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We study third sound in thin 3He-4He mixture films from first-principles, microscopic theory and compare
these results to the usual film-averaged, hydrodynamic approach. The hydrodynamic approach yields third-
sound speeds that depend only on the thickness of the superfluid film and the distribution of impurities—i.e.,
3He. In very thin films, this result clearly must be modified to account for the effects of nonuniform 4He film
density. Utilizing the variational, hypernetted-chain–Euler-Lagrange theory as applied to inhomogeneous bo-
son systems, we calculate accurate chemical potentials for both the 4He superfluid film and the physisorbed
3He. Numerical density derivatives of the chemical potentials lead to the sought-after third-sound speeds that
clearly reflect a layered structure of at least seven oscillations. We are thus able to gauge the range of
applicability of the film-averaged hydrodynamic results as applied to thin quantum liquid films. We study third
sound on two model substrates: Nuclepore and glass. We compute the change in third-sound speed as a
function of 3He coverage in the linear �low-concentration� regime, which is then studied for the two substrates
as a function of 4He film thickness and compared to existing experiments.3He density profiles are calculated as
a function of 4He film thickness, and we show explicitly the smooth transition from Andreev states in the
thick-film limit to lateral mixtures in the submonolayer limit. This effect was first seen by Noiray et al. �Phys.
Rev. Lett. 53, 2421 �1984��. Our results predict that the addition of a small amount of 3He can increase, as well
as decrease, the third-sound speed relative to that of the pure 4He film. Further, we show that the addition of
a small amount of 3He can destabilize the film and drive a phase separation into lateral regions of 3He-rich and
3He-poor patches. This latter result may help explain the phase transitions reported by Bhattacharyya and
Gasparini �Phys. Rev. Lett. 49, 919 �1982�� and Csáthy, Kim, and Chan �Phys. Rev. Lett. 88, 045301 �2002��
in thin mixture films.
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I. INTRODUCTION

Using a film-averaged, hydrodynamical approach devel-
oped by Bergman1 in his theory of third sound in 4He films,
it was shown in Refs. 2 and 3 that, in the low-temperature
limit, the third-sound speed in a double-layer mixture film
can be written as

� c3
2

c30
2 � = 1 −

�u

��
� fu�h�� − fu�h� + hu�

f��h4
0� � , �1.1�

where the quantity c30
2 =−�h4−h0�f��h4

0� is the third-sound
speed for pure 4He. The � and u subscripts correspond to the
lower and upper layers. Both the upper and lower films can,
in principle, be mixtures of the 4He and 3He components.
The �’s are film-averaged mass densities, h� is the height of
the mobile film above the substrate, and h0 is the thickness of
the immobile 4He layer next to the substrate. The force func-
tions fx�h� describe the interaction of the substrate on the
film surfaces. They are taken to be in van der Waals form

fx�h� = −
3�s

mxh
4 , �1.2�

where �s is the substrate-helium van der Waals constant, x
= 	� ,u
, and mx are film-averaged masses. This approach is
valid for films that can be characterized by a single thickness
parameter h�, hu, or h4

0. Equation �1.1� can be utilized in
different limits by assuming different behavior for the quan-
tities h�, ��, hu, and �u as a function of 3He coverage. In the

literature, Eq. �1.1� has been successfully used to describe
the third-sound response for both multilayer 4He films2,3 and
thin 4He films.4

As with thermodynamics, hydrodynamics requires
material-specific information in order to provide output data.
In the case of a very inhomogeneous system, such as 3He
adsorbed in a thin 4He film, this input can be both ambiguous
and complicated. The third-sound speed in a mixture film
will depend both on the structure of the 4He film and the
distribution of 3He in and on the film surface. The 3He dis-
tribution itself depends on the occupation of single-particle
surface states.4 At low coverages the 3He will occupy the
ground state; however, with increasing coverage the 3He may
start occupying the first excited state and the changed spatial
distribution leads to a changed third-sound response.

In this paper, we shall concentrate on two-mixture-third-
sound experiments on Nuclepore and glass substrates as re-
ported by Hallock and co-workers. The first, by Sheldon and
Hallock,5 was on a Nuclepore substrate. We refer the reader
to Ref. 5 and references cited therein for a discussion of the
experimental details. For this system, the film thickness h4

0 is
13.2 Å. The substrate, Nuclepore, is a polycarbonate mate-
rial threaded with pores of nominal diameter �2000 Å. The
low-coverage results are linear and can be represented by

c3
2

c30
2 � 1 − ��3, �1.3�

where �3= ��3 /�3�� is the coverage in units of monolayers
and �3�
1/�3

2 is the areal density at “conventional” mono-
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layer completion, �3=3.9 Å. By inspection, the experimental
slope �� 1

2 . The change in third-sound response at a cover-
age of 0.6�3 is attributed to the onset of first-excited-state
occupation. For a discussion of possible models to describe
the third-sound speed at higher coverages when the 3He is
also occupying the first excited state see Ref. 6.

The other third-sound experiment, by Valles, Heinrichs,
and Hallock,7 was on a borosilicate glass substrate. Data
were taken for two values of the 4He film thickness, 3.578
layers and 5.274 layers, where one 4He layer �4=3.6 Å. We
refer the reader to Ref. 7 and references cited therein for a
discussion of the experimental details. These results qualita-
tively resemble the older thick-film results of Ref. 2: little or
no linear regime at low coverages. If we assume that the
very first few data points determine a line, then the slope is
smaller for the thicker film and approximately �3.578�0.8
and �5.274�0.6.

There is at least one other mixture third-sound experiment
in the literature. Noiray et al.8 reported results for third
sound on both Nuclepore and glass. These authors found a
transition �they called a stratification transition� as a func-
tion of 4He film thickness in which the 3He was separated
from the 4He for large film thicknesses and mixes into the
film at small film thickness. We shall investigate this behav-
ior by calculating the 3He density profile as a function of 4He
coverage.

The main purpose of this work is to investigate the low-
3He-coverage, layered-4He-film, third-sound response on the
Nuclepore and glass substrates and to try to understand why
they are so different. Clearly, the essential physical differ-
ence between the Nuclepore/He and glass/He systems is the
substrate-He potential. Different substrate potentials give rise
to different 4He and 3He distributions. In Table I, we briefly
compare Nuclepore and glass as substrates for 4He. Both
substrates are amorphous with no long-range periodic order.
The van der Waals constant for glass is approximately 2/3
that of Nuclepore and the initial, immobile layer for glass is
5.4 Å thick compared to 9 Å for Nuclepore. Thus, the
Nuclepore substrate is considerably more attractive than the
glass.

In the following section, we begin a microscopic investi-
gation of the two systems using the variational, hypernetted
chain theory. The object will be to study the 3He single-
particle state and the various chemical potentials to obtain a
better understanding of the underlying reason for the differ-
ence in the third-sound response of the Nuclepore and glass

systems. In order to understand the physics we need to go
beyond film-averaged hydrodynamics and examine the ener-
gies and distribution functions from a microscopic point of
view. In Sec. II, we briefly review the microscopic hyper-
netted-chain–Euler-Lagrange �HNC-EL� theory. In Sec. III,
we discuss the results of the microscopic calculations for the
Nuclepore and glass model substrates. These are the first
microscopic calculations of third-sound speeds for Nucle-
pore and glass substrates. Further, the results for the change
in third-sound speed due to the addition of a small amount of
3He represents the first microscopic calculation of the third-
sound speed in a 3He-4He mixture film. Section IV is the
Conclusion.

II. VARIATIONAL THEORY

In this section, we shall very briefly review the hypernet-
ted chain Euler-Lagrange �HNC-EL� theory for helium films
with single-particle physisorption states. The discussion em-
phasizes the calculation of the 4He and 3He chemical poten-
tials. This discussion is necessary because the 4He third-
sound speed requires a density derivative of the chemical
potential and the effect of the 3He component on the third-
sound speed requires a double-density derivative, and thus
the numerical foundation of our results lies in the argument
that the coverage dependence of the chemical potentials can
be accurately determined. Details and further references of
the general variational approach can be found in the review
article in Ref. 13. In the first subsection, we first write down
the equations needed to describe the 4He film in a planar
geometry. In the second subsection, we introduce a 3He ada-
tom and calculate the physisorption single-particle states and
chemical potential.

A. 4He films

The system consists of N 4He atoms adsorbed to a solid
substrate. The substrate-helium interaction is modeled by an
appropriate external field Uext�ri�. The helium is described by
a Feenberg variational wave function

�N�r1, . . . ,rN� = exp
1

2��i

u1
�4��ri� + �

i�j

u2
�4,4��ri,r j�

+ �
i�j�k

u3
�4,4,4��ri,r j,rk�� , �2.1�

which allows for the breaking of translational invariance and
isotropy as demanded by the external field. The ground state
of the system is determined by functionally minimizing the
expectation value of the N-body Hamiltonian

HN = �
i=1

N �−
	2

2m
�i

2 + Uext�ri�� + �
i�j

V��ri − r j�� �2.2�

in the space of all trial functions permitted in the ansatz
�2.1�.

For the pure 4He film treated in this subsection, the super-
scripts on the variational functions un are superfluous. How-
ever, in the following subsection, when we add a 3He atom to

TABLE I. A comparison of the Nuclepore and glass substrates.
�4=3.6 Å is the conventional 4He single layer.

Type
Immobile layer �h0�

��4�
van der Waals ��s�

�K Å3�

Nuclepore Amorphous 2.5a 1900b

Glass Amorphous 1.5c 1260d

aReference 9.
bReference 10.
cReference 11.
dReference 12.
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the system, we need to explicitly include the flexibility of
allowing the 3He-4He and 3He-substrate correlations to be
different from the 4He-4He and 4He-substrate correlations.
Having made this point, in the remainder of this subsection,
we shall generally omit the “4” superscripts and subscripts
for the sake of clarity.

The first task is to manipulate the expectation value of the
Hamiltonian in a way that makes it accessible to numerical
treatment. Symmetry breaking requires nontrivial one-body
correlations as embodied in u1�r1�. Our strategy will be to
replace the functions un that are introduced in the many-body
wave function, Eq. �2.1�, by the physically observable
n-body densities or distribution functions. The n-body den-
sity is defined as

�n�r1, . . . ,rn� =
N!

�N − n�!
1

I
� d3rn+1 . . . d3rN�N

2 �r1, . . . ,rN� ,

�2.3�

where I is the normalization integral

I =� d3r1 ¯ d3rN�N
2 �r1, . . . ,rN� . �2.4�

By calculating �1�4�r1� using the Feenberg wave function in
Eq. �2.3� one obtains the first equation in the Born-Green-
Yvon �BGY� hierarchy,

�1�4�r1� = �4�r1��1u1�r1�

+ �4�r1� � d3r2�4�r2�g�r1,r2��1u2�r1,r2� ,

�2.5�

where in an obvious notation �4�r� is the 4He film profile.
Equation �2.5� is exact for a wave function containing pair
correlations only; a third term is added to the right-hand side
if triplet correlations u3 are included. We note that we shall
use the symbol � �as in �4�r�� to denote volume number
densities and the symbol � to denote areal number densities
�i.e., the coverage�.

Equation �2.5� is be used to eliminate u1�r�. For the pair
function u2�r1 ,r2�, we use the HNC hierarchy of integral
equations for inhomogeneous systems to derive a relation-
ship between u2�r1 ,r2� and the pair distribution function
g�r1 ,r2�. The cleanest, but somewhat lengthy diagrammatic
derivation of the HNC equations for a nonuniform system
may be found in Ref. 14; a somewhat heuristic derivation,
tuned to the application to quantum liquids, was given in
Ref. 15.

The HNC equations are

g�r1,r2� = exp�u2�r1,r2� + N�r1,r2� + E�r1,r2�� , �2.6�

Ñ�r1,r2� = �h̃ * X̃��r1,r2� , �2.7�

h�r1,r2� = g�r1,r2� − 1, �2.8�

X�r1,r2� = h�r1,r2� − N�r1,r2� , �2.9�

where N�r1 ,r2� are the chain �nodal� diagrams and X�r1 ,r2�
are the non-nodal diagrams. Here E�r1 ,r2� is the infinite se-
ries of “elementary” diagrams which can be expressed as
multidimensional integrals involving �4�r� and g�r1 ,r2�. It
may also contain triplet correlations.

Square roots of the density appear frequently as factors. In
Eq. �2.7� and henceforth, we introduce the “tilde notation”—
for example,

C̃�r1� 
 ��4�r1�C�r1� , �2.10�

Ã�r1,r2� 
 ��4�r1�A�r1,r2���4�r2� . �2.11�

We also mark convolution products with an asterisk. The unit
operator and the inverse will generally be interpreted in the
sense of a convolution product. We shall also use the
coordinate-space static structure function

S�r,r�� = 
�r,r�� + h̃�r,r�� , �2.12�

which is related to the direct correlation function X�r1 ,r2�
through

S�r1,r2� = �1 − X̃�−1�r1,r2� . �2.13�

The variational energy expectation value is given by

EN�un� =
1

I
� d3r1 ¯ d3rN�N�r1, . . . ,rN�H�N�r1, . . . ,rN� .

�2.14�

If triplet correlations are neglected for the time being, one
can, using the HNC relationship �2.6�, express EN entirely in
terms of the one-body density �4�r1� and the pair distribution
function and g�r1 ,r2�,

EN = T�4� + Eext
�4� + Ec, �2.15�

Ec = K + V + EQ, �2.16�

K =
	2

2m
� d3r1d3r2�4�r1��4�r2����1

�g�r1,r2��2

+ ��2
�g�r1,r2��2� , �2.17�

V =
1

2
� d3r1d3r2�4�r1��4�r2�g�r1,r2�V��r1 − r2�� ,

�2.18�

EQ = −
1

4
� d3r1d3r2�Ñ�r1,r2� + Ẽ�r1,r2��H1�r1�h̃�r1,r2� ,

�2.19�

where

THIRD SOUND AND STABILITY OF THIN 3He-4He FILMS PHYSICAL REVIEW B 73, 134514 �2006�

134514-3



H1�r1� = −
	2

2m

1
��4�r1�

�1 · �4�r1��1
1

��4�r1�
. �2.20�

The operator H1�r1� can be thought of as the kinetic energy
operator generalized to inhomogeneous systems.

Two new quantities appear in Eq. �2.15�. The first one

T�4� =
	2

2m
� d3r1��1

��4�r1��2 �2.21�

is the kinetic energy of a noninteracting, inhomogeneous
Bose system whose single-particle wave function is ��1�r1�.
The second term

Eext
�4� =� d3r1�4�r1�Uext�r1� �2.22�

is the energy of the system in the external field Uext�r1�. This
physics of the interactions is contained in the third term Ec,
which we shall call the “correlation energy.”

The functions �4�r1� and g�r1 ,r2� are determined by mini-
mization of the total energy. Let us first look at the optimi-
zation of the pair correlations. One arrives at the Euler-
Lagrange equation15

�X̃ * H1 * X̃��r1,r2� − �H1�r1� + H1�r2��X̃�r1,r2�

= 2Ṽp-h
�44��r1,r2� �2.23�

or, using the relationship �2.13�,

�S−1 * H1 * S−1 − H1��r1,r2� = 2Ṽp-h
�44��r1,r2� . �2.24�

The “particle-hole interaction” Vp-h
�44��r1 ,r2� appearing in Eq.

�2.23� is

Vp-h
�44��r1,r2� = g�r1,r2��V��r1 − r2��� + �Ve�r1,r2�

+
	2

2m
���1

�g�r1,r2��2 + ��2
�g�r1,r2��2�

+ h�r1,r2�wI�r1,r2� , �2.25�

with the induced interaction

w̃I�r1,r2� = −
1

2
��H1�r1� + H1�r2��Ñ�r1,r2�

+ �X̃ * H1 * X̃��r1,r2�� . �2.26�

�Ve�r1 ,r2� denotes the correction from elementary diagrams
and triplet correlations. The nomenclature “particle-hole in-
teraction” is used because in an exact theory this term would
be equal to the second functional derivative of the energy
with respect to the density. It is important to understand at
this point that the HNC expression �2.25� is identical with
the second density derivative only in an exact theory that
contains all elementary diagrams and multiparticle correla-
tions to all orders. Turning the discrepancy to an advantage,
the comparison between the HNC definition and the second
functional derivative can serve as a useful consistency test.
By a cautious scaling of triplet and elementary diagram cor-
rections, these quantities may also be made equal; it is our
experience that such modifications have no visible effect on

quantities like the energy or density profiles, and they can
slightly alter the stability limits.

Finally, we must also derive an Euler equation for the
one-body density. The energy is minimized subject to the
constraint of fixed particle number

N =� d3r1�4�r1�; �2.27�

i.e., we carry out the variation

1

2


�EN − �4N�

��4�r1�

= �−
	2

2m 4�1
2 + Uext�r1� + VH

�4��r1� − �4�
���4�r1� = 0, �2.28�

where

VH
�4��r1� =


Ec


�4�r1�
�2.29�

is a generalized Hartree potential that depends implicitly on
the density and the pair distribution function. The chemical
potential �4 enters the theory as a Lagrange parameter to
enforce the constraint �2.27�. Explicit forms of the effective
one-body potential VH�r� have been derived in Ref. 16.

The central quantities of interest in this work are the 3He
and 4He coverage dependences of the third-sound speed, c3.
The third-sound speed can be calculated in two different
ways: namely, as the hydrodynamic derivative

m4c3
2 = �4

d�4��4�
d�4

�2.30�

and from the long-wavelength limit of the low-lying excita-
tions.

Taking the derivative of the �4 equation �2.28� with re-
spect to �4 yields

�−
	2

2m 4�2 + Uext�r� + VH
�4��r� − �4�d��4�r�

d�4

+
dVH

�4��r�
d�4

��4�r� =
d�4

d�4

��4�r� . �2.31�

The density derivatives of the Hartree potentials can be re-
written in terms of the particle-hole interaction Vp-h

�44��r ,r��,

Vp-h
�ij��r,r�� =


2Ec


�i�r�
� j�r��
, �2.32�

where i , j=3,4, as

dVH
�4��r�

d�4
=� d3r�


VH
�4��r�


�4�r��
d�4�r��

d�4

=� d3r�Vp-h
�44��r,r��

d�4�r��
d�4

. �2.33�

The HNC form of Eq. �2.32� was introduced in Eq. �2.25�.
The operator on the left-hand side of Eq. �2.31� can be

rewritten as follows:
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�−
	2

2m i�
2 + Uext�r� + VH

�i��r� − �i�
= −

	2

2m i
1

��i�r�
��i�r� · �

1
��i�r�

= −
	2

2m i��2 −
�2��i�r�
��i�r�

�

 H1

�i��r� . �2.34�

The density derivative equation �2.31� can thus be written as
an integral equation

� d3r��H1
�4��r�
�r − r�� + 2Ṽp-h

�44��r,r���
d��4�r��

d�4

=
d�4

d�4

��4�r� . �2.35�

Formally inverting the operator in square brackets and then
multiplying by ��4�r� and integrating over r finally leads to

�4
d�4��4�

d�4
=

1

2

�4

���4��H1
�4� + 2Ṽp-h

�44��−1���4�
, �2.36�

in an obvious notation.
An alternative derivation is to look at the long-wavelength

limit of the low-lying excitation, which is, in our case, third
sound. One then arrives15 at exactly the same expression
�2.36�; however, in that case the particle-hole interaction
Vp-h

�44� is given by the HNC expression �2.25�. Thus, compar-
ing the speed of third sound as obtained from the density
derivative of the chemical potential with the one obtained
from long-wavelength excitations gives some estimate for
the accuracy of the HNC approximation for Vp-h

�44�.

B. 3He single-particle states

The Hamiltonian of the �N+1�-particle system consisting
of N 4He atoms and one 3He is

HN+1 = −
	2

2m3
�0

2 + Uext�r0� + �
i=1

N

V��r0 − ri�� + HN.

�2.37�

We adopt the convention that the coordinate r0 refers to the
3He particle and coordinates ri, with i=1, . . . ,N, to the 4He
film particles. The theory is easily generalizable to arbitrary
impurity atoms by introducing specific functions for the im-
purity interaction with the substrate and the 4He.

The generalization of the wave function �2.1� for an inho-
mogeneous N-particle 4He system with a single 3He atom is

�N+1�r0,r1, . . . ,rN�

= exp
1

2�u1
�3��r0� + �

1
i
N

u2
�3,4��r0,ri�

+ �
1
i�j
N

u3
�3,4,4��r0,ri,r j���N�r1, . . . ,rN� .

�2.38�

The energy change due to adding one 3He atom into the
system is the 3He chemical potential �3
EN+1−EN, where
EN+1 is the energy of the system containing one 3He and N
4He atoms and EN is the energy of the unperturbed 4He film,
Eq. �2.15�. Here EN+1 is to be understood as the energy ex-
pectation value of the Hamiltonian �2.37� with respect to the
wave function �2.38�.

We find that the 3He chemical potential can be written in
the form

�3 = T�3� + Eext
�3� + �Ec. �2.39�

The first term is the kinetic energy of a single noninteracting
3He atom with ground-state wave function ��3�r0�,

T�3� =
	2

2m3
� d3r0����3�r0��2, �2.40�

and the second term is the energy of the 3He in the external
potential,

Eext
�3� =� d3r0Uext�r0��3�r0� . �2.41�

The correlation energy �Ec contains the many-body effects,
which can be written as a functional of four quantities: the
3He density �3�r0�, the 4He film density �4�r1�, the 3He-
4He pair-distribution function g�34��r0 ,r1�, and the 4He pair-
distribution function g�44��r1 ,r2�.

When minimizing the 3He energy, one must keep in mind
that all background quantities are changed by the presence of
the 3He atom by terms of the order of 1 /N; these changes
give rise to quantitatively important rearrangement effects.
The details of the derivation are given in Ref. 17, the final
results being similar to those of the ground-state theory of
the background film.

The 3He density is calculated by minimizing the chemical
potential �2.39� with respect to ��3�r0�. This leads to the
usual Hartree equation

−
	2

2mI
�0

2��3�r0� + �Uext�r0� + VH
�3��r0����3�r0� = �3

��3�r0� ,

�2.42�

with the self-consistent one-body Hartree potential for the
single 3He atom:

VH
�3��r0� =


�Ec


�3�r0�
. �2.43�

The 3He chemical potential �3 appears as the Lagrange mul-
tiplier to ensure the normalization �d3r0�3�r0�=1. The two-
body Euler equation is derived by variation of the 3He
chemical potential with respect to �g�34��r0 ,r3. One obtains a
result that is similar to Eq. �2.23� above and the solution
proceeds analogously.

In a manner similar to the derivation of the third-sound
speed, we can calculate the �4 derivative of �3:
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�−
	2

2m 3�2 + Uext�r� + VH
�3��r� − �3�d��3�r�

d�4

+
dVH

�3��r�
d�4

��3�r� =
d�3

d�4

��3�r� . �2.44�

Multiplying Eq. �2.44� by ��3�r� and integrating over r, we
find:

�3
d�3

d�4
=� d3r�3�r�

dVH
�3��r�

d�4

= 2� d3rd3r���3�r�Ṽp-h
�34��r,r��

d��4�r��
d�4

,

�2.45�

which is the desired relationship.

C. 3He dynamics

The “Hartree equation” �2.42� can readily be interpreted
to provide a first level of approximation for the excited states
of the 3He atom,

−
	2

2m3
�2�i�r0� + �Uext�r0� + VH

�3��r0� − �3��i�r0� = ti�i�r0� ,

�2.46�

where, for the ground state, t0=0 and �0�r0�=��3�r0�. The
interpretation of the eigenvalue-function pairs 	ti ,�i�r0�
 as
excited states leaves out a number of effects.

�i� If the momentum is a good quantum number, low-lying
excited states can be characterized in terms of an effective
mass. In our geometry, an effective mass is associated with
the motion of an 3He particle parallel to the surface. This
“hydrodynamic” effective mass is caused by the coupling of
the 3He motion to the excitations of the background liquid.
At the 	ti ,�i�r0�
 level, the effective mass is the bare mass.

�ii� The effective Hartree potential VH
�3��z� is real. Thus, at

the 	ti ,�i�r0�
 level, the “excitations” defined by the local
equation �2.42� have an infinite lifetime. This is also a con-
sequence of the static approximation.

In order to treat these effects more properly, a generaliza-
tion of the stationary correlation picture of Eq. �2.38� that
leads Eq. �2.46� is needed. A proper theory should describe
resonances and allow for their decay by the coupling to the
low-lying background excitations of the host film.

The natural generalization of the variational approach to
excited states is to allow for a time dependence of the varia-
tional functions un�r0 , . . . ,rn ; t�. We outline here only the
basic steps; the reader is referred to Ref. 17 for details. We
begin by separating the kinematic from the dynamic correla-
tions and write the time-dependent variational wave function
in the form

��t� =
1

���N+1��N+1�
e−iEN+1t/	�N+1�r0,r1, . . . ,rN;t� ,

�2.47�

where �N+1�r0 ,r1 , . . . ,rN ; t� contains the dynamic, time-
dependent correlations. Consistent with the general strategy
of variational methods, we include the time dependence in
the one-particle and two-particle 3He-background correla-
tions; i.e., we write

�N+1�r0,r1, . . . ,rN;t� = exp
1

2�
u1�r0;t� + �
1
i
N


u2�r0,ri;t��
��N+1�r0,r1, . . . ,rN� . �2.48�

The time independent part remains the same as defined in
Eq. �2.38�. The time-dependent correlations are determined
by searching for a stationary state of the action integral

S = �
t0

t

L�t�dt ,

L�t� = ���t���HN+1 − i 	
�

�t
����t�� , �2.49�

where HN+1 is the Hamiltonian �2.37� of the 3He plus
4He-film system.

It is convenient to work in the basis defined by the 3He
states �i�r0�. We expand the time dependent part of the
single-particle density


�3�r0;t� = ���t���̂3�r����t�� , �2.50�

where �̂3�r� is the one-body density operator, in terms of the
single-particle states �i�r0�:


�3�r;t�
��3�r�

= e−i�t�
i

ri�i�r� . �2.51�

The equation of motion for the amplitudes rp has been de-
rived in Ref. 17; it takes the form of an energy-dependent
one-body equation

	�ri = �
j

�
ijti + �ij����rj , �2.52�

where

�ij��� = − �
mk

Wmk
*�i�Wmk

�j�

	�m + tk − 	 �
�2.53�

is to be interpreted as the 3He self-energy. The 	�m are the
collective excitations of the background liquid. The 3He-
3He-ripplon vertex function Wmq

�p� occurring in the self-energy
�2.53� has the form of an effective interaction within the
theory of correlated basis functions,18–20 its specific form be-
ing irrelevant for our further discussions. We only need to
mention the important fact that Eq. �2.52� does not renormal-
ize the 3He ground state.
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Two simple applications of this approach are the calcula-
tion of the hydrodynamic effective mass of the 3He and the
calculation of the excited-state energy. For the ground state
and small parallel momenta, we can expand

	��q�� =
	2q�

2

2m
+

1

2
q�

2�d2�0,0�q��
dq�

2 �
q�=0



	2q�

2

2m* �2.54�

and obtain an effective mass.
To get excited states at zero parallel momentum, one must

solve Eq. �2.52� self-consistently. For higher-lying excita-
tions, the phase-space integrals of Eq. �2.53� have a pole and
must be interpreted as principal value integrals; i.e., they are
complex. Therefore, all excited states acquire a finite life-
time, as they should, by being able to decay into the ground
state through the emission of ripplons or phonons. Hence,
dynamic correlations define both the effective mass and, via
the same mechanism, the lifetime of the 3He physisorption
states.

III. RESULTS

A. Energetics

In the small-3He-concentration regime, we can write

�4�N3,N4� � �40 + � ��4

��3
�

0
�3. �3.1�

We can use this to obtain a third-sound speed, in terms of the
incompressibility �
mc2�, in the small-3He-concentration
limit. By taking the derivative with respect to �4,

m4c3
2 = m4c30

2 + �4�3�� �

��4
� ��4

��3
�

0
��3, �3.2�

where �3 is the coverage in units of layers as defined below
Eq. �1.3�. If we put this in the form of the hydrodynamic
equations, Eq. �1.3�, we immediately find the “thermody-
namic” slope given by

�thermo = −
�4�3�

m4c30
2

�

��4
� ��4

��3
�

0
. �3.3�

We remind the reader that �3, �4, and �3� are areal number
densities. In the following, we shall report results in terms of
Eq. �3.2� instead of Eq. �3.3� because, as shown below, a
first-principles theory yields regions in which the pure 4He
third-sound speed vanishes. We can avoid a full mixture cal-
culation with variable population of 3He for calculating the
derivative in Eq. �3.2� by taking advantage of the Maxwell
relation

� ��4

��3
�

A,T,N4

= � ��3

��4
�

A,T,N3

. �3.4�

Equation �3.4� is derived in the Appendix from thermody-
namic arguments. We also explicitly obtain microscopic
equations for the density derivatives. The starting points for
the microscopic analysis are Eqs. �2.28� and �2.42� for the
4He and 3He chemical potentials, respectively. Using these

chemical potentials in Eq. �3.3� we can examine the experi-
mental third-sound results using microscopic theory and
compare with the film-averaged hydrodynamic models. We
shall discuss the pure 4He third-sound speed as a function of
film thickness for both substrates. In addition, we shall use
Eq. �3.2� to examine the effect of 3He on the third-sound
speed in the low-3He-coverage limit.

One expects that film-averaged, hydrodynamic models
should give the right answer in the limit of thick 4He films
where any surface-normal structure can be averaged out.
This will not be the case for thin 4He films on strongly in-
teracting substrates where it is clearly understood that the
4He atom arranges itself in a layered structure.13,21 That is, in
the thick-film limit, the correlation contribution to the chemi-
cal potential of an added 4He atom is basically a constant and
any change in the chemical potential is due solely to the
external field. For a layered system the change in the chemi-
cal potential has important contributions from the correla-
tions in addition to that of the external field.

In this work we have studied the two substrates Nuclepore
and glass characterized in Table I. An important word is nec-
essary as to how we have dealt with the immobile layers. In
the case of Nuclepore, we assumed two solid layers at a
distance from the substrate of 3.6 Å and 7.2 Å. The areal
densities of the layers are �1=0.11 Å−2 and �2=0.09 Å−2,
respectively, adding the amount of 4He corresponding to
roughly 2.5 liquid layers. For the glass substrate, we as-
sumed one immobile layer of areal density �1=0.11 Å−2,
corresponding to roughly 1.5 liquid layers. We consider these
atoms as rigid and obtain a correction to the substrate poten-
tials of Table I by averaging Lennard-Jones potentials over
two or one planes, respectively. When the short-ranged part
of the substrate potential is screened in such a way, the re-
sults basically depend only on the long-ranged part.

We first examine the key energetic quantities: the 3He and
4He chemical potentials and the 3He first excited state as
functions of 4He film coverage. These are shown, for the
Nuclepore and glass substrates, in Figs. 1 and 2, respectively.
In these figures, we also show a fit to the numerical data of
the form

�4��� = �4��� −
�s�̄

3

�3 +
c

�4 +
d

�5 +
e cos�k� − ��

�4 .

�3.5�

The second term on the right-hand side is the usual van der
Waals expression, and the last three terms are empirical.

Both films undergo several layering transitions. The stron-
gest is at second-layer formation. For the Nuclepore sub-
strate, Fig. 1, this transition occurs in the regime 0.070 Å−2


�4
0.10 Å−2. For the glass substrate, Fig. 2, this transi-
tion occurs in the regime 0.075 Å−2
�4
0.105 Å−2. No
translationally invariant film configurations exist in these re-
gimes. The numerical fits for Eq. �3.5� were therefore carried
out only in the coverage regime of two and more layers,
�4�0.10 Å−2. From the fit, we can read off the bulk limit of
the chemical potential, which comes out to be −7.30 K for
the case of glass and −7.36 K in the case of Nuclepore, in
good agreement with the experimental value.
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The term proportional to �−3 contains the van der Waals
constant �s and an average density �̄. If the value of �s is
fixed �see Table I�, then we find that the quality of the fit for
�̄ is unchanged for 0.020 Å−3
�̄
0.022 Å−3. This result is
consistent with both the experimental bulk equilibrium den-
sity and the fact that our treatment of elementary diagrams
and triplet correlations leads to a calculated equilibrium den-
sity that is slightly lower than experiment. The oscillatory
term in Eq. �3.5� reflects a periodic, layered structure, its
“wavelength” of 0.066 Å−2 being practically identical in all
cases.

The most dramatic information in Figs. 1 and 2 concerns
the comparison between the microscopic chemical potentials
and the van der Waals limit

lim
�→�

�i��� � �i��� −
�s�̄

3

�3 , �3.6�

for i=3,4. For thin films on Nuclepore or glass, there is no
region in which the van der Waals form is in agreement with
the calculated, microscopic chemical potentials. In the re-
gime d�3 layers, the agreement between the microscopic
and van der Waals form is simply a statement that the bulk
quantities �i��� are being fit correctly. We note in particular
that the function �4���, in the coverage regime 0.2 Å−2


�4
0.2 Å−2, is much flatter than what the asymptotic
form �3.6� suggests. This explains the uncertainty in deter-
mining �̄ from the fit to the chemical potential.

It is important to emphasize that when translating the im-
mobile layer thickness from Table I into a coverage a small
amount of uncertainty is introduced in the coverage scale of
Figs. 1 and 2 and also the two following figures. In these
figures, zero coverage begins at the beginning of the mobile
film. In order to make contact with experiment, we need to
subtract the immobile film coverage from the total film cov-
erage as reported for the experiments. The coverage of the
immobile film, as explained above, is unknown and must be
inferred. For example, in Fig. 1, the arrow ostensibly locat-
ing the coverage corresponding to the experiment of Sheldon
and Hallock5 is positioned at 0.19 Å−2; this represents the
difference between the reported total film coverage of
0.389 Å−2 and our best estimate for the immobile film cov-
erage, 0.2 Å−2.

In order to gauge the accuracy of our calculations we need
to compare our results with experiment. In a series of papers,
Hallock and co-workers22–24 reported measurements of the
3He ground-state and first-excited-state energies in the low-
3He-concentration limit as a function of 4He coverage on
Nuclepore. In Figs. 1 and 2, we report the energies of the
3He first excited state, calculated within the dynamic theory
of Sec. II C, for both substrates. In Fig. 1, shown as �’s, we
overlay the results from Ref. 22 for the first-excited-state
energies for coverages greater than 0.10 Å−2. The agreement
with experiment is excellent except in the region close to the
layering transition. We should also note that in Ref. 24 mea-
surements were extended into the very-low-4He-coverage re-
gion below 0.07 Å−2 in Fig. 1. In this region, our first-

FIG. 1. For the Nuclepore substrate, the calculated 4He chemical
potential �diamonds�, the 3He chemical potential �boxes�, and the
3He first-excited-state energies �dash-dotted line�. Also shown are
the full fits �3.5� to the 4He �solid line� and the 3He �dashed line�
chemical potentials, as well as the asymptotic forms �3.6� �short-
dashed and long-short-dashed lines�. The gray areas are inaccessible
regimes of layering transitions. The symbols shown on the first-
excited-state line ��’s� are the experimental measurements as re-
ported by Sprague et al. �Ref. 22�. The arrow located at 0.19 Å−2 is
our best estimate for the mobile film coverage corresponding to the
experiment of Sheldon and Hallock �Ref. 5�. The upper scale gives
the thickness of the films in liquid layers; one 4He layer is defined
as representing an areal density of 0.077 Å−2.

FIG. 2. For the glass substrate, the calculated 4He chemical
potential �diamonds�, the 3He chemical potential �boxes�, and the
3He first-excited-state-energies �dash-dotted line�. Also shown are
the full fits �3.5� to the 4He �solid line� and the 3He �dashed line�
chemical potentials, as well as the asymptotic forms �3.6� �short-
dashed and long-short-dashed lines�. The gray areas are inaccessible
regimes of layering transitions. The arrows located at 0.16 and
0.29 Å−2 are our best estimates for the mobile film coverage corre-
sponding to the experiment of Valles, Heinrichs, and Hallock �Ref.
7�. The upper scale gives the thickness of the films in liquid layers;
one 4He layer is defined as representing an areal density of
0.077 Å−2.
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excited-state energies are in reasonable agreement with
experiment; however, the ground-state energies are in strong
disagreement. The experimental numbers are approximately
coverage independent at �−5.2 K, whereas, as seen in Fig.
1, the theoretical results decrease strongly with decreasing
film thickness. In the following, we shall be mainly con-
cerned with the region beyond the first-layering transition
where calculation and experiment are in good agreement.

The 3He energetics are quite similar between the Nucle-
pore and glass systems at the coverages corresponding to
experiment. The 3He level spacing �magnitude of the differ-
ence between the first-excited-state and ground-state single-
particle energies� for the Nuclepore system at 0.19 Å−2 is
2.2 K, and for the glass system it is 2.2 K at 0.165 Å−2 and
2.3 K at 0.290 Å−2. We note in passing that there is consid-
erable experimental evidence that, for the Nuclepore system,
the adsorbed 3He begins occupying the first excited state
prior to monolayer completion.25 The evidence includes re-
cent heat capacity measurements by Ho and Hallock.26 The
calculated Nuclepore level spacing of 2.2 K is just below the
estimated Fermi energy at monolayer completion of 2.3 K.
This result is an improvement from past calculations which
have tended to yield level spacings larger than the estimated
Fermi energy at monolayer completion. However, it is not
yet in quantitative agreement with experiments that show
first excited occupation at approximately 0.6 of a 3He mono-
layer.

We now examine the 4He incompressibilities m4c3
2 shown

in Figs. 3 and 4 for Nuclepore and glass, respectively. As
discussed above, there are two ways that one can calculate
the third-sound speeds. First, one can calculate the derivative
�2.30� of the fitting function �3.5�. These results are shown as
solid lines. This corresponds to evaluating the expression
�2.36� with the particle-hole interaction defined by the sec-
ond variation �2.32�. Second, one can obtain the incompress-
ibility from long-wavelength excitations—i.e., with the
particle-hole interaction taken from Eq. �2.25�. These results
are shown by diamond symbols. To assess the quality of the
agreement, we should recall that the small value of m4c3

2 is
actually due to large-scale cancellations. A typical value of
the particle-hole potential throughout the film is of the order
of m4c2, where c is the first-sound speed—i.e., of the order of
30 K. Only the very specific combination �2.36� gives the
speed of the surface excitation which should go to zero in the
thick-film limit. There is no diagrammatic reason that this
should be the case; hence, the small value of Eq. �2.36� per
se supports strongly our calculational procedure. In that
sense, the agreement between the incompressibilities calcu-
lated in different ways is quite satisfactory.

The dash-dotted lines in Figs. 3 and 4 show the asymp-
totic incompressibilities obtained from the first two terms of
the fit �3.5�. It is even more evident than in the previous
comparison of the chemical potentials that our highest cov-
erage film barely approaches the thickness where asymptotic
power laws are valid.

The situation is somewhat different for the calculations
involving properties of the 3He impurities. For technical rea-
sons one obtains somewhat larger numerical uncertainties for
thicker films. The calculated values as well as the fits of the
mixed quantities �4d�3 /d�4 needed for the third-sound
analysis, Eq. �3.2�, are shown in Figs. 3 and 4 in the cover-
age regime �4�0.10 Å−2. From these fits we have obtained
the energy of the Andreev state in the bulk limit of −5.23 K
for Nuclepore and −5.17 K for the glass substrate, in good
agreement with experiment.27

The other coefficients that should be comparable to those
of the background calculation; specifically the van der Waals

FIG. 3. The calculated incompressibilities m4c3
2 of 4He on the

Nuclepore substrate as calculated from the long-wavelength limit of
the excitations—i.e., from Eq. �2.36� with the HNC approximation
�2.25� for the particle-hole interaction �diamonds�. Also shown are
the results obtained by differentiating the fit �3.5� �solid line� and
the asymptotic forms �3.6� �short-long-dashed line�. The figure also
shows the corresponding quantity ��d�3 /d�� obtained from the
long-wavelength limit of the particle-hole interaction �Eq. �2.45�,
boxes� and from differentiating the fit �3.5� �dashed line�. The gray
areas are regimes of layering transitions. The solid and dashed lines
connecting the points in the first layer are not part of the fit �3.5� but
a spline of the data to guide the eye. The arrow located at 0.19 Å−2

is our best estimate for the mobile film coverage corresponding to
the experiment of Sheldon and Hallock �Ref. 5�. The upper scale
gives the thickness of the films in liquid layers; one 4He layer is
defined as representing an areal density of 0.077 Å−2.

FIG. 4. Same as Fig. 3 for the glass substrate. The arrows lo-
cated at 0.16 and 0.29 Å−2 are our best estimates for the mobile film
coverage corresponding to the experiment of Valles, Heinrichs, and
Hallock �Ref. 7�.
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term and the oscillatory part of the density, are reasonably
consistent. Recall that our results indicate that the films un-
der consideration here are still far from the thickness where
the chemical potential is dominated by the van der Waals
term. Consequently, one cannot expect that a fit of the results
in the regime 0.010 Å−2��4�0.40 Å−2 reproduces this
term accurately. For example, for Nuclepore, the fit �3.5�
suggests an average density �̄=0.019 Å−3, whereas the glass
substrate suggests �̄=0.023 Å−3.

From the oscillatory part of the representation �3.5� one
can also get an estimate of the layer thickness. All four fits
lead to values of the parameter k between 95 Å2 and 100 Å2,
suggesting a layer thickness of 0.066 Å−2 which is in reason-
able agreement with the “conventional” value of 0.077 Å−2.

The calculation of �4d�3��4� /d�4 from Eq. �2.45� is
much less reliable than the calculation of �4d�4��4� /d�4.
The hydrodynamic derivative agrees with the microscopic
derivative �2.45� only for single- and double-layer configu-
rations.

Figures 3 and 4 show that the third-sound speed oscillates
in parallel with the layered structure of the 4He film. As far
as we know, this effect has not yet been seen. In the regions
of the layering transitions, the physical third-sound speeds
are determined by Maxwell-type constructions that are not
shown in the figures. But note that the oscillations are clear
even beyond the regions of the layering transitions.

Even more interesting is the effect of a small amount of
3He on the third-sound speed as predicted by Eq. �3.2� or
�3.3�. By inspection of Figs. 3 and 4, we see that the slope of
d�3 /d�4 changes sign in the region of the oscillations. Thus,
a further prediction of these calculations is that, for thin 4He
films on substrates such as Nuclepore or glass, regions may
be found in which the third-sound speed increases as a func-
tion of added 3He.

While the qualitative scenario is quite clear, we would
like to be cautious with quantitative statements. It appears to
be clear that the 3He chemical potential has, just like the 4He
chemical potential, a sizable oscillatory behavior. Taking
higher derivatives, this oscillatory behavior is enhanced rela-
tive to the smooth, power-law behavior. Moreover, taking the
coverage derivative of the oscillatory part causes a 90° phase
shift of the oscillations; note that the oscillations of the 4He
and 3He chemical potentials are almost in phase.

The evaluation of Eq. �3.2� requires, on the other hand,
the calculation of a second derivative of a function that has
been obtained from a fit to numerical data which contain
some uncertainties. Instead of examining the quantity � de-
fined in Eq. �1.3� we have therefore calculated, using Eq.
�3.2�, the total incompressibility. This quantity is composed
of the sum of the 4He incompressibilities, as shown in Figs.
3 and 4, plus an added contribution due to the 3He in the
low-concentration, linear limit. The result is shown in Fig. 5
for the Nuclepore system. To the extent that the linearization
of the 3He dependence of the incompressibility is legitimate,
the results are quite interesting. They quantify, of course, the
above statement that, depending on the 4He coverage, the
incompressibility may increase or decrease with 3He concen-
tration. In the vicinity of layering transitions, the effect can
be strong enough to make the film unstable. The effect is

particularly pronounced in the triple-layer films with cover-
ages between 0.165 Å−2 and 0.22 Å−2: In the lower half of
that coverage regime, the addition of 3He would have the
tendency to stabilize the films, whereas it destabilizes the
translationally invariant configuration at coverages above
0.19 Å−2. This is consistent with the drop in the speed of
sound seen in Ref. 5. Of course, inspection of Fig. 5 shows
clearly that the drop in third-sound speed depends quite sen-
sitively on the coverage and a quantitative comparison is not
feasible. As the coverage is further increased, the 4He film
can actually undergo a layering transition; this happens, in
our model, at modest 3He concentrations of 0.25 monolayers
at a 4He coverage of about 0.21 Å−2. The configuration of
the film in this regime would be a mixture of regions that
would consist of three layers of 4He without 3He in Andreev
states and double layers of 4He with 3He in surface states.

B. Structure

Our examination of the energetics of both 4He back-
ground and 3He impurity indicates clearly that the properties
of both species are far from monotonic functions of the film
thickness. The basic reason for this is the layered growth of
the background film which is a direct consequence of both
the hard core of the 4He-4He interaction and the strength of
the substrate potential. This is, of course, also reflected in the
3He probability density. In Fig. 6, we show the 3He ground-
state �solid lines� and first-excited-state �dashed lines� den-
sity profiles for a series of 4He film coverages on Nuclepore.
The largest coverage shown corresponds to our estimate of
the mobile film coverage ��4�0.19� for the Sheldon-
Hallock experiment.5

At the very lowest 4He coverages, the 3He ground-state
density profile corresponds almost exactly with the 4He pro-
file. This is simple to understand. If there is only a small
amount of mobile 4He, then the 3He can lower its total en-
ergy by moving as close to the substrate as possible without

FIG. 5. On the same scale as Fig. 3, the total incompressibility
of the mixture film on Nuclepore as a function of 3He coverage in
the low-concentration regime, as given by Eq. �3.2�. The arrow
located at 0.19 Å−2 is our best estimate for the mobile film coverage
corresponding to the experiment of Sheldon and Hallock �Ref. 5�.
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a large cost in correlational kinetic energy. As 4He is added
to the system, however, the cost in kinetic energy to the 3He
begins to rise and so the 3He reacts by moving towards the
free surface of the 4He film. At the coverage of the experi-
ment, the 3He is in a well-formed Andreev-like state �with a
full width at half height that is approximately 3.9 Å which is
the conventional 3He layer thickness �3�.

This gradual motion of the 3He from “mixed” in the 4He
film to “separated” from the 4He film, as a function of in-
creasing 4He coverage, was first observed experimentally on
a Nuclepore substrate by Noiray et al.8 They termed it a
“stratification transition” but as seen in Fig. 6 this is not a
sudden motion from mixed to separated but simply a gradual
evolution.

FIG. 6. The density profiles of the 4He background �gray shaded area�, the 3He ground state �solid line�, and the first excited state �dashed
line� in a number of typical situations on the Nuclepore substrate. The normalization of the 3He densities is arbitrary. The coverage for the
final figure, �4=0.19 Å−2, corresponds to the experiment of Sheldon and Hallock �Ref. 5�. At this stage, the 3He adatom is in a well-defined
Andreev state. The probability density for the first excited state is fairly equally distributed between being in the film and outside of the film.
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Figure 6 also shows the 3He first-excited-state probability
densities. The evolution of these states is complementary to
that of the ground states because of the requirement of or-
thogonalization. At low 4He film coverages, the first-excited-
state probability density is located preferentially outside of
the 4He film, and as the ground-state probability shifts out
with increasing 4He coverage, the first excited state shifts in.
By the largest coverage shown, the probability distribution
for the first excited state is roughly half in and half out of the
4He film. The occupation of the first excited state as a func-
tion of 3He coverage is considered a possible path to second-
layer formation �of the 3He on the 4He film�.25 Clearly, in
order for this view to be sensible, the present trend must be
reversed with increasing 3He coverage. That is, as a function
of 3He coverage, we expect to see the first excited state begin
to emerge from the ground state on the free-surface side
where second-layer formation should appear. This latter cal-
culation is far beyond the scope of this work.

In Fig. 7, we show the 3He ground-state and first-excited-
state probability densities at the coverages 0.165 Å−2 and
0.290 Å−2, which correspond to the mobile film coverages in
the experiment of Ref. 7 on the glass substrate. The lower-

coverage results, which we do not show in order to save
some space, mimic those of the Nuclepore substrate shown
above in Fig. 6. For the same reasons as for Nuclepore, this
system also exhibits a gradual “stratification” transition. At
submonolayer coverages, the 3He and 4He probability densi-
ties overlap, and as the 4He coverage is increased the 3He
ground state is pushed out of the film into a surface state.
The results shown in Fig. 7 are qualitatively similar to the
Nuclepore results at 0.190 Å−2. There are well-defined
Andreev-like states for both coverages. The most obvious
small difference is at the lower coverage where the first-
excited-state density is preferentially located on the 4He-film
side.

IV. CONCLUSION

In this paper we have utilized first-principles, microscopic
calculations to determine the hydrodynamic response of pure
4He films and 4He films with a small amount of adsorbed
3He on Nuclepore and glass model substrates. Our goal was
to try to understand the experiments that have been done on
these systems and to test the applicability of film-averaged

FIG. 7. Same as Figs. 6 for the glass substrate
at the coverages relevant to the experiments of
Ref. 7. Observe that the horizontal scale is differ-
ent from Fig. 6.
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hydrodynamic models. Our results can be summarized as
follows.

�i� The most important results from our microscopic
analysis of the mixture-film third-sound speeds are shown in
Figs. 5 and 3. These results show that, for a thin, layered
film, the third-sound speeds can have dramatic film-coverage
dependence and that, in regions where the pure third-sound
speed is small, the contributions from the 3He component
can have critically important effects. It is our conclusion then
that the experimental results of Refs. 5 and 7 are sensitive to
the choice of 4He film thickness and that different results
may have been seen with slightly different changes in cov-
erage.

�ii� The layered structure of the 4He film induces cover-
age-dependent 3He and 4He chemical potentials that in turn
yield nonmonotonic third-sound speeds as a function of 4He
film coverage. This response should be observable in thin
films on strong substrates. In recent work, we have shown
that these results are also valid for the weakly interacting
substrates Li and Na.28

�iii� We have shown that in some ranges of 4He film thick-
ness, the addition of small amounts of 3He is able to desta-
bilize a laterally homogeneous film and create patches of 3He
rich and 3He poor regions. We further note that phase sepa-
ration has been reported in thin mixture films by Bhatta-
charyya and Gasparini29 on Nuclepore and Csáthy, Kim, and
Chan30 on H2-plated gold. It is intriguing to note that the
anomalous mixture film system investigated by Bhatta-
charyya and Gasparini had a coverage �0.26 Å−2; this value
is located in a possibly unstable region as shown in Fig. 5.

�iv� For thin films, the film-averaged hydrodynamic for-
mulas are in qualitative disagreement with the microscopic
results. The formulas can be made to fit particular results
with sufficient effort at modeling.

�v� The microscopic calculations also predict regions in
which the third-sound speed will increase with the addition
of small amounts of 3He. This response also should be ob-
servable in thin films on strong substrates.

�vi� The stratification transition of Ref. 8 is clearly seen
on both the Nuclepore and glass results. It is easily explained
by noting that the 3He can minimize its energy in a sub-
monolayer 4He film by moving as close to the substrate as
possible, and it will minimize its energy for multilayer 4He
films by moving to the the film surface. This evolution is a
smooth function of the 4He coverage.

The dissimilarities in the low-3He-coverage dependence
of the third-sound responses on Nuclepore and glass are
striking when one considers how similar the ground-state
probability densities and level spacings are. These results
imply that the question of the extent of a linear region in the
incompressibility cannot be answered in the single-3He-atom
limit and may require detailed knowledge of the 3He effec-
tive interaction in the environment of a thin 4He film.

There are some further ramifications for third-sound ex-
periments. In the thin-film limit, for substrates that induce a
significant layered structure, the concept of a 4He film thick-
ness d is ambiguous. The only nonambiguous measure of
film thickness is the areal density or coverage. Thus, in order
to minimize ambiguity, reports of thin-film experiments on
strong substrates need to provide both the areal density of the

immobile layer and the areal density of the total film. For
purposes of illumination, one can also provide “film thick-
nesses” by dividing the coverage by the bulk density but
such a number does not have any fundamental significance.

We should add that our conclusion concerning the inap-
plicability of film-averaged hydrodynamic models to these
systems is not the same as saying that hydrodynamics is gen-
erally inapplicable. Third sound is a well-defined hydrody-
namic mode, and if one pursues the theory allowing non-
trivial substrate-normal density oscillations, then one can
presumably improve the existing thick-film theory.
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APPENDIX

In this appendix, we examine the fundamental Maxwell
identity, Eq. �3.4�, from both macroscopic and microscopic
points of view.

The 3He and 4He chemical potentials are defined by

�3 = � �G

�N3
�

N4,P,T
, �A1�

�4 = � �G

�N4
�

N3,P,T
, �A2�

where G is the Gibbs free energy. From Eqs. �A1� and �A2�
we immediately obtain the Maxwell relation

� ��4

�N3
�

P,T
= � ��3

�N4
�

P,T
. �A3�

We use the identity

� ��4

�N3
�

A,T,N4

= � ��3

�N4
�

P,T,N4

+ � ��4

�P �
N3,T,N4

� �P
�N3

�
A,T,N4

= � ��3

�N4
�

P,T,N4

+
a3a4

A�T
, �A4�

where a3 and a4 are partial areas and �T is the isothermal
compressibility. Since the second term in Eq. �A4� is sym-
metric in 3 and 4, Eq. �3.4� is proved.

We also need to examine to what extent Eq. �3.4� is
obeyed by the microscopic theory. In keeping with the spirit
of this paper, we derive explicit expressions for the density
derivatives of the chemical potentials in the limit of low 3He
coverage. The density functions are determined by the “Har-
tree” equations �2.28� and �2.42�, respectively:

�−
	2

2mi
�2 + Uext�r� + VH

�i��r����i�r� = �i
��i�r� , �A5�

where i=3,4 and
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VH
�i��r� =


Ec��3,�4�

�i�r�

. �A6�

We now use Eq. �A5� to calculate density derivatives of the
chemical potentials.

Analogous to Eq. �2.31�, the �3 derivative is

�−
	2

2m4
�2 + Uext�r� + VH

�4��r� − �4�d��4�r�
d�3

+
dVH

�4��r�
d�3

��4�r� =
d�4

d�3

��4�r� , �A7�

and

dVH
�4��r�

d�3
=� d3r��Vp-h

�44��r,r��
d�4�r��

d�3
+ Vp-h

�43��r,r��
d�3�r��

d�3
� .

�A8�

As above, these equations can be combined to yield

� d3r��H1
�4��r�
�r − r�� + 2Ṽp-h

�44��r,r���
d��4�r��

d�3

+� d3r�2Ṽp-h
�43��r,r��

d��3�r��
d�3

=
d�4

d�3

��4�r� . �A9�

Now multiply Eq. �A9� by d��4�r� /d�3 and integrate to
yield

d�4

d�4
� d3r��4�r�

d��4�r�
d�3

+ 2� d3rd3r�
d��4�r�

d�4

�Ṽp-h
�43��r,r��

d��3�r�
d�3

=
d�4

d�3
� d3r��4�r�

d��4�r�
d�4

.

�A10�

The first term vanishes, and the right hand-side is simply
�1/2�d�4 /d�3. Finally, if we assume that the 3He ground
state can be written �3�r�= ��3�z��2�3, then d�3 /d�3=�3 /�3
and we find

�3
d�4

d�3
= 2� d3rd3r�

d��4�r��
d�4

Ṽp-h
�43��r,r����3�r� , �A11�

in agreement with Eq. �2.45�.
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