
shown in Fig. 1, a new linear coordinate transformation
which is a modification of Eq. �5� will be used to transform
the multilayered anisotropic problem to an equivalent multi-
layered isotropic problem. In order to maintain the geometry
of the layered configuration, the linear coordinate transfor-
mation described in Eq. �5� is modified for each layer as
follows,

�X

Y
� = �1 � j

0 � j
��x

y
� + �

k=1

j−1

hk��k − �k+1

�k − �k+1
�, j = 1,2, . . . ,n ,

�14�

where � j =−
C45

j

C44
j , � j =

� j

C44
j , and � j =�C44

j C55
j − �C45

j �2. Compar-
ing with Eq. �5�, the first term in the right-hand side of Eq.
�14� retains exactly the same form while the second summa-
tion term becomes the modified term. The geometric con-
figuration in the transformed �X ,Y� coordinate is shown in
Fig. 2. Note that while the thickness of each layer is
changed, the interfaces are still parallel to the X axis. Thus,
the new geometric configuration is similar to the original
problem.

The equilibrium equations in the transformed coordinate
are governed by the standard Laplace equation expressed by

� j� �2wj

�X2 +
�2wj

�Y2 � = 0. �15�

The displacement w and the shear stress �YZ are continuous
along the interfaces in the transformed coordinates,

wj�X,Hj� = wj+1�X,Hj�, �YZ
j �X,Hj� = �YZ

j+1�X,Hj� ,

j = 1,2, . . . ,n − 1, �16�

where

Hj = � jhj + �
k=1

j−1

��k − �k+1�hk.

The top and bottom surfaces are traction free and can be
expressed as

�YZ
1 �X,0� = 0, �YZ

n �X,Hn� = 0. �17�

The jump of the displacement within the mth layer caused by
the screw dislocation is

wm+
�X,Pm

+ � − wm−
�X,Pm

− � = bzH�X − Dm� , �18�

where

Dm = dm + �mpm + �
k=1

m−1

��k − �k+1�hk,

Pm = �mpm + �
k=1

m−1

��k − �k+1�hk. �19�

Here wm+
and wm−

indicate the displacement above and be-
low the screw dislocation in the mth layer. The location of
the screw dislocation is shifted from dm to Dm and from pm to
Pm in the horizontal and vertical directions, respectively, as
indicated in Fig. 2. The stress displacement relations ex-
pressed in the �X ,Y� coordinates for each layer become

� XZ
j �X,Y� = � j

�wj�X,Y�
�X

,

�20�

� YZ
j �X,Y� = � j

�wj�X,Y�
�Y

.

The boundary value problem indicated in Eqs. �15�–�20� is
similar to the multilayered problem for an isotropic material.
Hence the linear coordinate transformation presented in Eq.
�14� changes the original anisotropic multilayered problem to
the corresponding isotropic multilayered problem with a
similar geometric configuration and boundary conditions.
The boundary value problem indicated previously can be
solved by the integral transform technique. The expressions
for the field variables will be found by applying a Fourier
transform over the spatial coordinate X and the full field
solutions of displacement and shear stresses are explicitly
expressed in the �X ,Y� coordinate as26

FIG. 2. Configuration and X-Y coordinates system for the mul-
tilayered medium after the linear coordinate transformation.

C.-C. MA AND H.-T. LU PHYSICAL REVIEW B 73, 144102 �2006�

144102-4



wj�X,Y ;Dm,Pm� = �
l=0

�

�
k=1

N
Mk

�
�bz�− tan−1Y − Pm + Fk

c�

X − Dm
+ tan−1Y + Pm + Fk

c�

X − Dm
+ tan−1Y + Pm + Fk

d�

X − Dm
− tan−1Y − Pm − Fk

d�

X − Dm
�� ,

�21�

� YZ
j �X,Y ;Dm,Pm� = �

l=0

�

�
k=1

N
� jMk

� �bz� − �X − Dm�

�X − Dm�2 + �Y − Pm + Fk
c��2

+
�X − Dm�

�X − Dm�2 + �Y + Pm + Fk
c��2

+
�X − Dm�

�X − Dm�2 + �Y + Pm − Fk
d��2

−
�X − Dm�

�X − Dm�2 + �Y − Pm − Fk
d��2�� , �22�

� XZ
j �X,Y ;Dm,Pm� = �

l=0

�

�
k=1

N
� jMk

�
�bz� Y − Pm + Fk

c�

�X − Dm�2 + �Y − Pm + Fk
c��2

−
Y + Pm + Fk

c�

�X − Dm�2 + �Y + Pm + Fk
c��2

−
Y + Pm − Fk

d�

�X − Dm�2 + �Y + Pm − Fk
d��2

+
Y − Pm − Fk

d�

�X − Dm�2 + �Y − Pm − Fk
d��2

�� , �23�

where

	N = 2n+j−m−1 · �2n − 1�l, 1 � j � m ,

N = 2n+m−j−1 · �2n − 1�l, m � j � n .



Here n is the number of layers, m denotes the layer that is
subjected to the applied screw dislocation, and j is the j-th

layer where the solution is required. The terms Mk, Fk
c�, Fk

c�,

Fk
d�, and Fk

d� in Eqs. �21�–�23� are very complicated and are
explicitly presented in Appendix A. The structures of the
complete solutions given in Eqs. �21�–�23� have some inter-
esting characteristics. The solutions are composed of infinite
terms, and it is interesting to note that each term represents
the solution for a screw dislocation �image screw disloca-
tion� in an infinite homogeneous medium. The locations of

image screw dislocations are located at X=Dm, Y = Pm−Fk
c�

�or Y =−Pm−Fk
c�, Y =−Pm+Fk

d�, Y = Pm+Fk
d��. However, Mk

represents the magnitude of the image screw dislocation. The
locations of image screw dislocations depend on the loca-
tions of the interfaces, i.e., Hj, and the magnitude of the
image screw dislocation Mk depends only on the reflection
and refraction coefficients, i.e., tj, sj�, and sj� in each layer.

Only one term �the first term� in the infinite series of Eqs.
�21�–�23� represents the dislocation bz in an infinite medium
at X=Dm and Y = Pm; all the remaining terms are image
screw dislocations that are induced to satisfy the boundary
and interface conditions. The mathematical derivation in this
study provides an automatic determination for the locations
and magnitudes of all the image dislocations. Hence, the
physical meaning of the solutions presented in Eqs.
�21�–�23� is referred to as the method of images. The advan-
tage of this mathematical method used in this study is that
the solutions of problems with complicated geometric con-
figurations can be constructed by superposing the solution in
an infinite medium. The solutions presented in Eqs.

�21�–�23� are useful to construct formulations of image
forces exerted on dislocations in the next section.

Equations �21�–�23� are the solutions in the �X ,Y� coor-
dinate system for the problem indicated in Fig. 2. The rela-
tionships between the displacement and shear stresses in the
two coordinate systems �x ,y� and �X ,Y� are given in Eqs.
�7�–�9�. Finally, by substituting X and Y defined in Eq. �14�
and the relations of Dm and Pm with dm and pm in Eq. �19�
into Eqs. �21�–�23�, and using the displacement and stress
relations in Eqs. �7�–�9�, the complete solutions for the origi-
nal problem of the anisotropic multilayered medium as indi-
cated in Fig. 1 can be obtained from Eqs. �21�–�23� as fol-
lows:

wj�x,y ;dm,pm� = wj�X,Y ;Dm,Pm� , �24�

� yz
j �x,y ;dm,pm� = �YZ

j �X,Y ;Dm,Pm� , �25�

� xz
j �x,y ;dm,pm� = � j� XZ

j �X,Y ;Dm,Pm� − � j� YZ
j �X,Y ;Dm,Pm� .

�26�

Equations �24�–�26� are the explicit expression of the
Green’s function for the anisotropic multilayered medium
subjected to a screw dislocation located in the mth layer at
the position �dm , pm�. The solutions for two or more screw
dislocations in the anisotropic multilayered medium can be
constructed by superposition of the Green’s function.

IV. IMAGE FORCES EXERTED ON SCREW
DISLOCATIONS IN AN ANISIOTROPIC MULTILAYERED

MEDIUM

The full-field solutions of a screw dislocation embedded
in an anisotropic multilayered medium have already been
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analyzed in detail in previous sections. The image forces
exerted on screw dislocations will be investigated in this
section, which may play an important role in thin film tech-
nology in the sense that the movement of the dislocation due
to the interaction with the interfaces and the free surfaces can
cause the failure of the electronic circuit on the layer. Ac-
cording to the Peach-Koehler formula, the image force ex-
erted on the screw dislocation can be obtained from the stress
field at the location of the dislocation minus the self-stresses
of the dislocation in an infinite homogeneous material of the
mth layer. In Cartesian coordinates, the relations between
image forces and stress fields are

�Fx
m

Fy
m� = �− �̂ yz

m

�̂ xz
m �bz, �27�

where Fx
m and Fy

m denote the image force exerted on a screw
dislocation at the mth layer along the horizontal and vertical
directions, respectively, and �̂ yz

m =� yz
m −� yz

s , �̂ xz
m =� xz

m −� xz
s in

which � yz
m and � xz

m are the shear stresses in the mth layer
given in Eqs. �25� and �26�, respectively, � yz

s and � xz
s are the

self-stresses of the screw dislocation. The self-stresses of a
screw dislocation of the Burgers vector bz in an infinite ho-
mogeneous anisotropic medium, which is also presented in
the first term in Eqs. �25� and �26�, can be written as

� yz
s =

�mbz

2�

− ��x − dm� + �m�y − pm��
��x − dm� + �m�y − pm��2 + �m

2 �y − pm�2 ,

�28�

� xz
s =

�mbz

2�
��m

�m�y − pm�
��x − dm� + �m�y − pm��2 + �m

2 �y − pm�2

+ �m
��x − dm� + �m�y − pm��

��x − dm� + �m�y − pm��2 + �m
2 �y − pm�2� . �29�

The force on the dislocation is defined as the negative
gradient of the interaction energy. Since the interaction en-
ergy does not change if the dislocation were to move parallel
to the interface between the layers, it is clear that the force
on the dislocation is perpendicular to the interface. The im-
age forces exerted on a screw dislocation located at �dm , pm�
of the mth layer are easily derived from Eqs. �25� and �29�
and the explicit results are

Fx
m�dm,pm� = 0, �30�

Fy
m�dm,pm�

=
bz

2

�
�m�m��

l=0

�

�
k=1

N*

Mk
*� 1

Fk
C�

−
1

2Pm + Fk
C�

−
1

2Pm − Fk
D�

−
1

Fk
D�� −

1

f 1
C�
�, m = 1,2, . . . ,n ,

�31�

where N*=2n−1�2n−1�l, and Pm=�mpm+�k=1
m−1��k−�k+1�hk.

Since the stresses to be evaluated and the screw dislocation

are both located in the mth layer, the terms Mk, Fk
c�, Fk

c�, Fk
d�,

and Fk
d� in Eqs. �22� and �23� can be simplified to Mk

*, Fk
C�,

Fk
C�, Fk

D�, and Fk
D�, respectively, as indicated in Eq. �31�. The

terms Mk
*, Fk

C�, Fk
C�, Fk

D�, and Fk
D� are explicitly represented

in Appendix B. It is important to note that the first term in
the summation formulation for l=0 and k=1 is a singular
term which can be exactly cancelled by 1

f 1
C�

�i.e., the self-

stress�. Hence the result presented in Eq. �31� has no singu-
larity so that the numerical calculation of the image force can
be easily and accurately evaluated.

The image forces for problems of multiple dislocations
can be obtained by the superposition method. Consider the
case that two screw dislocations A and B with the same
Burger’s vector bz are located in different �or same� layer.
Dislocation A is located in the mth layer at the position
�dm , pm� and dislocation B is located in the jth layer at the
position �dj , pj�. The total image force exerted on dislocation
A is the summation of Eq. �31� and the image force exerted
on dislocation A by dislocation B, which is the shear stresses
induced at the position �dm , pm� by dislocation B at �dj , pj�.
The results are

Fx
A�dm,pm� = Fx

m�dm,pm� − bz� yz
m �dm,pm;dj,pj�

= − bz� YZ
m �Dm,Pm;Dj,Pj� , �32�

Fy
A�dm,pm�

= Fy
m�dm,pm� + bz� xz

m �dm,pm;dj,pj�

=
bz

2

�
�m�m��

l=0

�

�
k=1

N*

Mk
*� 1

Fk
C�

−
1

2Pm + Fk
C�

−
1

2Pm − Fk
D�

−
1

Fk
D��

−
1

f1
C�
� + bz�m� XZ

m �Dm,Pm;Dj,Pj�

− bz�m� YZ
m �Dm,Pm;Dj,Pj�, m = 1,2,3, . . . ,n .

�33�

The image force exerted on a screw dislocation of an
array of infinite screw dislocations with uniform spacing a
has important engineering applications and can be con-
structed by the superposition of available solutions presented
previously. Suppose that the array of infinite screw disloca-
tions is located in the mth layer. The image force exerted on
any screw dislocation is the same and can be represented as
the summation of Eq. �31� and the image force induced by
other infinite numbers of screw dislocations. The results can
be explicitly represented as follows.

Fx
m�dm,pm;a� = 0, �34�
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Fy
m�dm,pm;a� =

bz
2

�
�m�m	��

l=0

�

�
k=1

N*

Mk
*� 1

Fk
C�

−
1

2Pm + Fk
C�

−
1

2Pm − Fk
D�

−
1

Fk
D���

−
1

f1
C�

+ �
n=1

�

�
l=0

�

�
k=1

N*

2Mk
*� Fk

C�

�na�2 + �Fk
C��2

−
2P + Fk

C�

�na�2 + �2P + Fk
C��2

−
2P − Fk

D�

�na�2 + �2P − Fk
D��2

−
Fk

D�

�na�2 + �Fk
D��2

�
 . �35�

The explicit results for the image forces as indicated in Eqs.
�30�–�35� can be easily written as a FORTRAN program and
the image forces can be accurately computed.

V. NUMERICAL RESULTS AND DISCUSSIONS

Computational programs for numerical calculations of the
full-field distribution of shear stresses and image forces are
constructed by using the explicit expression of the solutions
presented in previous sections. The full-field shear stress �yz
for an isotropic multilayered medium consisting of ten layers
with constant thickness subjected to a screw dislocation at
the center of the fifth layer is shown in Fig. 3. The ratio of
the shear modulus, which ranges from 1 to 10, is also indi-
cated in Fig. 3. We can see that �yz is continuous at the
interfaces and approaches zero at the top and bottom bound-
aries. The image force exerted on a screw dislocation in the
ten-layered isotropic medium is indicated in Fig. 4. Except
for the sixth layer, in each layer there exists as an equilib-
rium point, and the locations of these equilibrium points are
indicated in Fig. 4. We have four stable equilibrium points
and five unstable equilibrium points. It is clearly shown in
Fig. 4 that if a layer is softer than two adjacent layers �i.e.,
the second, fourth, seventh, and ninth layers�, then it has a
stable equilibrium point. If a layer is stiffer than two adjacent
layers �i.e., the first, third, fifth, eighth, and tenth layers�,
then it has an unstable equilibrium point. However, if a layer
is embedded between softer and stiffer layers �i.e., the sixth
layer�, then it has no equilibrium point.

The material constants and thickness of an anisotropic
multilayered medium consisting of eight layers are indicated
in Fig. 5. The effective modulus � for each layer is also
shown in Fig. 5, and the larger value of � means the stiffer
of the anisotropic material. The full-field shear stress �yz for

this anisotropic multilayered medium subjected to a screw
dislocation at the center of the fourth layer is shown in Fig.
6. The inclination of the contour for the shear stress in Fig. 6
is due to the anisotropy of the material. The image force
exerted on a screw dislocation in the eight-layered aniso-
tropic medium is indicated in Fig. 7. Except for the sixth
layer, in each layer there exists as an equilibrium point, and
the locations of these equilibrium points are indicated in Fig.
7. We have three stable equilibrium points and four unstable
equilibrium points. Similar to the result for isotropic mate-
rial, if a layer is softer �i.e., the effective shear modulus � is
smaller� than two adjacent layers �i.e., the second, fourth,
and seventh layers�, then it has a stable equilibrium point.

FIG. 3. �Color online� Full-field distribution
of the shear stress �yz for a screw dislocation em-
bedded in the center of the fifth layer for a ten-
layered isotropic medium.

FIG. 4. �Color online� Distribution of the image force, the loca-
tion and the stability of the equilibrium point for a screw dislocation
along the y-axis for the ten-layered isotropic medium.
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There is no equilibrium point for the sixth layer because the
fifth layer is stiffer and the seventh layer is softer than the
sixth layer.

Now consider the case that one screw dislocation is lo-
cated along the y axis, i.e., �0,y�, the other screw dislocation
is parallel to the first one and is located either on the right-
hand side at the position �0.3h4 ,y� or on the left-hand side at
the position �−0.3h4 ,y�. The image force exerted on the
screw dislocation at �0,y� due to the right �or left� screw
dislocation only is shown in Fig. 8 which is just the shear
stress �xz induced by the right �or left� screw dislocation at
position �0,y� and is discontinuous at the interfaces. The
total image force exerted on the screw dislocation �0,y� is
indicated in Fig. 9, which is the summation of the image
forces indicated in Figs. 7 and 8. If we compare Fig. 9 with
Fig. 7, we can see that the equilibrium points in Fig. 9 are
closer to the interfaces than that in Fig. 7 and it has quite
different phenomenon for the other screw dislocation located
on the right or left side of the screw dislocation. There is no

equilibrium point for the sixth layer as indicated in Fig. 7,
however, we have two equilibrium points, one is stable and
the other one is unstable for the sixth layer if the other screw
dislocation is located on the right-hand side.

Next, the case of two screw dislocations A and B with the
same sign is considered; screw dislocation B is located at the
fourth layer and at the position �0.3h4 ,5.5h4�, screw disloca-
tion A is moving along the y axis. The image force exerted
on screw dislocation A by screw dislocation B only is shown
in Fig. 10 and the discontinuity at the interfaces is observed.
Since the screw dislocation B is located in the fourth layer,
the image force exerted on the screw dislocation A as shown
in Fig. 10 changes sign at this layer. The screw dislocation B
has only little contribution on the image force for screw dis-
location A except it locates in the adjacent two layers �i.e.,
the third and fifth layers� and the same layer �i.e., the fourth
layer�. The total image force exerted on screw dislocation A
is indicated in Fig. 11, which is the summation of the image
forces in Fig. 7 and Fig. 10. We can see that the screw dis-
location B has a significant influence on the image force of
the screw dislocation A when these two screw dislocations
are located in the same layer, i.e., the fourth layer. It is in-
teresting to note that the number of equilibrium points at the
fourth layer changes from one in Fig. 7 to three in Fig. 11,
i.e., one unstable and two stable equilibrium points. It is
concluded from Figs. 9 and 11 that the equilibrium position

FIG. 5. The material constants and the thickness of each layer
for an eight-layered anisotropic medium.

FIG. 6. �Color online� Full-field distribution
of the shear stress �yz for a screw dislocation em-
bedded in the center of the fourth layer for an
eight-layered anisotropic medium.

FIG. 7. �Color online� Distribution of the image force, the loca-
tion, and the stability of the equilibrium point for a screw disloca-
tion along y-axis for an eight-layered anisotropic medium.
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and the number of equilibrium points of a screw dislocation
are significantly influenced by the other screw dislocation
located in the same layer.

Finally, an infinite array of dislocations with a uniform
spacing a in an anisotropic multilayered medium as indicated
in Fig. 5 is considered. The image force exerted on a screw
dislocation by the other infinite number of screw dislocation
only is shown in Fig. 12 for different spacing �a
=0.1,0.2,0.3h4�. Obviously, the contribution of the image
force from the other infinite number of screw dislocations is
larger if the spacing a is smaller. The total image force ex-
erted on the screw dislocation is indicated in Fig. 13, which
is the summation of the image forces in Figs. 7 and 12. It is
clearly shown in Fig. 13 that the equilibrium points are
moved toward the interface. Hence it can be concluded that
an array of dislocations is most likely to stack near the
interface.

VI. CONCLUDING REMARKS

The present paper provides explicit solutions of the stress
field and image forces for screw dislocations embedded in an

anisotropic multilayered medium. A general linear coordinate
transformation for multilayered media was introduced to
simplify the problem without complicating the boundary and
interface continuity conditions. With this linear coordinate
transformation, the original anisotropic multilayered problem
can be reduced to an equivalent isotropic multilayered prob-
lem. By using the Fourier transform technique and a series
expansion, analytical solutions for displacement and stresses
are presented in an explicit form. The complete solutions for
this complicated problem consist only of very simple solu-
tions obtained from an infinite homogeneous medium with
screw dislocations. Except for the original applied loading,
the remaining terms in the infinite series are image screw
dislocations which are induced to satisfy the boundary and
interface conditions. The mathematical approach used in this
study provides an automatic determination for the locations
and magnitudes of all the image screw dislocations induced
by the interfaces and boundaries. Computational programs
for numerical calculations of the full-field shear stresses and
image forces exerted on screw dislocations are easily con-
structed by using the explicit formulation of the solutions.

FIG. 8. �Color online� Distribution of the image force for a
screw dislocation along y-axis due to the other screw dislocation
located at the right �or left� hand side of the screw dislocation.

FIG. 9. �Color online� Distribution of the total image force for
two screw dislocations, i.e., the summation of Figs. 7 and 8.

FIG. 10. �Color online� The image force exerted on screw dis-
location A by screw dislocation B only, which is located at the
fourth layer and at the position �0.3h4 ,5.5h4�.

FIG. 11. �Color online� Distribution of the total image force for
screw dislocation A, i.e., the summation of Figs. 7 and 10.
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The image forces and equilibrium positions of a screw dis-
location, two screw dislocations, and an array of screw dis-
locations are presented by numerical calculations and are dis-
cussed in detail. It is found that the stability of the
equilibrium point for a screw dislocation in an anisotropic
multilayered medium mainly depends on the effective shear
modulus of the two adjacent layers. Generally speaking, if a
layer is softer �stiffer� than the two adjacent layers, then
there is a stable �unstable� equilibrium point. However, if a
layer is embedded between softer and stiffer adjacent layers,
then there is no equilibrium point. The image force, the lo-

cation, and the stability of the equilibrium point of a screw
dislocation are strongly influenced by other screw disloca-
tions in the same layer. Furthermore, the position of equilib-
rium points of an array of screw dislocations is located very
near the interface.
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APPENDIX A

The following functions are first defined as


a1 = 1, f 1
A = 0,

ai+2k−1 = aitk, k = 1,2, . . . ,m − 1,

f i+2k−1
A = − �f i

A + 2Hk� , i = 1,2, . . . ,2k−1.
� �A1�

where tk=
�k+1−�k

�k+�k+1
is the reflection coefficient,



b1 = 1, f 1

B1 = − 2Hn, f 1
B2 = 0,

bi+2k−1 = − bitn−k, k = 1,2, . . . ,n − m ,

f i+2k−1
B1 = − �f i

B1 + 2Hn + 2Hn−k� , i = 1,2, . . . ,2k−1,

f i+2k−1
B2 = − �f i

B2 + 2Hn − 2Hn−k� .
� �A2�

	r�i−1�·2n−m+k
p = − aibk, r2n−1+�k−1�·2m−1+i

p = aibk, i = 1,2, . . . ,2m−1,

g�i−1�·2n−m+k
p = f i

A + f k
B2, g2n−1+�k−1�·2m−1+i

p = f k
B1 − f i

A, k = 1,2, . . . ,2n−m.

 �A3�

FIG. 12. �Color online� The image force exerted on a screw
dislocation by the other infinite number of screw dislocations only
for different spacing �a=0.1,0.2,0.3h4�.

FIG. 13. �Color online� Distribution of the total image force for
an array of dislocations for different spacing �a=0.1,0.2,0.3h4�,
i.e., the summation of Figs. 7 and 12.
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rk
�l� = �

o=1

l

r io
p , i1,i2,i3, . . . ,il = 2,3, . . . ,2n,

gk
�l� = �

o=1

l

gio
p , k = �

o=1

l−1

�io − 2��2n − 1� + �il − 1� ,� �A4�

for l=0, ri0

�0�=1, and gi0

�0�=0.
For the case of 1� j�m, the following functions are defined:



f �i−1�·2n−m+k

c� = f k
B2 + f i

A,

f �i−1�·2n−m+k
c� = f k

B1 + f i
A, i = 1,2, . . . ,2 j−1,

f �i−1�·2n−m+k
d� = f k

B2 − f i
A, k = 1,2, . . . ,2n−m,

f �i−1�·2n−m+k
d� = f k

B1 − f i
A.

� �A5�

Finally, the terms Mk, Fk
c�, Fk

c�, Fk
d� and Fk

d� indicated in Eqs. �21�–�23� can be expressed explicitly as



M�k−1�·2n+j−m−1+i =

− 1

2
��

o=j

m−1

so��rk
�l�rl

p,

F�k−1�·2n+j−m−1+i
c� = gk

�l� + f i
c�, k = 1,2, . . . ,�2n − 1�l,

F�k−1�·2n+j−m−1+i
c� = gk

�l� + f i
c�, i = 1,2, . . . ,2n+j−m−1,

F�k−1�·2n+j−m−1+i
d� = gk

�l� + f i
d�,

F�k−1�·2n+j−m−1+i
d� = gk

�l� + f i
d�,

� �A6�

where so�=
2�o+1

�o+�o+1
is the refraction coefficient.

For the case of m� j�n, the expressions are



f �i−1�·2m−1+k

c� = f i
B1 − f k

A,

f �i−1�·2m−1+k
c� = f i

B1 + f k
A, i = 1,2, . . . ,2n−j ,

f �i−1�·2m−1+k
d� = f i

B2 − f k
A, k = 1,2, . . . ,2m−1,

f �i−1�·2m−1+k
d� = f i

B2 + f k
A.

� �A7�

The terms Mk, Fk
c�, Fk

c�, Fk
d�, and Fk

c� are presented by



M�k−1�·2n−j+m−1+i =

1

2
��

o=m

j−1

so��rk
�l�r2n−1+i

p ,

F�k−1�·2n−j+m−1+i
c� = gk

�l� + f i
c�, k = 1,2, . . . ,�2n − 1�l,

F�k−1�·2n−j+m−1+i
c� = gk

�l� + f i
c�, i = 1,2, . . . ,2n+m−j−1,

F�k−1�·2n−j+m−1+i
d� = gk

�l� + f i
d�,

F�k−1�·2n−j+m−1+i
d� = gk

�l� + f i
d�,

� �A8�

where so�=
2�o

�o+�o+1
is the refraction coefficient.
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APPENDIX B

The terms Mk
*, Fk

C�, Fk
C�, Fk

D�, and Fk
D� indicated in Eq.

�31� are expressed as follows:

M�k−1�·2n−1+i
* =

− 1

2
rk

�l�r i
p,

k = 1,2, . . . ,�2n − 1�l,

i = 1,2, . . . ,2n−1.
�B1�



F�k−1�·2n−1+i

C� = gk
�l� + f i

C�,

F�k−1�·2n−1+i
C� = gk

�l� + f i
C�,

F�k−1�·2n−1+i
D� = gk

�l� + f i
D�,

F�k−1�·2n−1+i
D� = gk

�l� + f i
D�,
� �B2�

where



f �i−1�·2n−m+k

C� = f k
B2 + f i

A,

f �i−1�·2n−m+k
C� = f k

B1 + f i
A, i = 1,2, . . . ,2m−1,

f �i−1�·2n−m+k
D� = f k

B2 − f i
A, k = 1,2, . . . ,2n−m,

f �i−1�·2n−m+k
D� = f k

B1 − f i
A.

� �B3�

The functions rk
�l�, ri

p, gk
�l�, fk

B1, f k
B2, and f i

A are the same as
that expressed in �A1�–�A4� of Appendix A.
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