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We analyze recent infrared conductivity data in the normal state of the cuprates. We find that the high-
frequency behavior, which has been suggested as evidence for quantum-critical scaling, is generally charac-
teristic of electrons interacting with a broad spectrum of bosons. From explicit calculations, we find a fre-
quency exponent for the modulus of the conductivity, and a phase angle, in good agreement with experiment.
The data indicate an upper cutoff of the boson spectrum of the order of 300 meV. This implies that the bosons
are of electronic origin rather than phonons.
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Infrared conductivity has proven to be a powerful probe
of the electronic degrees of freedom of the cuprates.1 It has
the advantage of being bulk sensitive, and yields useful in-
formation over a wide range of energies. Of particular inter-
est is a generalized Drude analysis of the data, which pro-
vides information on the optical analog of the fermion
self-energy.2,3 Most data indicate a linear frequency depen-
dence of the imaginary part of the optical self-energy �i.e.,
1 /�� up to very high energies. Such behavior is characteristic
of a marginal Fermi liquid.4 In some data,5 this trend persists
up to the plasma frequency �1 eV�.

Recently, van der Marel and collaborators6 have obtained
a somewhat different behavior at high frequencies for 1 /�,
showing a tendency to saturate7 above 0.5 eV. They have
also found that in a wide frequency range �125–900 meV�,
both real ��1� and imaginary ��2� parts of the optical con-
ductivity are described by the same power law ���� with an
exponent −0.65 �and an associated phase angle �
=tan−1��2 /�1� of 60°�. The same behavior was observed ear-
lier by El Azrak et al.,5 and its theoretical implications dis-
cussed extensively by Anderson.8 The exponent and phase
angle in this frequency range are roughly temperature inde-
pendent, and have been suggested to be indicative of
quantum-critical scaling.6

In this paper, we analyze the frequency-dependent optical
data using a model based on electrons interacting with a
broad spectrum of bosons. We find that the essential results
mentioned above are captured by this analysis, indicating
that the observed behavior is generic for interacting elec-
trons. We show that the power-law behavior of the conduc-
tivity � is not indicative of quantum-critical scaling,9 but
rather a consequence of the flattening of the fermionic self-
energy at high frequencies. Based on our analysis, we find
evidence for an upper cutoff scale of the boson spectrum
of about 300 meV in the cuprates. This is consistent with
the assumed value in the marginal Fermi-liquid phenom-
enology,4 and also with the measured width of the spin-
fluctuation spectrum.10

The Kubo expression for the optical conductivity can be
written as11
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where �pl is the bare plasma frequency and 	 is the retarded
fermion self-energy �in this paper we ignore any momentum-
dependent effects�. Within the same approximation, the fer-
mion self-energy can be expressed as
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with nB the Bose function and f the Fermi function. �2F is
the boson spectral function multiplied by the square of the
coupling strength to the fermions and the �bare� fermion den-
sity of states �and, thus, is a dimensionless quantity�. For T
=0, the imaginary part of the self-energy becomes
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The real part can be obtained by Kramers-Kronig transfor-
mation. From these expressions, one can easily calculate the
real and imaginary parts of the conductivity and the phase
angle.

Alternately, one can examine the generalized Drude ex-
pression for the conductivity,2
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An approximation for 1 /� �i.e., Im 	opt� can be obtained11 by
expanding the denominator of Eq. �1� to lowest order, inte-
grating over frequency, and then inverting the result, again
using the lowest order expansion, to get �−1���. We call this
the Allen approximation. Within this approximation,
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The optical mass, m*���=1+Re 	opt /� can then be obtained
by Kramers-Kronig.

Surprisingly, we have found that for a broad spectrum of
bosons, 1 /� determined exactly from Eq. �1� matches the
Allen approximation to a high precision over the entire fre-
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quency range,12 and, therefore, for the purposes of this paper,
either expression can be used interchangeably. Because of
this, we can easily perform a finite T calculation by using the
finite T version of the Allen approximation derived in Ref.
13,
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In addition, there is the impurity contribution. We assume
an energy-independent fermion density of states, so that the
impurity contribution to Im 	 is a constant, which we denote
as i, thus, the contribution to 1/� is 2i �with no change to
the optical mass�.

Since we are addressing data in the normal state, we con-
sider electrons interacting with a broad spectrum of bosons.
We have considered two models. First, a Lorentzian spec-
trum,

�2F�
� = Im
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, �7�

which has been introduced in the context of spin-fluctuation
exchange,14,15 and used for the charge propagator as well.16

In our case, we will also incorporate a high-frequency cutoff
into Eq. �7�. Second, a gapped marginal Fermi liquid17
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This model yields a flat �2F�
� between the lower ��1� and
upper ��2� cutoffs. Both spectra give similar results.

We start with the MFL model. At T=0, the imaginary part
of the fermion self-energy is

− Im 	 = i � � �1,
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where  is the frequency-integrated spectral weight for �2F.
The real part of the self-energy is easily determined by
Kramers-Kronig,
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The expressions for the real and imaginary parts of the opti-
cal self-energy in the Allen approximation are
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For finite T, a simple analytic expression for 1 /���� can
be obtained only at frequencies ���2,
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We determine 1/� by numerical integration of Eq. �6� at
frequencies below 0.5 eV, and use Eq. �13� above this fre-
quency. The optical mass is then determined by numerical
Kramers-Kronig.

We have also examined Lorentzian models with either a
hard or a soft cutoff. To impose a hard cutoff, we cut �2F�
�
in Eq. �7� at some �c��; to impose a soft cutoff, we add a
quadratic frequency term to the denominator of Eq. �7�. We
obtained similar results in both cases. For brevity, we only
present the results for the hard cutoff case. The self-energy at
T=0 is given by
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The expressions for the imaginary part of the optical conduc-
tivity in the Allen approximation is
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We start with some general observations. The behavior of
the optical self-energy is similar in the two models. Re 	opt is
initially linear for small frequencies, then bends over, pass-
ing through a maximum near the cutoff, with a decay at
higher frequencies. 1 /� is linear �except at the lowest fre-
quencies� up to the cutoff. Beyond this, it continues to rise,
but much more slowly. It should be noted that in the linear
regime, the slopes of Im 	 and 1/� are almost identical, un-
like the impurity contribution which differs by a factor of 2.
This can be understood quite simply from Eq. �3�. Therefore,
we expect that the energy derivative of the scattering rates
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from photoemission and optics should coincide, which is in-
deed the case.18

Angle-resolved photoemission spectroscopy �ARPES� has
yet to address the question of saturation at high frequencies,
but optics has. Earlier studies indicated that the linear fre-
quency dependence of 1 /� persists to energies of order 1 eV,
but recently van der Marel et al.6 have seen evidence for
saturation. The difference from earlier work has to do with
the choice of �� and �pl - 1 /� and m* are related to the
dielectric function � as �2m*+ i� /�=�pl

2 / ���−��.19 From an
analysis of their data, these authors gave evidence for
quantum-critical scaling.6 In fact, the tendency for saturation
in 1/�, as noted above, is actually indicative of being above
the quantum-critical regime.

To see this point more clearly, we show a fit to their data
using the MFL model in Fig. 1. We chose to fit the highest
temperature data �260 K� as the data at lower temperatures
give evidence for a pseudogap effect, which is known from
ARPES to be present up to around 200 K for optimal doped
samples.20 The fit was performed to the optical mass using
Eq. �12�. The T=0 expression was used as it is analytic and,
thus, can be employed in any nonlinear fitting routine.

Some remarks are in order. First, the low-frequency cutoff
is evident as a peak in the optical mass at about 15 meV. The
high-frequency cutoff is evident as a peak in Re 	opt at about
300 meV. Therefore, even without the fit, these values can
be read off directly from the data. We should remark that the
low-frequency cutoff is not that important �it simply assures
that the optical mass does not diverge at low frequencies�,
and, thus, the fit to Re 	opt is essentially a two parameter one
� and �2�. Second, the upper cutoff is also visible where
1/� deviates from linear behavior. We note that the mismatch

between the fit and data for 1 /� at high frequencies can be
compensated by a small shift in the assumed value of �� and
so is not a serious issue. Third, the fit gives an excellent
reproduction of the modulus of �, and, in particular, the ex-
ponent value of −0.65. Therefore, the fact that this value is
fractional does not necessarily imply quantum-critical phys-
ics with a sublinear exponent. Moreover, we note that the
phase angle is well reproduced by the fit.

We have obtained similar results by fitting to a Lorentzian
with a high-frequency cutoff �Fig. 2�.21 Therefore, the high-
frequency data should not be taken as being dependent on
having a marginal Fermi-liquid bosonic spectrum, but rather
is a generic feature of electrons interacting with a broad
spectrum of bosons. This is evident as well from the work of
Hwang et al.22

In Figs. 1 and 2, a rather large value is needed for i to fit
the zero-frequency limit of 1 /�. As is obvious from the linear
T dependence of the resistivity, most of this term is actually
inelastic. To examine this in more detail, we show the varia-
tion of the modulus of the conductivity and the phase angle
as a function of i �Fig. 3� and T �Fig. 4�. Both variations are
similar, and reproduce well the experimental variation with
temperature.6 Note that the phase angle is always zero at zero
energy unless T=0, i=0, where it becomes 90°.

What are the implications of this work? First, we see that
the apparent scaling behavior over a wide frequency range is
actually unrelated to quantum criticality and is just the con-
sequence of the flattening of 1/�, accompanied by a decrease
in Re 	opt. Second, we see that the behavior of the single
particle and optical self-energies is very similar for the mar-
ginal Fermi-liquid phenomenology, and the Lorentzian

FIG. 1. Fit of the MFL model to T=260 K data of van der Marel
et al. on optimal doped Bi2Sr2Ca0.92Y0.08Cu2O8+� �Ref. 6�. Param-
eters are �meV� i=67.5, =270.5, �1=15.5, and �2=301. Plotted
are �a� the optical mass and Re 	opt, �b� 1/�, �c� the modulus of �,
and �d� the phase angle, tan−1��2 /�1�.

FIG. 2. Fit of the Lorentzian model to T=260 K data of van der
Marel et al. �Ref. 6�. Parameters are �meV� i=65, =172, �=75,
and �c=380.

FIG. 3. �Color online� Variation of the MFL model results with
impurity scattering strength i �meV�. Same parameters as Fig. 1.
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model used in microscopic fermion-boson theories. Third,
the data give strong evidence for an upper cutoff of the bo-
son spectrum of around 300 meV. A cutoff of this scale was
suggested in the original marginal Fermi-liquid pheno-
menology.4 Such a large energy scale would imply that the
source of the boson spectrum is collective electronic excita-
tions rather than phonons. Inelastic neutron scattering data
show magnetic spectral weight up to this energy scale,10 and,
thus, spin fluctuations or possibly other electronic excitations
are a natural explanation for the boson spectrum. This would
be in support of an electronic origin for cuprate supercon-
ductivity.
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