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Magnetization states of laterally limited ultrathin nanostructures �semi-infinite film edges, wires, and disks�
with low magnetic uniaxial anisotropy are studied analytically and by micromagnetic simulations. A general
view of geometrically constrained magnetization distributions is given. By shrinking the lateral size of a
sample one can induce reorientation from an in-plane to an out-of-plane magnetization state. As examples,
magnetic phase diagrams have been calculated for cobalt nanowires and disks. In low-anisotropy nanodisks
magnetization distributions like an out-of-plane domain-patterned vortex and a domain-patterned leaf are
found.
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Magnetism on the nanometer scale is a subject of great
interest in view of both the development of fundamental
knowledge and its possible applications. Out-of-plane mag-
netization states are now especially topical because of the
new generation of high-density devices. Out-of-plane mag-
netization states are more robust against thermal flips of
nanosized domains than is in-plane spin geometry.1 Modern
technologies �such as electron beam lithography and the fo-
cused ion beam technique or x-ray interference lithography
in combination with electrodeposition� give the opportunity
to produce nanostructures with high-precision geometry as
well as magnetic properties. High-spatial-resolution tech-
niques enable experimental analysis of magnetization distri-
butions on the nanoscale length, e.g., see Refs. 1–4.

The geometry of nanomagnets may stabilize different
magnetic states, e.g., geometrically and anisotropy con-
strained walls, vortices, buckles, leaves, and flowers.5–8 The
geometry change induces transitions between these magneti-
zation configurations and strongly affects the magnetization
processes.7 For many low-thickness nanostructures perpen-
dicular magnetic anisotropy is expected,9 which is usually
characterized by the Q1 �=K1 /2�MS

2� parameter, where K1

and Ms are the first uniaxial anisotropy constant and the satu-
ration magnetization, respectively. Thickness-driven changes
of Q1 can induce the reorientation phase transition �RPT�
from the perpendicular to the in-plane magnetization state. In
laterally infinite films the RPT occurs at the thickness d1
defined by Q1�d1�=1 for a monodomain state. Magnetization
distributions with nanosized domains were experimentally
studied10 in ultrathin cobalt wedges near the RPT. It has been
recently shown that in ultrathin films magnetization reorien-
tation between the perpendicular and in-plane states is ac-
companied by the appearance of sinusoidal-like domains
whose magnetostatic contribution increases the Q range of
the out-of-plane magnetization state. Approaching the RPT
the domain period decreases down to the minimal value p*

�8�lex
2 /d �where lex= �A / �2�MS

2��1/2 is the exchange length,
A is the exchange constant, and d is the film thickness�.11 In
comparison with infinite films, the range of the out-of-plane
magnetization state can be significantly extended by shrink-
ing the sample lateral sizes.12 Such an extension was also

shown by Monte Carlo simulations performed for nanoplate-
lets with Q1=0.9.13 The role of the finite-size effect on phase
transitions in ferroelectric nanodisks and nanorods was re-
cently demonstrated in Ref. 14.

A general view of the out-of-plane magnetization state
extension is the purpose of our work. We study magnetiza-
tion distributions in the three following geometries: semi-
infinite film edges, wires, and disks; all with different Q1.
The proposed analytical description is supported by micro-
magnetic simulations using OOMMF software.15 Results are il-
lustrated for ultrathin cobalt with typical thickness depen-
dence of Q1�d�= �K1v+2*K1S /d� /2�MS

2 �with K1v=1.9
�107 erg/cm3 and K1s=0.57 erg/cm2� and lex=3.2 nm.6

The Q-driven evolution of magnetization distributions at
the edge of a semi-infinite film was recently studied by simu-
lations in Ref. 12. It was shown that the RPT induced by
decreasing Q is accompanied by a sinusoidal domain struc-
ture with the decaying amplitude and period which is close
to p* predicted for domains in laterally infinite films.11 In the
case of a thickness-driven RPT, as the film thickness in-
creases the edge amplitude �mz�x=0�� falls to zero at d
=dedge. The thickness dependence of the mz�x=0� amplitude
is well described by the function mz�d�=C�dedge−d�b, where
dedge=2.27 nm and b=0.5.12 This is a typical scaling law,
describing the critical behaviors. Due to the demagnetizing
field cutoff, the edge induces a significant increase of the
range of out-of-plane magnetization states. Indeed, as shown
in Ref. 12 nonzero mz exists near the film edge down to
Q1edge�0.89 or for d�dedge which is much higher than d1
defining the RPT in infinite films.

In order to find the critical thickness dedge when magneti-
zation becomes pure-in plane let us consider the balance of
torques acting at the edge spins �a similar method was used
in Refs. 16 and 17�. In equilibrium the sum of torques pro-
duced by the demagnetizing, anisotropy, and exchange fields
is zero:

�dem + �an + �ex = 0 �1�

where �=−dE /d�, E represents the corresponding energies,
and � is the angle between the magnetization vector and film
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normal. Using the energy densities Edem=−�HdemMS� /2 ,Ean

=K sin2 ��x�, and Eex=Ad2��x� /dx2, by virtue of spatial av-
eraging of Eq. �1� over distance L, one can arrive at

�Q1�d� − �hdem��sin 2��0� = lex
2 d2��0�

dx2 �2�

where ��0� denotes the angle between the magnetization
vector and the film plane, and �hdem�= �Hdem� /4�MS. On the
right side of Eq. �2� the second derivative can be replaced by
���0�=��0� /L2, where L is a characteristic length on which
the magnetization orientation essentially changes. The de-
magnetization field of a slab of width L and thickness d can
be analytically calculated using formulas given in Ref. 4.
Below we use L= p* /4 because ��p /4�=0, whose value is
close to the coherent rotation length R= p /2=22.78lex

2 /2d.18

The RPT takes place when the edge amplitude ��0�→0.
Thus, applying the limit to Eq. �2�, one can obtain

Q1�d� = �hdem�d/p*�� +
d2

8�lex
2 . �3�

In the limiting case when d→0, �hdem�= �hdem�0��=1, and
Eq. �3� turns into the RPT condition for infinite films:
Q1�d�=1. Equation �3� allows us to calculate the RPT critical
thickness dedge for semi-infinite ultrathin films. For example,
for ultrathin Co/Au the numerical solution of Eq. �3� gives
dedge=2.17 nm.

Let us consider results of simulations of magnetization
distributions in right-prism-shaped nanowires with width w.
Figure 1 shows the evolution of magnetization distribution
with changes of both d and w. The three critical thicknesses
d1, d*, and dedge determine four scenarios of the phase tran-
sition to the perpendicular homogeneous state which take
place as the wire width is gradually squeezed. We denote the
magnetization phases as follows: I, the homogeneous in-
plane state; P, the homogeneous perpendicular state; D, a
multidomain state consisting of domains with perpendicular
magnetization components; U, a magnetization distribution
having mirror symmetry �U-shaped profile of mz�x�; see

Figs. 2�b� and 2�c��; and Z, a magnetization distribution hav-
ing an inverted center �Z-shaped profile of mz�x�; Figs.
2�a�–2�c��. These magnetization states we characterize by
�mz

2� averaged over the whole sample; it defines a convenient
measure of “magnetization perpendicularity.” A wire squeez-
ing �starting from width w=3000 nm� influence on magneti-
zation distribution is shown in Fig. 2.The following phase
transitions channels, obtained by simulations, are shown in
Fig. 2.

The first transition channel is open for wires with d�d1.
As w decreases the number of domains �N=18 for w

FIG. 1. Map of magnetization states: �mz
2� as a function of the

wire width for different thicknesses. Filled and open symbols mark
�mz

2� for equilibrium and metastable states, respectively.

FIG. 2. Magnetization profiles �mz�x�� for different wire widths
and thicknesses. �a� d=1.72 ��d1� and w=244 and 250 nm. Tri-
angles marks mz�x� calculated for infinite film. �b� d=1.86 �slightly
below d*� and w=85–186 nm. �c� d*�d=2.2 nm�dedge and w
=25–150 nm.
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=3000 nm� decreases on approaching N=2 for w=250 nm
�see Fig. 2�a��. The magnetization distribution in the wall
separating these domains is similar to the distribution in the
Bloch-like wall in an infinite film described by triangles in
Fig. 2�a�. Further w shrinking leads to a jump into the mon-
odomain perpendicular state �Z→P�; see the distribution for
w=244 nm. The second channel is open for wires with d1
�d�d*. As w decreases, the number of domains decreases,
while the average amplitude of magnetization increases.
There is the phase sequence D→U→Z→P. Figure 2�b�
shows the w-decrease-induced evolution U→Z→P deter-
mined for thickness slightly below d*, where there is a strong
influence of demagnetization forces in the volume of the
whole wire. Finally, the squeezing leads to a jump into the P
state. In the third channel �d*�d�dedge� the phase sequence
is Z→U→P. For a wide enough wire, domain states do not
exist if d�d*.11 The edges affect out-of-plane magnetization
distortion only near the ends of a wide wire.12 On shrinking
the lateral size, the area of almost in-plane magnetization
decreases while the areas of out-of-plane magnetization do
not significantly change. The area with mz�0 has a small
contribution to the total system energy so it is easily
squeezed. The jump Z→U occurs when the area with mz
�0 vanishes; see mz�x� for wires with widths 40 and 35 nm
in Fig. 2�c�. The U-shaped distribution evolves into the P
state, further decreasing w. In the fourth channel �d�dedge� a
jumplike transition I→P takes place. The squeezing-induced
evolution of magnetization distributions into the perpendicu-
lar state may occur through either equilibrium states or meta-
stable ones. Some metastable states are marked in Fig. 1 by
open symbols. Thus, magnetichistory could influence the
evolution in a real sample.

To describe the RPT in rectangular-shaped nanowires let
us consider the energy balance between perpendicular and
in-plane magnetization states E�=E�. The balance gives

Q1�d� + Q2�d� = �hdem� =
1

wd
	

0

d 	
0

w

hdem�x,z�dz dx , �4�

where the space-averaged �hdem� is a function of the d /w
ratio, Q2=K2 /2�MS

2, and K2 is the second-order anisotropy
constant. In the case of an “infinite” film d /w becomes 0 and

�hdem�=1 which corresponds to Q1=1—i.e., the RPT condi-
tion for infinite films �neglecting higher orders of anisotropy
constants�. Defining the P-I phase equilibrium curve, Eq. �4�
connects the material �Q� and the geometrical parameters of
the sample. Using the linear approximation �hdem��1
−cd /w dependence where c=1.2, in the range of interest 0
�d /w�0.25, the approximation gives an error less than 5%�
and Q1�d�, one can analytically obtain the critical wire width
wP-I as a function of the thickness. So, from Eq. �4� one can
arrive at the approximation

wP-I �
cd1d2

d0�d − d1�
�5�

where d�d1 and d0=K1S /�MS
2 �=0.9 nm for the given

above constants�. The numerical solution of Eq. �4�—the
curve of the phase equilibrium between the in-plane and per-
pendicular homogeneous states—wP-I�d� is plotted in Fig. 3.
The wP�d� obtained by simulations—the upper width limit of
existence of the pure perpendicular state—is also plotted in
Fig. 3. Both wP-I�d� and wP�d� curves coincide for d�dedge.
This implies that the jumplike transition P→ I must take
place here, as illustrated in Fig. 1 for d=3 and 2.4 nm. At
d=dedge the wP-I�d� and wP�d� curves split, opening a zone
with the sequences of nonuniform magnetization distribu-
tions for d�dedge discussed above. The curve crossover de-
fines the three-critical point.

Now we consider magnetization distributions in disks of
radius R. The symmetry favors a more pronounced edge ef-
fect disturbing the in-plane magnetization configuration and
extending the range of the out-of-plane magnetization con-
figuration. The geometry induces a vortex-type magnetiza-
tion distribution in low-anisotropy cases. Simulations show
that out-of-plane magnetization states exist even for disks for
small Q �e.g., d�dedge�; see the vortexlike magnetization
distribution in Fig. 3 �R=300 nm and d=3 nm�. Squeezing
the disk diameter leads to a patterned vortex state �PV� and
finally to the transition into the purely perpendicular state
�P�. Decreasing R, a similar magnetization distribution evo-
lution PV→P occurs; see the distributions for d=2.4 and
2 nm in Fig. 3. Notice that by decreasing d the out-of-plane
amplitude increases. When d�d* and the disk radius is large

FIG. 3. �Color online� Mag-
netic configurations of wires and
disks. From bottom to top: wP�d�
is the upper wire width of the ex-
istence of the pure P state; wP-I�d�
and 2RP-I�d� are the phase equilib-
rium curves of homogeneous P
and I states in wire and disk, re-
spectively. Inset shows the mag-
netization states of the disk with
d=1.86 nm and 2R=476 nm: the
out-of-plane domain patterned
leaf �PL� and vortex �PV�.
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enough, the PV state has higher energy than that of the pat-
terned leaf �PL�; see Fig. 3 �inset�. Figure 3 shows the tran-
sition PL→P induced by decreasing R for d=1.86 ��d*�.

In order to estimate the critical thickness, once again we
analyze the energy balance between the perpendicular and
in-plane magnetization states. For a pure perpendicular mag-
netization state, the total energy is provided by the magneto-
static contribution while for the in-plane state the total en-
ergy is provided by both anisotropy and magnetostatic
energy caused by the magnetic poles on the side cylinder
surface. By means of the demagnetization factors one can
take into account the contribution of the poles. So, in terms
of the demagnetization factor, the energy balance �E�=E��
can be written as

Q1�d� = f
2R

d
� = Nax
2R

d
� − Ndi
2R

d
� �6�

with rigorous19 expressions for the axial demagnetization

Nax�k� = 1 +
4k

3�
− 2F1�5/2,1/2;2;k2/�1 + k2��

�1 + k2

and the diametric demagnetization Ndi�k�= �1−Nax�k�� /2 fac-
tors, where 2F1 is the hypergeometric Gauss function. k
=2R /d is the aspect ratio. The numerical solution of Eq. �6�
is plotted in Fig. 3 as 2RP-I�d�. As seen from this figure the
critical thickness grows, shrinking the lateral sample size. In
the limiting case R→ 	 f�2R /d� goes to 1, and therefore Eq.
�6� gives Q1�d�=1 or d=d1. Note that for the smallest aspect
ratio the influence of the discrete dipole lattice on the ob-
tained results can be taken into account by inserting into Eq.
�6� the lattice-dependent “x prefactor” introduced in Ref. 19.
The next possible generalization of our approach is related to
the enhanced anisotropy contribution of the edge atoms. It
was recently reported in Ref. 20 that in cobalt nanometer-
sized particles the edge atoms have 20 times more anisotropy
energy than their bulk and surface counterparts. In Eqs. �4�
and �6� this anisotropy contribution could be taken into ac-
count by adding a term describing a Q1 contribution of atoms
sitting at the outer perimeter of the sample. The 2RP-I�d�
curve represents the phase equilibrium line separating the

homogeneous perpendicular and in-plane phases. The pure
perpendicular state in disks, as in wires, exists for smaller
lateral size, R�RP-I. Lines separating vortex and single-
domain magnetization states of disks were recently found by
theory7,8,21 and experiment22 for nanodisks with negligible
small Q1. In Ref. 23 concentric domains were found by
simulations in Ni disks with Q1=0.94.

In conclusion, in nanomagnets with low perpendicular an-
isotropy, out-of-plane magnetization states can be achieved
by varying the sample geometry and/or lateral size for any
convenient thickness. This opens the way to stabilizing and
driving confined magnetic configurations; for example, the
spin reorientation transition can be manipulated by matching
the magnetic and geometrical parameters of nanoelements.
The edge cutoff of the demagnetizing field has been found to
be responsible for extended out-of-plane magnetization
states in wires. In nanowires four scenarios of the transition
to the out-of-plane magnetization state can be distinguished
�see Fig. 1�. In disks the out-of-plane states are caused by
both the edge cutoff and edge curling effects. In terms of a
unified approach for disks and wires we have obtained the
relationships between the geometrical and material param-
eters �Eqs. �4�–�6�� allowing calculations of phase equilib-
rium curves separating the perpendicular and in-plane mag-
netization states. The following nanoscaled magnetization
distributions have been found: Z- and U-shaped magnetiza-
tion profiles in wires; out-of-plane domain-patterned vortices
and leaves corresponding to the ground or metastable mag-
netization states of nanodisks. The obtained results reveal the
precise role of the finite-size effect on the existence of mul-
tistable magnetization states and phase transitions in low-
dimensional structures. The geometry-driven magnetization
distributions found seem to open new areas for experimental
studies �especially using high-precision patterning and high-
resolution magnetization distribution analysis techniques�
and possible applications, e.g., related to perpendicular re-
cording.
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