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We report vibrating wire viscometer experiments in the concentrated and dilute phase of saturated
3He-4He mixtures showing that the slip length may become orders of magnitude larger than the mean free path
due to specular scattering of the 3He quasiparticles with a 4He coating adsorbed at the surface of the wire.
Since the liquid does not almost stick to the surface, the boundary conditions for fluid flow are unusual and not
accounted for by the current theory for slip �H. Højgaard Jensen et al., J. Low Temp. Phys. 41, 473 �1980��.
The experimental results are in excellent agreement with a recent theory for slip �R. Bowley and J. Owers-
Bradley, J. Low Temp. Phys. 136, 15 �2004�� which accounts for the effect of the cylindrical geometry and for
velocity slip in directions normal as well as tangential to the surface of the wire. We find that our viscosity
measurements in the dilute phase resulting from the data analysis based on the recent slip theory are in better
agreement with the Fermi liquid theory than previous experimental results.
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I. INTRODUCTION

The hydrodynamic equations describing fluid flow near a
solid wall are usually solved assuming that the relative ve-
locity between the fluid and the solid is zero at the surface of
the wall. The assumption is known as the no-slip boundary
condition and has been successfully applied in the descrip-
tion of many experiments. The no-slip boundary condition
for the velocity normal to the wall is a direct consequence of
zero mass current across the wall. However, the no-slip con-
dition for the velocity tangential to the wall is justified by
microscopic arguments which break down in certain circum-
stances. In a dilute gas, for instance, the extrapolation of the
tangential fluid velocity towards the surface matches that of
the surface only some distance � behind it. This phenomenon
is known as slip and is described with a boundary condition
relating the tangential velocity to its derivative normal to the
surface, vt=��vt /�n. The relation between the slip length �
and the mean free path l depends on the nature of the scat-
tering of the fluid particles with the wall; � / l�1 in the case
of diffusive scattering and � / l→� in the case of specular
scattering. Slip has also been observed in dense liquids,
where it is affected by the molecular interactions between the
fluid and the solid, by wetting or nonwetting, and by surface
roughness.

Slip is very temperature dependent in pure liquid 3He and
3He-4He mixtures at low temperatures, because those sys-
tems behave like degenerate Fermi liquids with a viscous
mean free path l��T−2. A slip length of order 10 �m is
easily attainable. Moreover, pure 3He has a superfluid tran-
sition temperature of about 1 mK and far below that tem-
perature the density of excitations becomes very low and the
system enters the ballistic regime. Torsional oscillator ex-
periments in 3He-4He mixtures and pure 3He have shown a
strong enhancement of the slip length due to specular scat-
tering of the 3He quasiparticles off a superfluid 4He film
preferentially adsorbed on the wall.1–3 The enhancement of
the slip length is not yet understood, but the superfluidity of
the adsorbed 4He layers does play a role.3 However, vibrat-

ing wire viscometer experiments in dilute 3He-4He mixtures
spanning the transition from the hydrodynamic to the ballis-
tic regime have been practically unaffected by specular
scattering.4–6

In this paper, we report vibrating wire viscometer experi-
ments showing that the slip length may become much larger
than the radius of the wire a, while the liquid is still in the
hydrodynamic regime �l��a�. The liquid does almost not
stick to the wire and the current theory for slip7 based on �1�
the slip boundary condition for a flat surface and �2� the
hydrodynamic boundary condition of zero radial liquid ve-
locity at the surface of the wire is stretched beyond its valid-
ity limits. We find good agreement with a recent theory for
slip8 characterized by �1� a slip condition for a curved sur-
face allowing slip of the tangential and the radial velocity at
the surface of the wire and �2� a boundary condition for the
radial velocity obtained from the equality between a hydro-
dynamic and a microscopic expression for the force on the
wire.

The original motivation for this work was to calibrate
vibrating wire viscometers in 3He-4He mixtures for ther-
mometry purposes at temperatures in the range of 10–
100 mK and magnetic fields up to 11.5 T. We show that the
theory of Bowley and Owers-Bradley8 is necessary to re-
solve the apparent initial inconsistency in the results ob-
tained with wires of different diameters and to determine the
viscosity correctly. Preliminary reports of this work have
been published elsewhere.9,10

II. BACKGROUND

A. Introduction

The viscometers are made of a wire bent and glued into a
support to form a freestanding semicircle. The device is ori-
ented in a static magnetic field such that the Lorentz force on
a current passing through the wire is zero at the end points of
the semicircle and maximal at the middle. An alternating
current through the wire produces a flapping motion of the
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wire out of its plane. The frequency of the current is swept
through the mechanical resonance and the oscillation is de-
tected by measuring the induced voltage across the wire.
When the viscometer is immersed, the resonant frequency
shifts and the resonance width broadens because the sur-
rounding liquid exerts an inertial and a damping force on the
wire.

The forces have been calculated by Stokes in the hydro-
dynamic regime for a straight oscillating cylinder from the
velocity field which is the solution of the linearized Navier-
Stokes equation. The velocity field depends on two integra-
tion constants which are determined by the boundary condi-
tions for the r and � component of the velocity in the rest
frame of the wire, vr�a�=v��a�=0, where a is the radius of
the wire. The inertial and the damping force are proportional
to the real and imaginary part of the Stokes coefficient k�m�,
where m=a /��2 with � as the viscous penetration
depth.7,11,12

Stokes’ solution is easily generalized to superfluids with
an isotropic gap such as superfluid 3He-B or two component
systems consisting of normal 3He dissolved in superfluid
4He. Those superfluids consist of a normal component with a
density 	n and a superfluid component with a density 	s. The
superfluid component contributes only to the inertial force
and the normal component contributes to the inertial and
damping forces, parametrized by the viscous penetration
depth, �=�2� /	n
=�2v /
 where � is the viscosity, � is the
kinematic viscosity, and 
 is the angular frequency of the
wire.

The hydrodynamic forces on a straight cylinder are a
good approximation to the forces on a semicircular loop as
long as the viscous penetration depth is much smaller than
the radius of the loop. This is the case in our experiments,
since the radius of the loop is 2 mm or more and the viscous
penetration depth is 50 �m or less.

B. Slip and boundary conditions

Slip changes the boundary conditions for the velocity
field, and therefore k�m� and the resonance shift and width.
Høgaard Jensen et al.7 have derived a modification of the
complex Stokes coefficient using the slip condition for a flat
surface vt=��vt /�n and the condition vr�a�=0,

kt�m,�� = 1 +
1

�k�m� − 1�−1 − im2�
, �1�

where

� =
�

� + a
, �2�

� = 0.5819
1 + s

1 − s
l�, �3�

a is the radius of the wire, s is the fraction of specular re-
flections, and l� is related to the viscosity by the Fermi liquid
relation �=	n�= 1

5n3pFl�. Equation �1� is valid as long as �
�a. We will present experimental data in pure 3He which is
in good agreement with this description and data in mixtures

showing that the theory is stretched beyond its validity range
when ��a.

A simple argument shows that the slip boundary condition
vt=��vt /�n does not account for the curvature of the wire in
case of full specular scattering.8 When s=1, the 3He quasi-
particles are reflected from the wire such that there is no
transfer of tangential momentum between the wire and the
quasiparticles. Therefore, the r� component of the momen-
tum flux tensor given by

r��r,�� = − �� �v�

�r
+

1

r

�vr

��
−

v�

r
	

vanishes at the surface of the wire. Here vr and v� are the
components of the velocity of the liquid in cylindrical coor-
dinates. Application of the boundary condition vr�a�=0 in
the rest frame of the wire gives

� �v�

�r
	

r=a

−
v��a�

a
= 0. �4�

The solution of the Navier-Stokes equation with this bound-
ary condition gives Eq. �1� with �=1/2 instead of �=1 ob-
tained by naive substitution of s=1 in Eq. �2�.

In view of the above argument, it is reasonable to define
the slip length as r��a ,��
−�v��a ,�� /� which leads us-
ing the condition vr�a�=0 to

� �v�

�r
	

r=a

−
v��a�

a
=

v��a�
�

, �5�

a result found by Einzel et al.13 Equation �5� reduces to the
slip condition for a flat surface in the limit ��a. Einzel et al.
interpret �1/v��a����v� /�r�r=a as the slip length, so that the
slip length contains the curvature of the wire and the scatter-
ing of the quasiparticles off the surface. We prefer to analyze
our data in terms of � which characterizes the physics at the
surface and we call � the slip length. Of course, v��r� still
extrapolates to zero at the center of the cylinder when �
→�. The solution of the Navier-Stokes equation with Eq. �5�
as a boundary condition results in Eq. �1� with � given by

� =
�

2� + a
. �6�

The inadequacy of the hydrodynamic description of the
liquid within a few viscous mean free paths from the wire
manifests itself when the viscous mean free path l� becomes
comparable to the radius of the wire a. The microscopic
radial velocity at the surface of the wire is still zero because
the number of quasiparticles is conserved but the extrapola-
tion of the hydrodynamic radial velocity to r=a—well de-
fined a few mean free paths away from the surface of the
wire—is not necessarily zero.

Bowley and Owers-Bradley8 have solved the Boltzmann
equation to calculate the momentum flux tensor which is
used in the derivation of two improved boundary conditions.
The theory is valid as long as l��a and s→1 because it
neglects terms of order l� /a and higher and nonspecular scat-
tering.
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The first slip boundary condition follows from the argu-
ment that r� is constant for values of �r−a� which are small
compared to the radius a,8

� �v�

�r
	

r=a

+
1

a

�vr�a�
��

−
v��a�

a
=

v��a�
�

, �7�

where the condition vr�a�=0 has been relaxed. The theory
also predicts that Eq. �3� remains valid for a cylindrical
geometry.8

The momentum flux tensor obtained from the Boltzmann
equation also permits us to calculate the force exerted by the
liquid on the wire. On the other hand, the hydrodynamic
theory permits to evaluate the force excerted on an annulus
of liquid with a thickness of a few mean free paths surround-
ing the wire. When the mean free path is much smaller than
the viscous penetration depth, the hydrodynamic force on the
annulus is approximately equal to the force on the surface of
the wire. Equality of the force exerted by the liquid on the
wire calculated from the solution of the Boltzmann equation
and from hydrodynamic theory provides the second bound-
ary condition.8

Both boundary conditions permit us to eliminate the inte-
gration constants in the solution of the Navier-Stokes equa-
tion and lead to a modified Stokes coefficient which accounts
for tangential and radial slip,

ktr�m,��

=
1

1 + 3s

4
− �

�� 3 + s

4
+

�1 + 3s

4
−

1 − s

2�k�m� − 1�	�1 + ��

1

k�m� − 1
−
�1 + 3s

4
− �	im2�

1 + s

2
− � +

1 − s

2
�

− �� ,

�8�

where �=−�2�+1�� / �2�+ �s−1��−s−1�, �=4ia	n
 /
3n3pF=16im2l� /15a, n3 is the number density of 3He atoms,
and pF is the Fermi momentum. We emphasize, that ktr�m ,��
has a priori only two unknown independent parameters be-
cause �, s, and m= �a /2��
 /� are related through the Fermi
liquid expression �=	n�= 1

5n3pFl� and because � depends
on the frequency, known properties of the liquid, and the
radius of the wire.

C. Viscometer

The equation of motion for a semicircular vibrating wire
resonator differs from that for a damped harmonic oscillator
and the response of the resonator is not perfectly Lorentzian.
The deviations from a Lorentzian are clearly visible at low
quality factors. The viscometer response is better described
by an equation due to Carless et al.12 which we have adapted
to account for the ohmic resistance and the intrinsic damping
of the wire,

Z = X + iY = R +
Rvz0

4

�4 − z4 f�z� , �9�

where Rv= i
B2L /2
w�a2	w,

f�z� = 1 +
4�2z„sinh z�1 + cos z� − sin z�1 + cosh z�…

��4 − z4��1 − cos z cosh z�

and

z4 = z0
4 
2


w
2 1 +

i
w

Qw

+

	s

	w
+

	n

	w
ktr�m,��� . �10�

Here z0�4.73004 is the first zero of 1−cos z cosh z, 
w and
Qw are the resonance angular frequency and the quality fac-
tor of the first mechanical resonance of the wire in vacuum,
	w is the density of the wire, B is the magnetic field, and L
and R are the length of the wire and its ohmic resistance.
Since the shape of the response of the vibrating wire resona-
tor is not Lorentzian, the resonance width f+− f− and reso-
nance frequency f0 need to be explicitly defined:12 f0 is given
by Y�f0�
0 and f+ and f− are given by X�f±�−R
 ±Y�f±�

We consider the limit s→1 to discuss the effect of Eq. �8�
on the response of the viscometer. In this limit, Eq. �8� sim-
plifies to8

ktr�m,�� �
1

1 − �
1 +

1 + �

�k�m� − 1�−1 − im2� − �
� , �11�

since ��� / �1−����. At high temperature, � is negli-
gible and Eq. �11� reduces to Eq. �1� �with Eq. �6�� which
describes tangential slip enhanced by specular scattering. Al-
though ��� is much smaller than 1, the importance of the �
term in the denominator between the brackets increases to-
wards lower temperatures, because m→0, k�m�→�, and �
is temperature independent. The � term arises from the ra-
dial slip and describes the Knudsen regime. At very low
temperatures, Eq. �11� is pushed beyond its validity region
since l��a, but Eq. �11� still manifests ballistic behavior. In
the ballistic limit, the resonance width is given by f+− f−
=3n3pF /8�a	w while the shift of the resonance frequency is
unaffected by 	n, since ktr�−1/� is imaginary and since the
shift and the width4 are given by f0− f ideal= �	n /2	w��ktr�
−1�f0 and f+− f−= �	n /	w�ktr� f0, where ktr=ktr� + iktr� . By ki-
netic arguments the width is expected to be f+− f−
=An3pF / �2�2a	w� where Bowley has estimated A�2.36 for
elastic scattering on a smooth wire.14 This value is practi-
cally equal to the value extrapolated from Eq. �11�: A
=3� /4.

III. EXPERIMENTAL SETUP AND DATA ANALYSIS

The experimental setup has been designed to measure the
temperature dependence of the viscosity of 3He-4He mix-
tures in high magnetic field. A total of eight viscometers has
been placed inside two cells containing saturated 3He-4He
mixtures with the concentrated phase �almost pure 3He�
floating on top of the dilute phase. The first cell for experi-
ments at SVP is the mixing chamber of a 3He-4He dilution
refrigerator with two viscometers at the top in the concen-
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trated phase and two viscometers at the bottom in the dilute
phase. The second cell for experiments at pressures in the
range of 0–20 bars contains also two viscometers at the top
and two viscometers at the bottom. This cell has been
mounted below the mixing chamber on a silver rod thermally
anchored to the mixing chamber. A 3He melting curve
thermometer15 and a Coulomb blockade thermometer16 have
been mounted on the silver rod. The whole setup has been
placed inside a 12 T magnet and we have varied the field
between 4 and 11.5 T to verify that the slip effects are not
field dependent. The lowest temperature in the second cell is
about 15 mK due to an unidentified heat leak to the silver
rod. The Coulomb blockade thermometer is operational
down to about 40 mK and the melting curve thermometer in
the whole temperature range although the thermal time con-
stants are on the order of 1 h at the lowest temperature be-
cause of the high magnetic field.

We have continued to monitor viscometers in the mixing
chamber of the 3He-4He dilution refrigerator in completely
different experiments. Our most pronounced results on slip
have been obtained in those experiments because of the
lower temperatures �down to below 6 mK�.

The viscometers have been made out of � 25.7 �m PtRh
wire and � 62.2 �m CuNi wire with nominal densities of
17 520 and 6 658 kg/m3. The radius of the wires has been
measured with a normal microscope and an electron beam
microscope. The density has been calculated from the mass
of a piece of wire of 1 m length. We have also checked the
mechanical properties of the wires by experiments in super-
fluid 4He at temperatures below 50 mK. The superfluid 4He
acts as an ideal liquid and we have calculated the density of
the wire from the shift of the resonance frequency with re-
spect to vacuum: 
ideal=
w�	w / �	w+	s�. Both determina-
tions of the wire density agree to within 1%.

The experimental errors in the slip measurements depend
to a large extent on the errors in the measurements of the
shift of the resonance frequency with respect to its vacuum
value and on the uncertainties in the values for the densities
of the liquid and the wire. We have worked without high
frequency filters on top of the cryostat and have disabled the
internal filters of the digital lock-in amplifier to eliminate
errors in the frequency measurements due to spurious phase
shifts. The advantage of resistive viscometers in high field
with respect to superconducting viscometers in low field is
that the contribution of the self-inductance of the wire to the
total impedance is negligible with respect to the resistance of
the wire and the impedance due to the mechanical motion of
the wire in the magnetic field �both are never lower than
5 ��. Grounding a current and a voltage terminal at the top
of the cryostat eliminates practically all phase shifts induced
by the twisted wires between the viscometers and the top of
the cryostat. Measurement of the Ohmic resistance of the
viscometers at zero field in the frequency range 0.1–10 kHz
shows that the phase shift is less than 0.1°. The resonance
frequency and the quality factor, 
w and Qw of the viscom-
eters in vacuum depend on temperature and magnetic field.
The characterization of the viscometers in the high pressure
cell is done at temperatures below 100 mK, but vacuum
measurements of the viscometers in the mixing chamber are
only possible at temperatures above 2–3 K. We have cor-

rected the value of 
w for each wire by a constant shift in the
data analysis when needed; typically 0.05–1.0 Hz for the
wires in the mixing chamber and less for the wires in the
experimental cell. Eddy currents reduce the values for Qw to
about 6000–8000 in a field of 11.5 T.

A computer program controls the temperature and sweeps
the frequency of the excitation current of the viscometers
over an interval centered on the resonance frequency to mea-
sure the in- and out-phase component of the voltage over the
wire. At the lowest temperatures, we have used excitation
currents in the range 0.1–0.4 A for voltages over the viscom-
eters at resonance in the range 10–20 V.

Fits of Eq. �9� with Eqs. �10� and �8� to the viscometer
response result in four independent parameters: � �or l�� and
� characterizing the kinematic viscosity �or the mean free
path� and the slip length, and R and Rv characterizing the
vibrating wire. A polynomial fit17 to data of the density of
pure 3He as a function of pressure has been used in the
analysis of the measurements in the concentrated phase and
in pure 3He. The analysis of the dilute phase measurements
requires values for the normal and superfluid density which
have been calculated from the relation vm�T , p ,x�=v4�p��1
+��x , p ,T�x� and the quasiparticle effective mass, where vm

is the molar volume of a mixture of concentration x at pres-
sure p and temperature T, v4 is the molar volume of pure
4He, and � measures the difference in volume occupied by a
4He and a 3He atom. We have used the results for ��p ,T
=0� and v4�p� published by Watson et al.,18 our fit of the
form xs�p ,T�=xs�p ,T=0��1+�2�p�T2+�3�p�T3� to the mea-
surements of the saturation concentration by Yorozu et al.,19

and a fit by Rodrigues et al.20 to data of the effective mass as
a function of pressure in the dilute phase.

The parameters �, �, R, and Rv have been substituted in
Eq. �9� to find the shift of the resonance frequency f0− f ideal
and resonance width f+− f−.

IV. SLIP RESULTS

The effect of the superfluid 4He film on the wall is shown
in Fig. 1. It shows a comparison of the relation between
resonance shift and resonance width for the same PtRh wire
in concentrated 3He and in nominally 99.995% pure 3He
over almost the same temperature range. The pure 3He data
shows a little bit of slip and is in good agreement with Eq.
�1� and �1+s� / �1−s�=2.2. The values for �1+s� / �1−s� mea-
sured by the CuNi viscometers in pure liquid 3He fall in the
range 1.0–1.1. The concentrated phase data shows much
more slip and we attribute the slip to enhanced specular scat-
tering of the 3He quasiparticles off the superfluid 4Hefilm
adsorbed on the wire.

The analysis based on the theory of Høgaard Jensen et al.7

of the concentrated phase data yields viscosity results in
agreement with measurements of the viscosity in pure 3He.12

However, the results for � are incompatible with Eq. �2� and
a constant value for the specular scattering fraction. We find
that the concentrated phase data is close to the calculation
with �=1/2 which assumes full specular scattering and takes
the curvature of the wire into account. The difference be-
tween the data and the calculation with �=1/2 is explained

S. PERISANU AND G. VERMEULEN PHYSICAL REVIEW B 73, 134517 �2006�

134517-4



by a finite value for �1+s� / �1−s�. The behavior of the con-
centrated phase is very unusual; the flow is still hydrody-
namic since l� /a�0.01 but the limit of complete tangential
slip is almost reached.

The analysis using Eq. �8� of data taken with a PtRh wire
in the dilute phase at SVP in the temperature range
5.5–100 mK results in the relation between the slip coeffi-
cient � and the mean free path l� shown in Fig. 2. The
agreement between the experimental results and Eq. �6� with
�1+s� / �1−s�=100 is excellent for l��5 �m. The small dis-
crepancy between theory and experiment for l��5 �m is
insignificant because the theory of Bowley and Owers-
Bradley8 assumes l� /a�1.

Figure 3 shows the same experimental results as reso-
nance shift versus resonance width. The full curve has been
calculated on basis of Eq. �8� with �1+s� / �1−s�=100 and
�=0.00345i, where � has been calculated from the number
density and the effective mass of the 3He atoms in the dilute
phase and the frequency. At temperatures close to 100 mK
the data falls between the curves representing the solution of
Stokes �dashed-dotted line, �=0� and the solution assuming
full specular scattering �dashed line, �=1/2�. This reflects
itself in the finite value for �1+s� / �1−s� resulting from the
data analysis. The radial slip explains why the data falls
above the solution assuming full specular scattering at lower
temperatures.

Finally, we did not need to adjust the resonance frequency
of the wire in vacuum fw for this data set but comment on the
possible consequences: a small constant shift of fw by
0.05 Hz would shift the theoretical curves in Fig. 3 by the

same amount in the vertical direction. However, it would
have a significant effect on the experimental results of �
versus l� shown in Fig. 2 in the region l��2 �m, in any case
larger than the discrepancy between the data and the calcu-
lated curve at l��10 �m. The results for �1+s� / �1−s� are
thus very sensitive to the errors in fw.

Figures 1 and 2 of Perisanu and Vermeulen10 show the
results for shift versus width measured by another PtRh wire
in the concentrated and dilute phase from 7 to about 100 mK
at 0 bar. Fits to this data for � versus l� give �1+s� / �1−s�
�2500 in the concentrated phase and �1+s� / �1−s��350 in
the dilute phase. The agreement between this data and the
theory of Bowley and Owers-Bradley is very good. We em-
phasize the effect of the radial slip in the concentrated phase
is much smaller than in the dilute phase because l� is smaller.

We do not know why the specular scattering fraction is
lower in the dilute phase �s�0.994� than in the concentrated
phase �s�0.9992�. The specular enhancement factor
�1+s� / �1−s� is always an order of magnitude larger in the
concentrated phase than in the dilute phase, although �1
+s� / �1−s� may be up to 5 times as low in a particular phase
for other viscometers made out of the same wire. We can
think of two differences between the concentrated phase and
the dilute phase which could give a clue for an explanation
for the difference in s: �1� in the dilute phase the concentra-
tion changes from zero at the surface of the wire to its bulk
value at some distance away while in the concentrated phase
the wire is surrounded by a thin layer of dilute phase and a
phase separation interface which could affect momentum
transfer, and �2� the viscous mean free path in the concen-
trated phase is an order of magnitude smaller than in the
dilute phase which could explain a different sensitivity to, for
instance, surface roughness.

FIG. 1. The comparison of the shift of the resonance frequency
versus the resonance width of the same PtRh viscometer in concen-
trated 3He and 99.995% pure 3He shows that the curvature of the
wire has to be included in the slip boundary condition when ��a.
f ideal is the resonance frequency of the wire in a zero viscosity fluid
with the density of liquid 3He at T=0 K �fw=1481.38 Hz and
f ideal=1477.88 Hz�. Also shown are calculated curves based on the
solution of the Navier-Stokes equation �dashed-dotted line�, on Eq.
�1� with �1+s� / �1−s�=2.2 �full line� and with �=1 �dotted line�,
and �=1/2 �dashed line�.

FIG. 2. The slip coefficient �=� / �2�+a� versus the viscous
mean free path l� measured with a PtRh wire in the dilute phase at
svp. The agreement between the results based on Eqs. �10� and �8�
for l��5 m �l� /a�0.4� and the calculation of � with �1+s� / �1
−s�=100 is excellent.
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V. VISCOUS MEAN FREE PATH RESULTS

The theory has been used to eliminate the slip effects in
the analysis to measure the temperature dependence of the
viscosity in the dilute and the concentrated phase at pressures
of 0, 5, 7, 10, 12, 15, and 20 bars. The temperature has been
measured by the melting curve thermometer and we have
corrected the PLTS-2000 �Ref. 21� zero field melting curve
for the changes due to the entropy reduction of the solid by
the applied magnetic field assuming that the solid is a para-
magnet. We found that a significant part of the pressure de-
pendence of the viscosity is proportional to the density in the
concentrated phase and to the normal density in the dilute
phase. Therefore, we prefer to present the results as the vis-
cous mean free path instead of the viscosity.

The low temperature dependence of the viscous mean free
path in the dilute and concentrated phase including the lead-
ing order finite temperature correction is given by22

1

l�T2 = a − bT . �12�

Figure 4 shows the results for the parameters a and b in
the concentrated phase as a function of pressure. The closed
and open circles are our results for a and b measured with a
PtRh and a CuNi wire and the lines are linear fits to the
results: a�p�=a1p+a0 m−1 K−2 and b�p�=b1p+b0 m−1 K−3

with p in bars. The constants are: a0= �12.96±0.07��109,
a1= �0.979±0.006��109, b0= �29.01±0.15��109, and b1

= �4.449±0.012��109 for the PtRh wire; and a0= �12.14
±0.04��109, a1= �1.080±0.003��109, b0= �22.20±0.62�
�109, and b1= �4.513±0.053��109 for the CuNi wire. The
error bars in the coefficients reflect the scatter of the data in
Fig. 4.

The stars in Fig. 4 are the results for a given in Table I of
Carless et al.12 converted to the viscous mean free path, in-
cluding the correction of the temperature scale of a factor
0.89 proposed by Greywall.17 The cross in Fig. 4 is the sum-
mary for viscosity data at SVP given by Tholen et al.3 con-
verted to the viscous mean free path. We have also measured
the viscosity at SVP in pure 3He where the theory of
Høgaard Jensen et al.7 is valid. The average over two CuNi
viscometers and one PtRh viscometer �the resonance of the
second PtRh viscometer was deformed� is a= �12.28±0.10�
�109 m−1 K−2 and b= �23.9±1.0��109 m−1 K−3. The agree-
ment between our values of a obtained in the concentrated
phase with a strong enhancement of the slip length and in
pure liquid 3He with a tiny enhancement of the slip length
shows that the theory of Bowley and Owers-Bradley8 allows
us to analyze viscometer data correctly when the scattering is
almost entirely specular. The scatter in the values for a and b
in the concentrated phase have a comparable contribution in
the error bar on the viscosity at 50 mK. Furthermore, our
values of a agree with the viscosity measurements by Carless
et al.12 but are significantly lower than the viscosity data
summarized by Tholen et al.3

Figure 5 shows the results for the viscous mean free path
in the dilute phase at SVP as a function of temperature,
where the temperature has been measured by the melting
curve thermometer. The scatter in the data at temperatures
near 15 mK is due to the long thermal time constant of the

FIG. 3. The shift of the resonance frequency versus the reso-
nance width of a PtRh viscometer with a vacuum resonance of fw

=944.351 Hz in the dilute phase at svp. The dashed-dotted line is
the solution of the Navier-Stokes equation and the dotted line is the
theory of Høgaard Jensen et al. �Ref. 7� in the limit �→�. The
dashed curve has been calculated on the basis of Eq. �8� with �
=0 which corresponds to the hydrodynamic boundary condition
vr�a�=0. The full curve has been calculated on basis of Eq. �8� with
�1+s� / �1−s�=100 and �=0.00345i �calculated from the dilute
phase properties and the frequency�. Note, that l� /a�0.8 at the
lowest temperatures.

FIG. 4. The pressure dependence of the parameters a and b in
Eq. �12� measured in the concentrated phase with a PtRh �full
circles� and a CuNi wire �open circles�. The lines are linear fit to the
data. The stars represent the results for a given in Table I of Carless
et al. �Ref. 12� converted to the viscous mean free path, including a
correction of the temperature scale with a factor 0.89 �Ref. 17�. The
cross represents the summary of viscosity data at svp by Tholen et
al. �Ref. 3�.
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melting curve thermometer. Also shown are a fit of Eq. �12�
to the data and the fit by Zeegers et al.23 to their viscosity
measurements converted to the viscous mean free path. Our
result agrees better with Eq. �12� than the result published by
Zeegers et al.23

Figure 6 shows the pressure dependence of the parameters
a and b measured with the PtRh wire in the dilute phase. The
curves are polynomial fits to the results: a�p�=a2p2+a1p
+a0 m−1 K−2 and b�p�=b2p2+b1p+b0 m−1 K−3 with p in
bars and a0= �3.239±0.009��109, a1= �153.6±2.0��106,

a2= �−2.536±0.093��106, b0= �16.55±0.17��109, b1

= �−109.8±36.4��106, and b2= �25.0±1.7��106.
The analysis of the data in the dilute phase measured with

the CuNi viscometer is difficult, because at low temperature
� tends towards 0.2–0.3 which is outside the validity range
of Eq. �8�. We have inverted the experimental cell to com-
pare the functionality of the CuNi viscometers in the dilute
and concentrated phase. Both CuNi viscometers work well in
the concentrated phase but show similar behavior for � in the
dilute phase.

VI. SURFACE CONDITIONS

The agreement between theory and experiment depends
on how careful a vibrating wire resonator has been mounted
and is in general better for the PtRh wires than for the CuNi
wires. The measurements of the resonance shift as a function
of resonance width always show the tendency to curve as
predicted by Eq. �8�, but � tends to saturate at low tempera-
tures to values in the range 0.4���0.5 instead of 0.5. This
effect is more pronounced for the CuNi wires in the dilute
phase, where 0.2���0.3.

There also remains the question why the enhancement of
the slip length has not been observed in the viscometer ex-
periments mentioned in the introduction. All three experi-
ments use a � 125 �m tantalum wire.4–6 Tentative applica-
tion of Eq. �8� outside its validity range on one of those
experiments24 yields �1+s� / �1−s��3.

Einzel et al.13 have applied Eq. �5� on a mesoscopic scale
to modelize the effect of surface roughness on slip enhanced
by specular scattering. The roughness is modeled as a super-
position of weak sinusoidal variations with wave number k
and amplitude h. The theory is valid when l��h ,k−1��,
since the fluid flow near the surface is calculated hydrody-
namically. The simplest approximation is to model the sur-
face roughness by a single sinusoidal variation with ampli-
tude hS and wave number kS. In the limit kS��1, the system
behaves as if there is an effective slip length �E given by

1

�E
=

1

�
+

1

�S
, �13�

where �S�1/hS
2kS

3 is due to surface roughness. Applying this
result to a wire, we would measure a roughness dependent �S
instead of the intrinsic �,

�S =
�E

2�E + a
=

�

�2 + a/�S�� + a
. �14�

Figure 7 shows fits of Eq. �14� to data taken with a PtRh
and a CuNi viscometer in the concentrated phase at p=7
bars. We find �S=32.9 m for the PtRh wire and �S=107 m
for the CuNi wire.

Figures 8 and 9 show images made by a scanning electron
beam microscope of the surface of our 25.7 �m PtRh wire
and a 125 �m tantalum wire similar to the wire used in many
other viscosity experiments in mixtures.4,23,25 The quality of
the images of the CuNi wires suffer from charge effects be-
cause the wires are insulated, but they are clearly rougher
than the PtRh wire and smoother than the tantalum wire. The

FIG. 5. The viscous mean free path in the dilute phase at 0 bars
as a function of temperature. The full line is a fit of Eq. �12� to the
data. The dashed line represents the fit by Zeegers et al. �Ref. 23� to
their viscosity measurements to the viscous mean free path.

FIG. 6. The pressure dependence of the parameters a and b
in Eq. �12� in the dilute phase. The curves are polynomial fits
to the data: a= ��−2.536±0.093��106p+ �3.239±0.009��109�p
+ �3.239±0.009��109 m−1 K−2 and b= ��25.0±1.7��106p
+ �−109.8±36.4��106�p+ �16.55±0.17��109 m−1 K−3 with p in
bars.
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characteristic length scale for the surface roughness is about
100 nm for the PtRh wire and 2 �m for the tantalum wire.
Therefore, our experiment does not meet the condition l�

�h ,k−1 although not as badly in the concentrated phase as in
the dilute phase. Indeed, the prediction �S�1/hS

2kS
3 and the

observations 1/kS=100/2� nm and �S�30 m for the this
PtRh wire would imply hS�0.5 nm. Figure 8 shows that hS
is 10–100 times as large. Nevertheless, it is possible that
other surface mechanisms which reduce the slip length can
lead to Eq. �13�, but with a different physical interpretation

for �S. For instance, Wang and Yu26 have proposed that mo-
mentum transfer between the 3He quasiparticles and a sub-
strate covered with a 4He rich boundary layer occurs via
vortices threading the layer. Zwicknagel and Toepffer27 have
calculated the slip in the flow of normal phase 3He with a
roughness smaller than the viscous mean free path and larger
than the quasiparticle wavelength. In the case of pure specu-
lar scattering, they find a small enhancement of the slip
length for a surfaces with a Gaussian distribution in height
and slope which is several orders of magnitude smaller than
the enhancement in our experiments.

Finally, the results for �S in the concentrated phase are
comparable for the CuNi and the PtRh viscometers. In the
dilute phase, the values of �S for the CuNi viscometers
�about 25 m� are a factor 2–5 smaller than for the PtRh vis-
cometers. A fundamental difference between the concen-
trated and dilute phase is that in the dilute phase the concen-
tration changes from zero at the surface of the wire to its
bulk value at a distance of several nanometers away1 while
in the concentrated phase the wire is surrounded by a thin
layer of dilute phase and a phase separation interface. Sur-
face tension may help to smooth out the surface roughness of
the wire in the concentrated phase.

VII. CONCLUSION

The surface conditions for our vibrating wire viscometers
have made it possible to observe two contributions to the slip
in 3He-4He mixtures. Specular scattering of the 3He quasi-
particles off the superfluid 4He film adsorbed on the viscom-
eters enhances the velocity slip in the tangential direction
and renders the slip length in the hydrodynamic regime sev-
eral orders of magnitude larger than the mean free path. The
tangential slip is fully developed before the system reaches

FIG. 7. The parameter � versus the mean free path for a PtRh
and CuNi wire in the concentrated phase at p=7 bars. Fits of Eq.
�14� to the data yield �S=32.9 m for the PtRh wire and 107 m for
the CuNi wire.

FIG. 8. Scanning electron
beam microscope image of the
� 25.7 �m PtRh wire. The sur-
face roughness has a characteristic
wave vector length of about
100 nm and a characteristic am-
plitude of about 20 nm. The verti-
cal scratches are probably due to
the drawing of the wire.
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the Knudsen regime. In this regime, we measure the effect of
a velocity slip in the radial direction superimposed on the
tangential velocity slip. Both contributions to the slip are in
good are in good agreement with a the theory of Bowley and
Owers-Bradley.8 We hope that the theory can be extended
beyond its current validity limits, so that it can describe the
behavior a viscometer with a specular surface from the hy-
drodynamic regime to the ballistic limit.
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