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Radiation trapping causes significant lengthening of the measured fluorescence lifetimes in solid samples,
which leads to overestimating them. Self-absorption inside solid-state samples is considerably enhanced by
successive total internal reflections at the sample/air interface. A simple method for quantitative estimation of
radiation trapping in solid-state materials within the frame of the Holstein-Biberman equations is presented.
This method is based on the assumption that the radiation propagation follows paths with many total internal
reflections; it can be applied to many resonant two-level systems such as Er3+-, Yb3+-, or Ho3+-doped mate-
rials. The equations are solved for a pulsed excitation localized in a finite volume inside the sample. In our
modeling approach, we take into account the initial geometric population distribution and the imaging setup.
We derive analytical expressions of the measured decays, which give the deformation of the measured curves
compared with the ideal exponential decay. We investigate the effect of the fraction of self-trapped light on the
decay modification. We then show that the ratio between the pumping volume, the collected volume, and the
sample dimension changes the measured decay significantly.
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INTRODUCTION

Repeated incoherent processes of resonant absorption and
emission of radiation in a medium influence substantially its
spectral and dynamic features. The process of radiation trap-
ping is well known to be responsible for an increase of the
excited-state population lifetime beyond the natural lifetime
of an individual emitter. Radiation trapping in gases has been
intensely studied since its first description by the Holstein-
Biberman �HB� equation1,2 �see the review by Molish and
Oehry3�.

In the case of a solid luminescent, material, the reabsorp-
tion effect is well known to lengthen the measured
lifetime.4–8 Moreover, it can change the shape of the emis-
sion spectra and thus influence quantum efficiency or light
yield measurements.4,8,9 These results may be divided into
two categories depending on the sample size compared with
the absorption length of the radiation. For short absorption
length, the propagation inside the sample between the exci-
tation region and the detection region is long enough to al-
low many absorption-emission events. So this distance is the
main parameter responsible for the lifetime lengthening and
the deformation of the emission spectra.4,7,9 For lightly
doped materials, lifetime lengthening can be observed even
though there is no significant absorption for one pass through
the sample. In many rare-earth materials, measured lifetime
values are rather scattered. For example Zhang and Pun10

reported a 4I13/2 measured lifetime in Er3+-doped LiNbO3
between 2.2 and 4.6 ms. In Yb3+-doped yttrium aluminum
garnet �Yb3+:YAG� also, measured lifetimes were reported
as 950,11 1080,12 1160,13 or 1300 �s.14 Here, self-absorption
effects occur because an important fraction of the light pro-
duced within the sample is trapped in the material by total
internal reflection �TIR�. Shurcliff calculated precisely the
amount of trapped light produced within rectangular paral-

lelepipeds, plane parallel sheets, and sphere.15 For rectangu-
lar parallelepipeds and spheres of refractive index 1.5 �stan-
dard glass� the trapping fraction is, respectively, 0.236 and
0.414. In a YAG crystal �n�1.8�, these numbers are as large
as 0.494 and 0.575 for parallelepipeds and spheres. Ideally,
this circulating light can undergo an infinity of TIRs and so
will eventually be reabsorbed by the active centers. In real
objects, however, imperfection and scattering effects destroy
the “perfect” path allowing the light to escape from the
sample.

Because a prerequisite for quantum efficiency and cross
section determination is an unambiguous lifetime determina-
tion, quantifying and reducing radiation trapping is of prime
importance. Some authors proposed an experimental setup
to reduce radiation trapping effects in rare-earth-doped ma-
terials. The idea is to suppress the infinity of TIRs by
surrounding the observed sample with an index-matched
material, which allows the light to escape from the lumines-
cent sample. Hehlen placed a small sample at the center of a
large index-matched sphere11,16 in such a way that all the
light rays coming from the sample hit the sphere periphery
normally. Another setup, used for Yb:YAG �Ref. 5� and
Er:LiNbO3,10,17 consists in a thin plate of doped material
sandwiched between two index-matching undoped pieces of
the same material. In that case, not only the index-matched
interface structure but also the excitation and emission col-
lection arrangement has a dramatic impact on the meas-
ured lifetime: fluorescence was collected through an adjust-
able aperture imaging only the pumped zone and investiga-
tion of the excitation and emission collection scheme showed
the dramatic effect of the aperture size.10 These methods
give good results: a reduction of the measured lifetime
of more than 30% is obtained in the case of the index-
matched arrangements compared with non-index-matched
measurements.
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To our knowledge, only a few papers deal with the theo-
retical analysis of the radiation trapping effect in luminescent
solid materials. This problem is very difficult because the
resonant population at one point can be excited due to ab-
sorption of radiation emitted elsewhere. Since the absorption
coefficient strongly depends on the radiation frequency, the
theoretical description cannot be reduced to the diffusion
equation and the transport problem becomes nonlocal.

Birks et al.18 and Caird et al.8 gave an expression of the
measured lifetime and of the measured quantum efficiency
by simply counting the number of photons effectively escap-
ing from the emitting sample after an infinite succession of
absorption and emission events inside the sample. Assuming
that a fraction f of the emitted light is trapped inside the
studied body after each absorption event, they found that the
measured lifetime is given by

�� =
�

1 − �f
�1�

where � and � are the intrinsic lifetime and quantum effi-
ciency of the system. The main point of this model is that all
the photons escaping from the system are collected by the
measurement setup. Moreover, there is no need of any as-
sumption about the excitation distribution.

Nelson and Sturge,19 in their work on Cr3+, used the
strongly self-absorbed R line to measure the emission arising
from the vibronic transitions. Considering that the R line is
monochromatic in comparison with the vibronic transition,
they used the diffusion equation to describe the radiation
transport. Then, assuming a uniform excitation distribution,
they found the same analytical expression of the measured
lifetime as Eq. �1�. This approach was used later by Auzel et
al.20 in the limit of weak absorption; their result is the Taylor
expansion of Eq. �1�. Monte Carlo simulation on a spatially
homogeneous excitation density presents a similar depen-
dence for the measured lifetime.16,21

The use of local diffusion equations limits the study to
monochromatic ��em=�abs� radiation or weakly doped sys-
tems. The assumptions of homogeneous population distribu-
tion and collection of the whole light escaping from the
sample are not adapted to practical laboratory conditions, for
which excitation and collection setup are critical.5,10,17 In-
deed, as the pump source generally excites only one part of
the sample, two very different kinds of emission can be de-
tected: the direct emission from excitations located in the
pumped region and the indirect emission from excitations
located outside the pumped region and excited by the first-
generation emission. Thus, the excitation and collection
scheme plays a dramatic role on lifetime measurements as
demonstrated by the experimental work of Munoz et al.17

and Zhang,10 who showed that a doubling of the lifetime
may be observed.

The purpose of this paper is to give a more precise de-
scription of radiation trapping in solid-state materials taking
into account the experimental conditions corresponding to
the excitation and collection setup. In our approach to the
problem, we begin by using the HB equation and calculate
the resonant radiation transport for an Er3+-doped glass. This

system was chosen as a numeric example, but the results
presented here can be used for other resonant transitions in
solid materials. We show that the resonant radiation transport
in highly symmetrical samples is governed by many TIRs,
which makes the energy deposition uniform �Sec. I�. Then,
we solve the radiation transport in the particular case of
transport governed by many TIRs. We take into account the
fact that the laser beam pumps a localized region inside the
sample. The rest of the sample is excited via the emission
from the laser-pumped zone. The resolution of the integro-
differential HB equation allows one to determine the evolu-
tion of the excited population in these two zones �Sec. II A�.
We use these solutions to describe the usual experimental
situation of decay measurements with collecting optics �Sec.
II B�. We then show that the experimental setup, via the vol-
ume of excitation and collection, lengthens the decay curves,
as much as the fraction of trapped light does. The special
case of a quantum efficiency measurement with an integrat-
ing sphere is treated in Sec. II B 3.

I. THE RADIATIVE TRANSPORT EQUATION

A. The Holstein-Biberman equation

In the following, we recall the main result of the so-called
Holstein-Biberman equation, which describes the evolution
of the resonant excited-state density in the presence of reso-
nant radiation.1,2 We use the following assumptions: emis-
sion is isotropic; ions are considered as two-level systems
�i.e., ground state and resonant excited state�; the excited-
state population is much lower than the ground-state popula-
tion; the processes of emission and absorption are indepen-
dent; the flight times of photons are negligible compared
with the natural lifetime of the excited state. In the case of
radiation transport, the population density of resonant ex-
cited states is described by the equation

�n�r�,t�
�t

= −
1

�
n�r�,t� + Wr� n�r��,t�G�r��,r��d3r�. �2�

The first term of the right-hand side part is the natural decay
of the considered population. It is related to the radiative
and nonradiative deexcitation probabilities Wr and Wnr by
�−1=Wr+Wnr. The resonant transport is described by the in-
tegral term: the local population at r� is excited by the emis-
sion coming from everywhere else. G�r�� ,r�� is the probability
that the radiation emitted at r�� is absorbed at r� at a distance
�= �r��−r��:

G��� = −
1

4��2

�T

��
. �3�

For a nonmonochromatic emission, the averaged transmis-
sion T��� is given by the Beer-Lambert law averaged via the
probability Pe��� that a photon is emitted at wavelength �:

T��� =� Pe���e−N�a����d� �4�

where �a is the absorption cross section and N the concen-
tration. Pe���= Ie��� /�Ie���d� is the normalized emission
spectrum.
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B. Transmission function

The averaged transmission function T���, which describes
the radiation transport for a distance �, is the key parameter
of Eq. �2�. In the case of the gas phase, emission and absorp-
tion profiles can be analytically described, which leads to an
analytical expression for T���.1,3 But in solids, no general
analytical expression for the spectra can be derived. Thus the
transmission function must be numerically computed from
experimental spectra.

To get an idea of the radiation transport properties, we
have recorded the absorption and emission spectra of the
resonant 4I15/2↔ 4I13/2 transition of an Er3+-doped ZBLA
glass �ZrF4-BaF2-LaF3-AlF3� �Fig. 1�. From these emission
and absorption spectra, T��� was computed using Eq. �4� and
is drawn in Fig. 2 for three different concentrations. The
resonant radiation transmission T��� follows an exponential
law for short propagation distances and as the distance in-
creases it departs from the exponential law, showing that a
significant part of the radiation can propagate along a great
distance without being absorbed.

In the case of weak opacity, i.e., N�a�����1, for any
distance and wavelength, the average transmission tends to
an exponential function �dashed curves on Fig. 2�. The
equivalent cross section ��a�eq is found by performing the
expansion of the exponential Eq. �4�:

��a�eq =� �a���Pe���d� . �5�

At weak opacity, the radiation transport can be approximated
to a monochromatic transport with the cross section ��a�eq

and, in this case, the HB equation can be simplified to a
diffusion equation.22

From a theoretical point of view, the shapes of the trans-
mission functions prevent one from defining a mean free
path. It means that the averaged transmission cannot be writ-
ten as the transmission of a unique emission wavelength.

And, by the way, the HB equation �2� cannot be reduced to a
diffusion equation �Fick law�. These properties are inherent
to the definition of T 	Eq. �4�
 and do not depend on the
exact nature of the emission and absorption spectra, provid-
ing that there is no correlation between absorption and emis-
sion processes.22 The curve shape does not depend on the
overlap, only the length scale does. Thus, the results pre-
sented here can be applied to any resonant transition in rare-
earth-doped materials.

C. TIR and self-absorption

In the case of luminescent solids, some part of the fluo-
rescent light may be trapped within the sample because it is
totally internally reflected at the interfaces. For a transparent
highly symmetrical sample �parallelepiped, sphere�, the TIR
leads to infinite paths inside the sample.15 If these materials
are doped with a resonant atomic level such as Er3+ or Yb3+

ions, the resonant radiation transport will satisfy the HB
equation with the resonant radiation transmission function
drawn on Fig. 2. Thus, for infinite samples, the resonant light
travels a much longer distance than that which can be calcu-
lated from the maximum absorption cross section. Two
physical processes lead to a dramatic increase of the light
travel distance: first, at short distances, the averaging of the
absorption through the whole emission and, second, at long
distances, emission of photons in the weak-overlap wave-
length range. A numerical example emphasizes this point.
For 5 at. %, the absorption length defined as the length lead-
ing to 1/e transmission reduction is �0.25 cm for light
propagating at the maximum absorption-cross-section wave-
length. The equivalent cross section ��a�eq increases the ab-
sorption length to 0.4 cm and from the calculated curve in
Fig. 2, there is still 7% of the light remaining after a 5 cm
propagation. This last value would correspond to an absorp-

FIG. 1. Spectral overlap: Absorption and emission spectra of a
1 at. % Er3+-doped ZBLA glass measured at room temperature. The
emission spectrum is normalized 	�Ie���d�=1
 so that the intensity
value at � is the probability per nanometer that a photon is emitted
at �.

FIG. 2. Transmission function: Averaged transmission of the
light emitted by the 4I13/2 level for different erbium concentrations
as a function of the propagation distance inside the doped sample.
1 at. % is 1.6	1020 at. /cm3 in ZBLA. The dashed curves corre-
spond to the approximation of weak opacity for which the transport
is described as the transport of a unique emission wavelength �Beer-
Lambert law�.
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tion length of �1.9 cm for an exponential propagation.
Then, for a standard experimental situation with sample

size in the order of a few millimeters and concentration
lower than some percent, the light effectively undergoes
many TIRs before being absorbed. Furthermore, the energy
redeposition inside the body is unpredictable and we may
assume that there is no correlation between the emission
point and the absorption point. Thus, the kernel function is
uniform across the sample. With f being the fraction of
trapped light and Vs the sample volume, the function G���
may be simplified as

G��� = G =
f

Vs
. �6�

For ideal bodies of high symmetry, the fraction of trapped
light can be calculated from geometrical considerations15 and
does not depend on absorption considerations. For practical
situations, surface irregularities and imperfect volume homo-
geneity may deflect light rays from trapping paths to non-
trapping paths. Thus the fraction of trapped light will be
smaller than in the ideal case and will depend on the effec-
tive absorption cross section ���a�eq for weak absorption�,
the effective length, and the concentration, as already stated
by Auzel et al.20 Nevertheless, the assumption leading to Eq.
�6� is still valid, providing that many TIRs occur before an
absorption event occurs. This assumption is validated by the
experimental studies on lifetime measurements in
Yb3+:YAG and Er3+ :LiNbO3 samples, which have demon-
strated that the rare earth lifetime for different doping levels
and boxlike geometry is governed by many TIRs.5,10,11,17

II. EFFECT OF RADIATION TRANSPORT ON DECAYS IN
SMALL AND LIGHTLY DOPED SAMPLES

A. Modeling of the physical processes

We model the experimental situation as follows. The
sample volume Vs contains a resonant two-level system
population �i.e., ground state and resonant excited state�, the
volume Ve inside the sample is excited at time t=0, and the
detection system records the evolution of the excited popu-
lation inside the collected volume Vc, which includes the
initial excited part of the sample �see Fig. 3�. In this section,
we are interested in the evolution of the excited population
density after the initial spatially localized excitation. We
limit ourselves to the case where the radiation transport is
governed by many TIRs. This is satisfied for low to standard
doping levels in rare-earth-doped high-symmetry samples in
the range of a few mm.5,11

We have to solve the HB equation with the initial condi-
tions for the excited-state population density

n�r,t = 0� = �ne
0 if r � Ve,

0 if r � Ve.
� �7�

The directly excited population in volume Ve will decay and
a part f of the emission excites the initially nonexcited vol-
ume via resonance radiation absorption. This volume also
excites the initially excited one via resonance radiation ab-
sorption. Because the kernel function G is constant, the ini-

tial distribution splitting remains during the whole process,
leading to the two coupled populations

n�r,t� = �ne�t� if r � Ve,

nu�t� if r � Ve.
� �8�

The equations governing these two populations coupled
by radiation transfer can be written by inserting the constant
value of G in Eq. �2� for the two regions. The integrals are
simplified, showing that the two populations are governed by
the following rate equations:

dne

dt
= 
−

1

�
+ WrGVe�ne + WrGVunu, �9a�

dnu

dt
= 
−

1

�
+ WrGVu�nu + WrGVene. �9b�

This is a linear system describing two populations coupled
together via the probability WrG. The solution of this system
with the initial conditions �7� is

ne�t� = e−t/�ne
0 + nu�t� , �10a�

nu�t� =
Vene

0

Vs
�e−t/��

− e−t/�� , �10b�

where �=�Wr is the intrinsic quantum efficiency of the sys-
tem and �� is defined by

�� =
�

1 − �f
. �11�

In the pumped region, the population density is the sum of
two dynamic contributions corresponding to two excitation
processes: the laser exciting process with the natural expo-
nential decay of lifetime � and the self-absorbed exciting
process nu�t� with two exponential components �rise time �
and decay ���. Outside the pumped region, only the indirect
excitation remains. Thus, the population densities corre-
sponding to each of the two regions present very different
dynamics as shown in Fig. 4. The indirect-excitation popu-
lation density 	Eq. �10b�
 presents an initial rising before
decaying. Its intensity is proportional to the number of laser-

FIG. 3. �Color online� Geometric setup: The excitation source is
focused in the hatched volume Ve inside the sample volume Vs. The
collecting setup images the gray volume Vc centered on the pumped
region onto the detector.

S. GUY PHYSICAL REVIEW B 73, 144101 �2006�

144101-4



excited photons Vene
0 times the probability to be reabsorbed

G�1/Vs. The maximum is reached at time

tmax = − �
ln�1 − �f�

�f
. �12�

The population dynamics in the pumped region 	Eq.
�10a�
 is nearly exponential at short times and deviates from
the exponential law at longer times. The deviation is more
and more pronounced as the ratio between the self-
absorbtion and the laser excitation processes increases. As
shown in system �10�, this ratio is proportional to Ve /Vs.

B. Measured decay curves

In a typical experiment, the laser excites a sample volume
Ve. Collecting optics image a zone of the sample, which
includes the laser-excited zone, in the detectors as is pre-
sented schematically in Fig. 3. If the collecting zone includes
only the first excited volume or only its complementary part,
the decay is given directly by expression �10a� or �10b�,
respectively. But, in standard experiments, the optics collect
a volume Vc including the initial excitation volume and a
surrounding zone �Ve
Vc
Vs�. Thus, the observed decay is
a mixture of the dynamics of the directly and indirectly ex-
cited populations given by Eq. �10�. By adding the contribu-
tion of the two populations in the two zones, the number of
photons escaping from the sample at each time is

��t� = Wr�1 − f�	Vene�t� + �Vc − Ve�nu�t�
 . �13�

By using the expression �10�, we find

��t� = 	�1 − ��e−t/� + �e−t/��

��0� �14�

where �=Vc /Vs is the collecting ratio and ��0�=Wr�1
− f�ne

0Ve.

In our modelization of the experimental problem, the col-
lected volume contains the pumped volume �Ve
Vc
Vs�;
thus the coefficient � varies between Ve /Vs and 1 and is
controlled by the collecting setup. If the collecting setup im-
ages a region inside the pumped zone, the decay is directly
given by the population ne�t� 	Eq. �10a�
. Formally it is the
same as 14 with �=Ve /Vs. In this case, the coefficient � is
controlled by the pumped setup. Finally to take into account
the two situations we define � as

� = �
Vc

Vs
if Ve � Vc

Ve

Vs
if Vc � Ve

� =
max�Vc,Ve�

Vs
. �15�

The measured decay is the sum of two exponential de-
cays: the intrinsic decay with the lifetime � weighted by
1−� and a slower decay with the lifetime �� weighted by �.

In order to quantify the trapping effect on decay, we have
calculated the integral lifetime ���t�dt /��0� from the previ-
ous Eq. �14�:

�int = 
1 +
��f

1 − �f
�� . �16�

The expression of the measured decay 	Eq. �14�
 as well
as �int shows that two parameters control the observed decay:
� which takes into account the experimental setup and �f
which counts the fraction of photons reemitted after a self-
absorption step, i.e., the fraction of recycled light. We shall
discuss the impact of these two terms in the next two sec-
tions. Beforehand, we can see that these two parameters �
and �f have a similar impact on the decay when they are
small. For this purpose, we have calculated the 1/e lifetime
when ��1 and �f �1 by developing the exponential. In this
limiting case, �int and �1/e are identical with the value

�1/e = �1 + ��f�� . �17�

For small values of � and �f , radiation trapping induces a
lengthening of the lifetime proportional to the product ��f .

1. Impact of the recycled light � f

Mathematically, when �f increases from 0 to 1, the time
constant �� increases from the intrinsic lifetime � up to in-
finity. So, the slow component of the measured decay will
become slower and slower. The effect is more pronounced
when the collecting factor is larger: more light comes from
the unpumped region. Figure 5 illustrates the impact of the
trapped light on the shape of the decays for two values of
the collecting ratio: the larger �f , the slower the measured
decay. The variation of the integral lifetime versus �f is
drawn in Fig. 6. When �f tends to zero, the measured life-
time tends to the intrinsic lifetime. When �f tends to 1, the
measured lifetime tends to infinity because the light is really
trapped inside the sample and takes an infinite time to escape
from the sample.

The dependence on �f instead of f alone shows that the
fraction of quanta slowing down the decay is not the fraction
trapped inside the sample �fraction f�, but the fraction circu-

FIG. 4. Evolution of the excitation densities inside and outside
the pumped region after a pulsed excitation localized in the pumped
region. The initial population density inside the pumped region is
ne

0. The unpumped region is populated via the radiation transport
coming from the initially pumped region. We assume that the radia-
tive energy redeposition governed by many TIR paths is constant.
Curves are calculated for a ratio of the pumped volume over the
sample volume equal to 10%.
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lating indefinitely inside the system �trapped and reemitted�.
By the way, the dynamics of heavily doped systems with low
quantum efficiency will not be affected too much by radia-
tion trapping, although a large part of the light could be
self-absorbed.

From a practical point of view, the trapping factor f is
very difficult to quantify precisely because it depends on the
exact absorption and emission overlap as well as on the
sample geometry. Nevertheless, an estimation can be found
for high-symmetry systems by considering the fraction of
TIR at the interfaces.15 Another method proposed by Yin et
al.23 for Yb3+-doped glasses is based on measured absorption
spectra and emission spectra calculated using the reciprocity

method. Because radiation trapping is eliminated in the cal-
culated emission spectra it is possible to evaluate this effect
by comparing the calculated and measured emission spectra.

2. Impact of the experimental setup

The experimental setup is taken into account via the �
parameter, defined in Eq. �15�, which measures the relative
size between the maximum of the pumped or collected vol-
ume and the sample volume. As seen in expression �14�, the
impact of the ratio � is to change in the decay the relative
weight between the slow component of lifetime �� and the
intrinsic component of lifetime � in favor of the slower one.
When � goes from 0 to 1, the measured �extrinsic� decay
shape varies continuously between that of the intrinsic decay
with lifetime � and that of the slower exponential decay with
lifetime ��, as illustrated in Fig. 7. The integral lifetime in-
creases linearly versus the collecting ratio �, from �int=� to
�int=�� when � goes from 0 to 1.

In practical cases, as a reduction of the radiation trapping
is wanted, it is necessary to diminish the � ratio. Equation
�15� defining � shows that the pumped volume and the col-
lected volume must fit together. The best result is obtained
when both the collected volume and the pumped volume are
small �and identical� in comparison with the sample volume.
This corresponds to a confocal setup. In this case, most of
the detected photons come from the first-generation emission
because the second-generation emission has little chance to
be reabsobed in the small initially excited or detected region
compared with the rest of the sample.

On the other hand, when the collected or the pumped
volume is the sample volume, the measured decay is the sum
of all the first- and second-generation emissions and consists
in a single exponential with the lifetime ��. This is the situ-
ation where the radiation trapping effect is maximum. We
find again here the lifetime lengthening previously calculated

FIG. 5. Effect of the recycled light: Decay curves calculated
from Eq. �14� as a function of �f going from 0.5 to 0 for two values
of the collecting ratio. �f is the light fraction recycled inside the
sample at each absorption or emission event. For �=0.1, 10% of the
sample is excited and imaged into the detector. �=1 corresponds to
the extreme case where the sample is either excited or imaged
entirely.

FIG. 6. Calculated integral lifetime �int as a function of the
fraction of recycled light �f . Three experimental setups are used:
�=0.1 �10% of the sample excited and imaged into the detector�,
�=0.5 �50% of the sample excited and imaged into the detector�,
and �=1 �the sample is excited or observed entirely�.

FIG. 7. Effect of the collecting setup: Calculated decay curves
from Eq. �14� as a function of the collecting ratio
�=max�Vc ,Ve� /Vs going from 1 to 0 for two values of recycling
light �f . The case �=0 corresponds to the intrinsic decay with
lifetime �.
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in the limiting cases of uniform excitation19 �Ve=Vs� and
complete collection8,18 �Vc=Vs�.

The experimental study10 of the excitation collection
scheme in Er3+-doped LiNbO3 can be directly compared with
our theoretical work because it uses the same experimental
setup as the one given in Fig. 3. The fluorescence is collected
through an adjustable aperture which allows us to control
what we call the � parameter. It was found that, for small
aperture diameters ��
1/200�, the measured decays do not
depend on the concentration in the range 0.5% up to 2%, as
described by Eq. �16�. As the aperture diameter increases, the
concentration dependence appears and the measured lifetime
is nearly doubled for large aperture and concentration. The
variation of the measured lifetime versus the aperture size
seems to be linear for small apertures and quadratic, as ex-
pected from our work, for large apertures.

3. Quantum efficiency

For quantum efficiency measurements, luminescent
samples are centered in an integrating-sphere and the number
of absorbed photons of the exciting laser is compared to the
number of emitted photons.8 In this kind of experiment, all
the photons coming from the sample are detected wherever
they are coming from. Within the frame of our model, it
corresponds to the case �=1, for which the collected volume
equals the sample volume.

Intrinsic quantum efficiency is responsible for a diminu-
tion of the number of emitted photons compared with the
number of excitations. When radiation trapping effects occur,
each generation of reabsorbed photons leads to extra losses,
leading to a decrease of the experimental quantum efficiency.
The measured quantum efficiency �� is the number of emit-
ted photons escaping from the sample 	i.e., ���t�dt
 divided
by the number of initial excitations �i.e., ne

0Ve�. Thus, it is
directly given by Wr�1− f��int. By using Eq. �16� with �=1
we get

�� = �
1 − f

1 − �f
. �18�

Figure 8 shows the dependence of the measured quantum
efficiency on both the intrinsic quantum efficiency and the
trapping factor for the integrating-sphere setup ��=1�. We
can notice that radiation trapping has no effect when the
quantum efficiency is 1; in this case the impact of trapping is
only to delay the emission.

We find the same result 	Eqs. �18� and �11�
 as in the
model developed by Birks18,24 and later used by Caird et al.8

This model described radiation trapping as a succession of
reabsorbtion processes with an overall efficiency f leading to
a measured quantum efficiency �m given by

�m = ��1 − f� + ��f���1 − f� + ��f�2��1 − f� + ¯ �19�

where the first term on the right-hand side accounts for the
first-order emitted photons escaping from the sample, the
second term accounts for the first-order reabsorbed photons
escaping the sample, the third term accounts for the second-
order reabsorbed photons escaping the sample, and so on. In

this approach, the authors count the overall effect of the ra-
diation trapping in the whole of the sample. By that way, it is
equivalent to our description when we perform the integra-
tion of the population distribution over the whole of the
sample.

CONCLUSION

We have derived a general expression of the measured
decay curves in the case of solid-state self-absorbing materi-
als. The main assumption is that the resonant radiation trans-
port is mainly due to many unpredictable TIRs at the inter-
faces. We model the experimental conditions by dividing the
studied sample into two regions: the initially excited region
and its complementary part. The solution of the transport
equation shows that the evolution of the population distribu-
tion inside the sample is the combination of two components:
the natural decay localized inside the pumped region and the
indirect decay evenly distributed inside the sample.

Experimental decays are the result of light collected from
different regions inside the sample. We have shown that the
impact of the radiation trapping depends on three param-
eters: the quantum efficiency �, the fraction of trapped light
f , and an experimental factor called �. The product of the
first two parameters counts the number of photons which are
relaunched in the system after a self-emission or absorption
event in the studied sample. The experimental parameter �
takes into account the ratio of the direct emission versus the
indirect emission recorded by the optical setup. In order to
reduce the trapping effect on the observed decay curves, the
excitation and collection volume must be identical and as
small as possible.
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FIG. 8. Calculated observed quantum efficiency versus the over-
all trapping factor for different values of the intrinsic quantum
efficiency.
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