Magnetic-field and pressure dependence of low-temperature resistivity in UGe₂

T. Terashima, K. Enomoto, T. Konoike, T. Matsumoto, and S. Uji *National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan*

N. Kimura, M. Endo, T. Komatsubara, and H. Aoki

Center for Low Temperature Science, Tohoku University, Sendai, Miyagi 980-8578, Japan

K. Maezawa

Department of Liberal Arts and Sciences, Toyama Prefectural University, Kosugi, Toyama 939-0398, Japan (Received 28 February 2006; published 25 April 2006)

We report measurements of resistivity ρ in UGe₂ at temperatures *T* down to 0.3 K, pressures *P* up to 19.8 kbar, and magnetic fields *B*appl up to 17.5 T applied along the magnetic easy *a* axis. The coefficient *A* of the T^2 term of $\rho(T)$ is determined as a function of B_{appl} and *P*. In the large-moment ferromagnetic phase (the low-*P*/high-*B*_{appl} phase), *A* is found to be a function of the single parameter $(B_{\text{appl}}-B_x)$ and approximately obeys a power law $A \propto (B_{\text{appl}} - B_x)^{-1/2}$, where B_x is the transition field from the small- to the large-moment ferromagnetic phase. The *T* dependence of ρ at fields just above B_x suggests a contribution to ρ from excitations with a gapped spectrum.

DOI: [10.1103/PhysRevB.73.140406](http://dx.doi.org/10.1103/PhysRevB.73.140406)

PACS number(s): 75.30 .Kz, 74.70 .Tx, $71.27.+a$, 72.15 .Eb

The discovery of superconductivity (SC) in the itinerantelectron ferromagnet $UGe₂$ has caused much excitement.¹ It was almost clear from the beginning that an early concept of ferromagnetic (FM)-spin-fluctuation-mediated SC is not directly applicable. Contrary to the expectation that this type of SC appears on either side of a FM-paramagnetic (PM) boundary,² the SC in UGe₂ is observed only in FM phases. Although some theoretical ideas have been proposed, $3-5$ the mechanism of this peculiar SC remains to be unraveled.

The Curie temperature T_c of UGe₂ is 52 K at ambient pressure, 6 gradually decreases with pressure P , and finally collapses to zero at the critical pressure P_c (\sim 16 kbar) [see the inset of Fig. $1(c)$ ^{1,7–9} The transition is first order near P_c (Refs. 10–12). Above P_c , as the magnetic field B_{appl} is applied along the magnetic easy a axis,¹³ a metamagnetic transition from a PM to a FM phase occurs at the transition field B_m (Ref. 10). There is another phase transition (or a crossover at low *P*) at the temperature T_x inside the FM phase¹⁴: the magnetization sharply increases below T_x (Refs. 8 and 15). T_x is \sim 30 K at ambient *P*, decreases with *P*, and appears to reach zero at another critical pressure P_x $(\sim 12-13 \text{ kbar}).^{8,9,14}$ There is a debate about the order of the transition near P_x (Refs. 12 and 16). Above P_x , the T_x transition can be induced at the transition field B_x (Refs. 8 and 15). We hereafter call the two FM phases the small-moment [S in the inset of Fig. 1(c)] and the large-moment FM phase (L) , respectively. Magnetic properties of UGe₂ are extremely anisotropic with an anisotropy field of the order of 100 T (Ref. 13), and no field-induced transition occurs for field directions perpendicular to the *a* axis. The SC is observed in a *P* range \sim 10–16 kbar, and the maximum transition temperature $(T_{SC} \sim 0.8 \text{ K})$ is found near P_x (Refs. 1, 8, and 9). The electronic specific-heat coefficient γ , quasiparticle mass m^* , and the coefficient *A* of the T^2 term of resistivity ρ (i.e., $\rho = \rho_o + AT^2$) peak near P_x or rise steeply across P_x (Refs. 8, 9, and 11). These observations have led to theoretical scenarios relating the T_x transition and the SC (Refs. 4 and 5).

In this paper, we report measurements of low-*T* resistivity in UGe₂ in a wide range of *P* and B_{appl} . We show that, as the small-moment FM phase is approached from the largemoment FM phase, *A* is enhanced in a peculiar manner and that an extra contribution to $\rho(T)$ other than the T^2 term appears.

The single-crystalline specimen used in this study was cut from a $UGe₂$ ingot grown by the Czochralski pulling method. The residual resistivity ratio is 96. A conventional ac fourterminal method was used with an electrical current *f* $= 11$ Hz, $I \le 300 \mu A$) along the *a* axis. The magnetic field B_{appl} up to 17.5 T was also applied along the *a* axis. Hydrostatic pressures *P* up to 19.8 kbar were produced by a BeCu/NiCrAl clamped piston-cylinder cell with a 1:1 mixture of 1-propanol and 2-propanol as a pressure-transmitting medium.^{11,17} The pressure was measured with a manganin gauge calibrated against the superconducting transition of tin. Low temperatures down to 0.3 K were achieved with a ³He refrigerator. The temperature was measured with a $RuO₂$ resistance thermometer, which was calibrated in fields up to 17.5 T below 4.2 K and at zero field up to 10 K.

We first determine the $P-B_{\text{appl}}$ phase diagram. ρ versus B_{appl} curves are most conveniently used to locate B_x and B_m , as exemplified in Fig. 1(a) for $P = 14.8$ kbar. These ρ versus B_{anol} curves are similar to previously reported ones.¹⁸ The transition at B_m is characterized by a steep rise in ρ , while that at B_x manifests itself as a bend. To avoid ambiguity, we adopt the following practical definitions: B_x and B_m are determined by the position of a negative peak of $d^2 \rho / dB_{\text{appl}}^2$ and that of a positive peak of $d\rho/dB_{\text{appl}}$, respectively. No hysteresis is observed either at B_x or at B_m . Neither B_x nor B_m exhibits appreciable *T* dependence in the investigated *T* range. Figure $1(b)$ shows ρ versus *T* curves measured at two pressures near P_x . The curve at 11.1 kbar shows a kink near 7 K, a characteristic of the T_x anomaly,^{8,9,14} while that at

FIG. 1. (Color online) (a) ρ vs B_{appl} curves at $P = 14.8$ kbar. The transition fields B_x and B_m are marked. (b) Examples of ρ vs *T* curves. The T_x anomalies observed at $(P, B_{\text{app}}) = (11.1 \text{ kbar}, 0 \text{ T})$ and $(11.8 \text{ kbar}, 0.5 \text{ T})$ are marked. (c) P - B_{appl} phase diagram showing B_x and B_m . For the two negative values of B_x (open symbols), see text. P_x and P_c are estimated to be in the *P* regions denoted by the horizontal lines with arrows. The symbols *L*, *S*, and *PM* denote the large-moment FM, the small-moment FM, and the paramagnetic phase, respectively. The vertical dotted line at $P=14.8$ kbar indicates the line along which the data in Fig. 2(b) were collected. The inset shows a schematic P - B_{appl} - T phase diagram. The SC occurs in the hatched area.

11.8 kbar $(B_{\text{appl}}=0)$ does not. This indicates 11.1 kbar $\lt P_x$ 11.8 kbar. A field of 0.5 T revives a kink near 5 K, indicating $0 < B_r < 0.5$ T at $P = 11.8$ kbar.

Figure 1(c) shows the determined phase diagram (the two negative values of B_x are explained below). We have used ρ versus B_{appl} curves at $T=0.3$ K for most pressures. The exceptions are 11.8 and 12.3 kbar, where the B_x transitions at 0.3 K are masked by the SC; B_x at 12.3 kbar is determined from a ρ versus B_{appl} curve at 0.8 K, while B_x at 11.8 kbar is estimated to be 0.25 (± 0.25) T from the two ρ versus *T* curves mentioned above. The present phase diagram is qualitatively consistent with those previously reported^{12,19,20}: Both transition fields increase nearly linearly with P , B_x having a larger slope. However, we note that the values of the

T. TERASHIMA *et al.* PHYSICAL REVIEW B **73**, 140406(R) (2006)

FIG. 2. (Color online) Selected ρ vs T^2 curves (a) at zero field for various *P*'s and (b) at 14.8 kbar for various B_{appl} 's. For *P* $= 11.1$ kbar in (a) and $B_{\text{appl}}=6$ and 7 T in (b), the fits of Eq. (1) to the data in the *T* range 1 K \lt *T* \lt 4 K are also shown in pale colors and are almost indistinguishable from the data.

critical fields/pressures differ considerably among various reports.10,12,18 To demonstrate the sample dependence, we compare the ratio B_x/B_m for a given B_x , which ratio is free from possible error in pressure determination: the ratios at $B_x \sim 7$ T, for example, are 8.7, 4.9, and 3.6 for the present data and Refs. 12 and 18, respectively.

We next examine the evolution of ρ with *P* and B_{appl} . Figure 2(a) shows ρ as a function of T^2 at zero field for various *P*'s. At ambient *P*, the sample is in the large-moment FM phase, and the ρ versus T^2 curve is straight with a small slope, i.e., a small *A*. As *P* is increased towards P_x , T_x decreases and approaches the highest T (\sim 4.5 K) of Fig. 2. The nearby T_x transition gives rise to a curvature in the ρ versus T^2 curve ($P = 11.1$ kbar). The curve, however, asymptotically approaches a straight line as $T \rightarrow 0$, and *A* in the limit of $T \rightarrow 0$ is larger than at ambient *P*. As the sample enters the small-moment FM phase at 11.8 kbar, the ρ versus T^2 curve becomes straight again, and *A* is substantially enhanced. The ρ versus T^2 curve does not vary very much with *P* in the small-moment FM phase (P up to 13.2 kbar). As the sample

enters the PM phase at 14.8 kbar, the residual resistivity decreases abruptly. As previously noted,⁸ the T^2 dependence of ρ is retained even near P_c , which is consistent with the first-order transition near P_c . *A* gradually decreases with *P* in the PM phase, though it is still much larger at 19.8 kbar than at ambient *P*. For the SC, an incipient resistivity drop can already be detected at 5.8 kbar. The zero resistivity is, however, observed only above P_x , at 11.8 and 12.3 kbar. T_{SC} and the upper critical field at $T=0.4$ K are 0.62 K and \sim 1 T for 11.8 kbar, and 0.52 K and 1.2 T for 12.3 kbar. While the onset of the SC can still be seen at 13.2 kbar, no indication of the SC is found at 14.8 kbar $(>P_c)$: i.e., it is confirmed that the disappearance of the SC coincides with P_c .

Figure 2(b) illustrates the influence of B_{appl} at 14.8 kbar. As can be seen from Fig. 1(c), decreasing \vec{B}_{appl} at 14.8 kbar (see the vertical dotted line at $P = 14.8$ kbar) is equivalent to increasing *P* at zero field in the sense that the phases appear successively in the same order. Thus we view the curves in Fig. 2(b) in descending order of B_{appl} ; the sample is in the large-moment FM phase from $B_{\text{app}}= 17.5$ down to 6 T, in the small-moment FM phase from 5 down to 0.5 T, and in the PM phase at 0 T. It is apparent that Figs. $2(a)$ and $2(b)$ are analogous with each other.

We now look at the extra contribution to ρ , other than the usual electron-electron scattering T^2 term in a Fermi liquid, found in the large-moment FM phase near P_x or B_x . We can achieve excellent fits to the 11.1-kbar (just below P_x) data in Fig. 2(a) and to the 6- and 7-T data at 14.8 kbar, where B_x $= 5.9$ T, in Fig. 2(b) in the *T* range 1 K \lt *T* \lt 4 K, by using the following expression²¹:

$$
\rho = \rho_o + AT^2 + b(T/\Delta)(1 + 2T/\Delta)\exp(-\Delta/T). \tag{1}
$$

The estimated values of Δ are 17 K for the 11.1-kbar data and 10 and 13 K for $B_{\text{appl}}=6$ and 7 T, respectively. For other pressures $(>P_x)$, fits to data measured just above B_x yield Δ 's of 10–20 K. We note that, since the contribution of the last term diminishes rapidly as B_{appl} is increased from B_x , meaningful fits can only be done just above B_x .

The last term of Eq. (1) was originally derived for electron-magnon scattering in a metallic local-moment ferromagnet with a magnon energy gap Δ (Ref. 21). However, since $UGe₂$ is an itinerant-electron ferromagnet, we would need a different interpretation of this term. Indeed, the above estimated Δ would be too small for an anisotropy gap in UGe2 with the large anisotropy field. Interestingly, Aso *et al.* have recently suggested the existence of a gap in the magnetic excitation spectrum of $UGe₂$ from the analysis of the T dependence of spontaneous magnetization.²² The gap is estimated at \sim 10 K just below P_x , which is similar in size to our gap. However, Aso *et al.* identify it with a Stoner gap, and its relation to our gap is not clear.

We basically determine the coefficient *A* by fitting a straight line to ρ versus T^2 curves in the range 1 K² $\lt T^2$ $<$ 5 K², except just above B_x , where Eq. (1) is used as described above. However, we note that the last term of Eq. (1) is actually not so influential in estimating *A*, since it is exponentially small at low *T*; the difference between *A* values determined by the two methods is $\sim 10\%$ at most. The resultant *A* is shown in Fig. 3.

 (2006)

FIG. 3. (Color online) (a) The coefficient *A* of the T^2 term of ρ as a function of B_{appl} for various *P*'s. The vertical broken lines indicate the positions of B_x . The two lines on the B_{appl} - *P* plane indicate B_x and B_m , and L and S denote the large-moment and the small-moment FM phase, respectively. (b) The same data as (a) except the *P*=0 kbar data are plotted as a function of $B_{\text{appl}}-B_x$. For $P = 5.8$ and 11.1 kbar, the negative values of B_x shown in Fig. 1(c) are used. A log-log plot (inset) suggests a power-law behavior for $B_{\text{appl}}-B_x>0.$

The obtained *P* dependence of *A* at zero field is very similar to that reported by Kobayashi *et al.*¹⁸ except the following: (1) The present values are about 60% larger. (2) Kobayashi *et al.* observed a plateau of A between P_x and P_c , which is not clear in our data since we have only three data points in the region. The present zero-field data can also be compared with γ , which was measured up to P_c by Tateiwa *et al.*^{9,23} The proportionality between \sqrt{A} and γ is obeyed better than $\pm 20\%$, and the average ratio of A/γ^2 is consistent with the universal value of $\sim 1 \times 10^{-5} \mu \Omega$ cm(mol K/mJ)² (Ref. 24). Tateiwa *et al.* also determined γ in magnetic fields at 12.8 kbar (Ref. 16). The comparison between γ at $(P,$ B_{app} = (12.8 kbar, 7 T) and *A* at (12.3 kbar, 8 T) or $(13.2 \text{ kbar}, 8 \text{ T})$ suggests that the proportionality holds in magnetic fields.

We now focus on the region $P < P_x$. Since no fieldinduced transition occurs in this region, we may compare experimental observations with conventional theories of spin

fluctuations. We then find that neither the *P* nor the field dependence of A in UGe₂ conforms to theoretical predictions. First, the expected relation²⁵ $A \propto M_s^{-1}$, where M_s is the spontaneous magnetization at absolute zero, is not observed: on going from 0 to 11.1 kbar, just below P_x , A at zero field increases by a factor of 4, while M_s decreases by only 10% (Ref. 12). Secondly, the field dependence of *A* is too large. *A* is reduced by $\sim 50\%$ (0 and 5.8 kbar) or $\sim 75\%$ (11.1 kbar) at 17.5 T, while a theoretical model²⁶ predicts only \sim 20% reduction.29

We now turn to the field dependence of A above B_x in the region $P > P_x$. The *A* versus B_{anol} curves above B_x (i.e., in the large-moment FM phase) for different *P*'s look very similar [Fig. 3(a)]. We therefore replot *A* in the region $P > P_x$ as a function of $B_{\text{appl}}-B_x$ [solid symbols in Fig. 3(b)] and find that all the data points lie on a single universal curve for B_{appl} −*B_x*>0. Furthermore, we find that data points at 5.8 and 11.1 kbar, which are below P_x , also follow the same curve by using appropriate negative values for B_x [open symbols in Fig. 3(b)]. These negative " B_x 's" are shown in Fig. 1(c) with open symbols. We have omitted the ambient-P data since the estimation of B_x is so ambiguous. The inset of Fig. 3(b) indicates that *A* varies as $(B_{\text{app1}}-B_x)^{-1/2}$ except for the rounding in the immediate vicinity of B_x . We also note that *A* actually peaks slightly below B_x [see Fig. 3(a)]. The following may partly account for these deviations from the power law: (1) The true transition field might be smaller than B_x determined by the present definition. (2) *distribution* causes distribution of B_x in the sample: note only 0.1 kbar difference in *P* results in \sim 0.2 T difference in *B_x* [see Fig. 1(c)]. It is difficult to tell the true behavior of A in the limit of *B*_{appl}→*B_x*, i.e., whether it diverges or not. For $B_{\text{appl}}-B_x$ 0 , no universal behavior is observed. This may be due to the influence of B_m . It seems that *A* in the small-moment FM phase is the sum of two contributions peaking near B_m and

T. TERASHIMA *et al.* PHYSICAL REVIEW B **73**, 140406R- 2006-

 B_x . We also note that plotting *A* against $B_{\text{appl}}-B_m$ does not reveal any universal behavior.

We may recall that spin-fluctuation theories suggest *A* $\propto S^{1/2}$, where *S* is the Stoner enhancement factor and diverges at a FM-PM boundary.²⁵ However, it seems difficult to relate the observed power law to this theoretical prediction, since B_x is not a FM-PM boundary.

Power-law dependence of *A* on magnetic field is reported for CeN₁₂Ge₂ and YbRh₂S₁₂, for example: $A \propto B^{-0.6}$ for the former,²⁷ and $A \propto (B - B_c)^{-1}$ for the latter,²⁸ where B_c is a metamagnetic transition field. Both compounds exhibit pronounced non-Fermi-liquid behavior in thermodynamic, magnetic, and transport properties as $B \rightarrow 0$ or B_c , and the power laws are discussed in terms of quantum critical spin fluctuations.^{27,28} In the case of UGe₂, however, there has been no report of non-Fermi-liquid behavior in the vicinity of B_{r} .

Irrespective of whether *P* is below P_x or above P_x , *A* in the large-moment FM phase is determined by the single parameter $B_{\text{apol}}-B_x$ at each *P*, and B_x varies from negative to positive approximately linearly with *P* across P_x . These may be favorable to theoretical scenarios assuming a characteristic energy (level) ϵ_x in the electronic structure and that the T_x transition occurs when the Fermi level ϵ_F equals ϵ_x (Refs. 5) and 12). Various physical properties would then be governed by the distance $\epsilon_x - \epsilon_F$ in the majority-spin band, which distance in first approximation would shift linearly with B_{anol} or *P*. Our experimental findings provide a crucial test for such scenarios, that is, whether they can reproduce the power law of *A* observed only in the large-moment FM phase. In addition, the origin of the gapped excitations suggested by $\rho(T)$ at fields just above B_x has to be accounted for.

We thank K. Tanaka and M. Nishimura for technical assistance. This work was supported by Grants-in-Aid for Scientific Research from the JSPS, Japan.

- ¹ S. S. Saxena et al., Nature (London) **406**, 587 (2000).
- ²D. Fay and J. Appel, Phys. Rev. B 22, 3173 (1980).
- ³H. Suhl, Phys. Rev. Lett. **87**, 167007 (2001).
- ⁴ S. Watanabe and K. Miyake, J. Phys. Soc. Jpn. **71**, 2489 (2002).
- ⁵K. G. Sandeman *et al.*, Phys. Rev. Lett. **90**, 167005 (2003).
- ⁶C. E. Olsen, J. Appl. Phys. **31**, S340 (1960).
- ⁷H. Takahashi et al., Physica B **186-188**, 772 (1993).
- ⁸ A. Huxley *et al.*, Phys. Rev. B **63**, 144519 (2001).
- ⁹N. Tateiwa et al., J. Phys.: Condens. Matter 13, L17 (2001).
- ¹⁰ A. Huxley *et al.*, Physica B **284-288**, 1277 (2000).
- ¹¹ T. Terashima *et al.*, Phys. Rev. Lett. **87**, 166401 (2001).
- 12C. Pfleiderer and A. D. Huxley, Phys. Rev. Lett. **89**, 147005 $(2002).$
- 13A. Menovsky *et al.*, in *High Field Magnetism*, edited by M. Date (North-Holland, Amsterdam, 1983).
- ¹⁴G. Oomi *et al.*, Physica B **206 & 207**, 515 (1995).
- ¹⁵ N. Tateiwa et al., J. Phys. Soc. Jpn. **70**, 2876 (2001).
- ¹⁶N. Tateiwa et al., Phys. Rev. B **69**, 180513(R) (2004).
- ¹⁷M. Endo *et al.*, Phys. Rev. Lett. **93**, 247003 (2004).
- 18T. C. Kobayashi *et al.*, J. Phys.: Condens. Matter **14**, 10779 $(2002).$
- ¹⁹T. Terashima et al., Phys. Rev. B **65**, 174501 (2002).
- ²⁰ Y. Haga *et al.*, J. Phys.: Condens. Matter **14**, L125 (2002).
- 21 N. H. Andersen and H. Smith, Phys. Rev. B 19, 384 (1979).
- 22 N. Aso *et al.*, Phys. Rev. B **73**, 054512 (2006).
- ²³ N. Tateiwa *et al.*, Physica B **312-313**, 109 (2002).
- 24K. Kadowaki and S. B. Woods, Solid State Commun. **58**, 507 $(1986).$
- 25T. Moriya, *Spin Fluctuations in Itinerant Electron Magnetism* (Springer-Verlag, Berlin, 1985).
- ²⁶ K. Ueda, Solid State Commun. **19**, 965 (1976).
- ²⁷ P. Gegenwart *et al.*, Phys. Rev. Lett. **82**, 1293 (1999).
- ²⁸ P. Gegenwart *et al.*, Phys. Rev. Lett. **89**, 056402 (2002).
- 29 We have used Eq. (6) of Ref. 26. Using magnetization curves in Ref. 12, the normalizing magnetic fields $L\zeta_0^3$ are estimated at 82.1, 111, and 73.4 T for 0, 5.8, and 11.1 kbar, respectively. The parameter \tilde{L} is assumed to be $1-2$ as usual.