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Few examples of magnetic systems displaying a transition to pure dipolar magnetic order are known to date.
As was recently shown, within the newly discovered class of single-molecule magnets, quite attractive ex-
amples of dipolar magnetism may be found. The molecular cluster spins and thus their dipolar interaction
energy can be quite high, leading to reasonably accessible ordering temperatures even for sizable intercluster
distances. In favorable cases bonding between clusters in the molecular crystal is by van der Waals forces only,
and no exchange paths of importance can be distinguished. An important restriction, however, is the require-
ment of sufficiently low crystal field anisotropy for the cluster spin, in order to prevent the occurrence of
superparamagnetic blocking at temperatures above the dipolar ordering transition. This condition can be met
for molecular clusters of sufficiently high symmetry, as for the Mn6 molecular cluster compound studied here.
The uniaxial anisotropy of the cluster spin S=12 is as small as D /kB=0.013 K, giving a total zero-field
splitting of the S=12 multiplet of 1.9 K. As a result, the electron-spin lattice relaxation time remains fast
��10−4 s� down to Tc and no blocking occurs. Magnetic specific heat and susceptibility experiments show a
transition to ferromagnetic dipolar order at Tc=0.16 K. Classical Monte Carlo calculations, performed for Ising
S=12 dipoles on a lattice do predict ferromagnetic ordering and account for the value of Tc as well as the shape
of the observed specific heat anomaly. By applying magnetic fields up to 6 T the hyperfine contributions Chf to
the specific heat arising from the 55Mn nuclei could be detected. From the time dependence of the measured
Chf the nuclear-spin lattice relaxation time T1n could be determined for the same field range in the temperature
region 0.2�T�0.6 K. The nuclear magnetic relaxation was further studied by high field 55Mn pulse NMR
measurements of both the nuclear T1n and T2n at T=0.9 K �up to 7 T�. The data are in good mutual agreement
and can be well described by the theory for magnetic relaxation in highly polarized paramagnetic crystals and
for dynamic nuclear polarization, which we extensively review. The experiments provide an interesting com-
parison with the recently investigated nuclear spin dynamics in the anisotropic single-molecule magnet
Mn12-ac.
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I. INTRODUCTION

Experimental and theoretical interest in magnetic molecu-
lar clusters carrying a net high spin has rapidly evolved in
recent years �for reviews see, e.g., Refs. 1–5�. Since the cores
of these molecules can be viewed as nanosized pieces of
magnetic insulators, they offer attractive possibilities to
study magnetic objects of dimensions in between atom and
bulk. Of great importance is the fact that these �macro�mol-
ecules form stoichiometric chemical compounds, which may
crystallize as molecular crystals, implying that for a given
compound identical magnetic molecules are arranged on the
sites of a regular three-dimensional �3D� lattice. More often
than not, there is only a single molecular site per unit cell, so
that the symmetry axes of all molecules in the crystal are
perfectly aligned. Provided that the intermolecular magnetic
interactions are sufficiently weak, macroscopic solid state
techniques can then be exploited to study the properties of
individual cluster spins, taking into account their couplings
to the “environment” �phonons, nuclear moments� as pertur-
bations. Accordingly, such experiments have already pro-

vided highly interesting information about the quantum tun-
neling properties of the cluster spins.6–16

On the other hand, the long-range magnetic ordering
�LRMO� phenomena expected to occur at sufficiently low
temperatures as a consequence of the intercluster magnetic
dipolar coupling present an interesting object of study in
itself.17,18 In many of these compounds, the clusters are only
or mainly coupled by van der Waals forces in the molecular
crystal. Short-ranged superexchange interactions may then
be neglected, leaving only the dipolar coupling between clus-
ter spins as a source for producing LRMO. Since in the lit-
erature of magnetic phase transitions few examples of
LRMO produced purely by dipolar forces are yet avail-
able,19–21 the chance to exploit molecular magnets to this end
is quite attractive and could represent an important contribu-
tion to this field.

However, for most high-spin molecules studied so
far, such as Mn12,

22 Fe8,23 and the Mn4 family of com-
pounds,24–26 the cluster spins have strong Ising-type aniso-
tropy, associated with the zero-field splitting �ZFS� of the
magnetic energy levels by the action of the crystal field. As a
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consequence, the cluster spins become frozen below a block-
ing temperature, TB, of typically a few K, with the spin di-
rection randomly distributed between the two possible orien-
tations along the easy axis. Evidently, this superparamagnetic
blocking process is in competition with intercluster magnetic
interactions that tend to establish LRMO at �usually much�
lower temperatures. Although it has been shown theo-
retically27 that the occurrence of quantum tunneling between
opposite spin directions at temperatures below TB may in
principle produce sufficient fluctuations to overcome block-
ing, in most of the investigated anisotropic molecules the
times involved for the actual observation of the ensuing
LRMO are still much too long. The recently discovered ex-
ample of LRMO found at Tc=0.21 K in the molecular mag-
net Mn4Me is an exception rather than the rule.28

The obvious route to find dipolar-induced LRMO in mo-
lecular magnetic cluster compounds is, therefore, to search
for high-spin molecules with as low anisotropy as possible
and with negligible superexchange interactions. In a prelimi-
nary report29 on the compound Mn6O4Br4�Et2dbm�6 �hereaf-
ter called Mn6� we could show that it provides an excellent
example. The Mn6 molecule has a highly symmetric cluster
core, comprising an octahedron of Mn3+ ions the faces of
which are capped by O2− or Br− ions. The structure of the
molecule30 and a sketch of its octahedral core are shown in
Fig. 1. From previous magnetic studies30 above 2 K it was
found that the superexchange paths formed between the
Mn3+ ions �each having atomic spin s=2� through the inter-
vening O2− and Br− ligands result in a relatively strong fer-
romagnetic interaction, of value Jf /kB� +13 K on basis of
the pair Hamiltonian H=−2JSi ·S j. As a consequence, the
ground state is a S=12 multiplet and the energy of the near-
est excited state is approximately 150 K higher. The unit cell
is monoclinic, with space group Pc, and contains four mol-
ecules that have such a high �nearly Td� symmetry that the
net anisotropy for the cluster spin is quite small. No super-
exchange paths connecting neighboring clusters can be dis-
cerned indeed in the crystal structure, so that we can safely
assume that the crystal binding arises solely from van der
Waals bonds. We note that, although intercluster magnetic
ordering has also been reported for the molecular magnets
Fe19

31 and Mn4Br,32 in those cases superexchange between

clusters apparently plays an important role, as evidenced,
e.g., by the much higher Tc values found �1.2–1.3 K�. How-
ever, for a Cr4S cluster,33 for which the intracluster exchange
between the Cr3+ ions happens to be likewise ferromagnetic
�net spin S=6�, the low value of Tc=0.17 K that was ob-
served could be compatible with dipolar-induced magnetic
ordering, in this case of antiferromagnetic type. More data
would be needed, however, to substantiate this.

In a preliminary report,29 we could already show that the
magnetic anisotropy in Mn6 is sufficiently low to enable
measurements of its magnetic susceptibility and specific heat
under thermal equilibrium conditions down to the lowest
temperatures reached �T�15 mK� by our experimental set-
ups. The data did evidence a transition to LRMO, as hoped
for, at a temperature of Tc=0.16 K, corresponding apparently
to a ferromagnetic arrangement of the cluster moments.
Comparison with Monte Carlo simulations strongly sup-
ported the expected dipolar origin of the intercluster cou-
pling. When applying magnetic fields of up to 6 T, the study
of the time-dependent magnetic specific heat revealed a tran-
sition from fast relaxation to nonequilibrium conditions
within the experimental time window of 1–100 s.

In the present work we extend these experimental and
theoretical studies and discuss in much more detail the re-
sults and conclusions. In addition, we have performed 55Mn
NMR studies in varying field, enabling to draw more definite
conclusions about the magnetic relaxation of both electronic
and nuclear spin systems in this material. The nuclear spin-
lattice relaxation time is governed by fluctuations of the clus-
ter electronic spins, and is indeed quite fast in zero field. By
applying a magnetic field these fluctuations become progres-
sively suppressed as a consequence of the Zeeman splitting
of the electronic energy levels, thereby bringing the nuclear
spin system out of thermal equilibrium. This provides an
interesting comparison with recent zero-field 55Mn NMR
studies34–37 of the anisotropic molecular magnet Mn12-ac, for
which the suppression of the magnetic relaxation in the ther-
mally activated regime can be fully ascribed to the strong
splitting of the cluster spin levels by the crystal field. For the
present compound, crystal-field splittings play a very minor
role in the relaxation process, except for providing the nec-
essary channel for energy transfer between spins and lattice
phonons. We present a full analysis of the longitudinal and
transverse nuclear relaxation in terms of previously devel-
oped theories for relaxation by paramagnetic impurities and
for dynamic polarization, taking into account electron spin
fluctuations by both spin-lattice relaxation and spin-spin in-
teractions. Our NMR data in high fields prove to be in ex-
cellent qualitative as well as quantitative agreement with
such theoretical predictions. The values for the longitudinal
nuclear spin-lattice relaxation rate and for the effective hy-
perfine interaction constant deduced from our high-field
time-dependent specific heat data are likewise in good ac-
cord with the NMR results.

The outline of this paper is as follows. After giving a few
experimental details in the next section, the measured sus-
ceptibility and zero-field specific heat data are presented and
discussed in Secs. III A and III B, followed by a Monte
Carlo simulation study of the zero-field specific heat in Sec.
III C. In Sec. III D the field-dependent specific heat measure-

FIG. 1. �a� Structure of Mn6O4Br4�Et2dbm�6; �b� sketch of the
symmetric octahedral core, containing six ferromagnetically
coupled Mn3+ ions, yielding a total spin S=12 for this molecular
superparamagnetic particle. The gray and black spheres indicate the
Br− and O2− ions respectively. The white arrows illustrate the fer-
romagnetic alignment of the Mn3+ s=2 spins inside the cluster.
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ments are discussed, followed by the nuclear resonance and
nuclear relaxation data in Sec. III E. Section IV contains an
analysis of these data in terms of existing theoretical models
for relaxation in highly polarized magnetic systems. Con-
cluding remarks are given in Sec. V, while in the Appendix
we describe the calculation of the demagnetizing factor for
powder samples. Systeme International units will be used
throughout the paper.

II. EXPERIMENTAL DETAILS

Polycrystalline samples of Mn6 were prepared as reported
in Ref. 30. Low-temperature specific heat measurements
were performed in a homemade calorimeter that makes use
of the thermal relaxation method.5,15,38 For the measure-
ments, a few milligrams of sample were mixed with Apiezon
N grease and placed on the sapphire plate of the calorimeter.
Details of this measurement technique are given in Ref. 38.
An important advantage of this method is that the char-
acteristic time �e of the experiment �typically, �e
�0.1–1000 seconds at low T� can be varied �within limits�
by changing the dimensions �and therefore the thermal resis-
tance� of the Au wire that acts as a thermal link between the
calorimeter and the mixing chamber of the dilution refrigera-
tor. Magnetic fields up to 16 T can be applied with a super-
conducting magnet and the lowest temperatures reached are
of the order of 50 mK.

The ac-susceptibility measurements were performed be-
tween 15 mK and 4 K in a homemade susceptometer, placed
inside the plastic mixing chamber of a dilution refrigerator
and thermalized by the 3He flow.37 The susceptometer, based
on the mutual inductance technique, consists of a primary
coil with 250 turns of �100 �m NbTi wire, and two oppo-
sitely wound secondary coils, each with 660 turns of
�40 �m Cu wire. By placing the sample inside one of the
two secondary coils and feeding the primary with an ac cur-
rent �typically �50 �A�, the induced voltage across the sec-
ondary is proportional to the susceptibility of the sample. By
phase-sensitive detection we can also discriminate the real
and imaginary parts of the susceptibility. The excitation fre-
quency � was varied between 230 and 7700 Hz. Additional
measurements above 1.8 K were performed using the ac op-
tion of a commercial superconducting quantum interference
device �SQUID� magnetometer.

As for the NMR experiments, we introduced the sample
and the four-turns NMR coil inside the plastic 3He pot of a
pumped 3He cryostat, where variable magnetic fields up to
8 T could be applied by a superconducting magnet. The
resonance of the 55Mn nuclei of Mn6 was observed by means
of the spin-echo technique, with a typical duration of the � /2
pulse of t�/2�2 �s.

Estimates of the magnitude of the magnetic anisotropy
have been obtained as follows. Magnetic data measured
above 1.8 K �Ref. 30� can be fitted by expressions valid for
fully isotropic S=12 spins, i.e., they do not evidence any
detectable ZFS for the total spin. The data are excellently
fitted by the Brillouin curve calculated for an isotropic para-
magnet with S=12 and g=1.98 �as derived from electron
paramagnetic resonance �EPR��. If we write a single-spin
Hamiltonian for the molecule as

H = − DSz
2 − g�BBa · S , �1�

these experiments provide an upper limit of �D� /kB
�0.01 K.30 In order to obtain an independent estimation of
D, high-frequency EPR experiments were carried out at the
NHMFL in Tallahassee by Krzystek, using several frequen-
cies in the range 95–380 GHz. Simulations of the spectra
performed using Eq. �1� agree well with the experimental
results for 0.01 K� �D� /kB�0.05 K. A value of �D� /kB
�0.01 K seems therefore appropriate to describe the ZFS in
Mn6. When discussing the ac susceptibility and specific heat
data in Secs. III A and III B we shall adopt the value D /kB
=0.013 K, which yields the best agreement between theory
and experiment for both techniques.

The isotropic character of the molecular spin might seem
paradoxical at first, considering that the individual Mn3+

ions, being Jahn-Teller ions, experience strong anisotropy:
typical values of �D� /kB for the ion are a few tenths of
Kelvin. However, the net D value entering in the spin Hamil-
tonian for the cluster can be seen in first approximation to
result from the vectorial addition of the local anisotropy ten-
sors of the individual ions, which then can give rise to a low
net anisotropy for highly symmetric molecules such as Mn6
�cf. Fig. 1�, even for large ZFS of the constituting atoms.39 In
fact, the possibility to tune the net anisotropy of the cluster
spin by means of molecular synthesis is one of the attractive
properties of these nanosized molecular superparamagnets.

III. EXPERIMENTAL RESULTS AND ANALYSES

A. Magnetic susceptibility

Strong evidence for the long-range ordering of the mag-
netic moments is provided by the magnetic susceptibility
data, shown in Fig. 2. The real part �� of the complex ac
susceptibility is plotted in Fig. 2�a�, and is seen to show a
sharp maximum at Tc=0.161�2� K. We first demonstrate that
the value of �� at Tc is of the order of the estimated limit
1 /Neff for a ferromagnetic powdered sample, where Neff is an
effective demagnetizing factor appropriate for the �cylindri-
cally shaped� container filled with the grains. In the Appen-
dix we argue that Neff can be approximately given in terms of
the demagnetizing factors Ngrain and Ncont of, respectively,
the individual grains and the container as �Eq. �A3��,

Neff = Ngrain + f�Ncont − 1/3� , �2�

where f denotes the volume filling fraction of the container.
Assuming the shape of the grains to be approximately

spherical, we put Ngrain=1/3, while from the shape of the
container, we estimate Ncont�0.2. The density of the mate-
rial is estimated to be 	grain�1.45 g/cm3 from the value for
the similar compound Mn6O4Br4�Me2dbm�6, and the filling
fraction is estimated as f �1/3. All this then leads to Neff
�0.29�5� and therefore ���Tc��1/Neff=3.5�6�, the large er-
ror arising obviously from all the uncertainties in the above
line of argument and in the estimates of the parameters in-
volved. Next we should realize that this value would be valid
for the �� measured along the easy axis, whereas even a
relatively small anisotropy will lower appreciably the ��
along the other directions.40 Therefore, the powder �� could
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easily be lower by a factor of 2 �see Eqs. �A5� and �A6� of
the Appendix�.

Given all the uncertainties, the above derived value can
obviously serve as an order of magnitude estimate only, but
we note that the experimental value of ���Tc��3 is indeed
rather close. Unfortunately, it proved to be impossible to ob-
tain single crystals of the investigated compound, since mea-
surements along the different crystallographic directions
would have greatly facilitated the analysis. As a second ar-
gument for the ferromagnetic nature of the transition we in-
clude therefore in Fig. 2�a� the powder susceptibility ex-
pected for the paramagnetic �noninteracting� case, as
calculated from the spin Hamiltonian �Eq. �1�� and applying
in addition the corrections for demagnetizing effects as de-
scribed in the Appendix. Besides the curve for D /kB
=0.013 K appropriate for Mn6, we also include for compari-
son the fully isotropic �D=0� and infinite anisotropy limits.
From this plot it is evident that, when approaching Tc, the
susceptibility of Mn6 increases appreciably above the para-
magnetic limit, confirming the ferromagnetic nature of the
correlations.

Below Tc, the powder �� decreases rapidly, as expected
for an anisotropic ferromagnet in which the domain-wall mo-
tions become progressively pinned. The associated domain-
wall losses should then lead to a frequency dependent maxi-
mum around Tc in the imaginary part, ��, as the experimental
data of Fig. 2�b� indeed show. In fact, although the Mn6 spins
can be considered as nearly isotropic at high temperatures,

the anisotropy energy is still large compared with the dipolar
interaction energy �0�2 /4�kBr3�0.1 K between nearest
neighbor molecules. Thus the ordering should be that of an
Ising dipolar ferromagnet.

As shown in detail in the inset of Fig. 2�a�, the tempera-
ture Tpeak at which the maximum value of �� is found de-
pends only weakly on �, which we attribute to the aniso-
tropy. The total activation energy for the reversal of each
Mn6 molecular spin amounts to DS2�1.9 K, i.e., about 35
times smaller than for Mn12. Although this is quite small, one
could still expect the superparamagnetic blocking of the Mn6
spins to occur when T�TB�Mn12� /35, that is below
�0.15 K. Since this value is very close to the actual Tc, one
may expect that for T→Tc the approach to equilibrium be-
gins to be hindered by the anisotropy of the individual mo-
lecular spins. We stress, however, that the frequency depen-
dence of �� observed here is quite different from that of the
well-known anisotropic superparamagnetic clusters. A way
to quantify the frequency dependence of the peak in �� is by
means of the parameter 
Tpeak/ �Tpeak
�log10 ���, which
gives the variation of Tpeak per decade of frequency. We find
here 
Tpeak/ �Tpeak
�log10 ����0.03−0.05, to be compared
with the typical values of �0.20 for superparamagnetic
blocking. In fact it is closer to the value �0.06 found for
certain types of spin glasses,41 but the peak observed here is
much higher and sharper. Also, since the cluster spins are
situated on a regular crystal lattice, a comparison with ran-
dom magnetic systems would not be appropriate. The fre-
quency dependence we observe is indeed very much weaker
than is found in the LiHoxY1−xF4 system with x=0.045 �Ref.
42�, for which x value that material is in the “antiglass”
regime.43,44 In Mn6 we found that Tpeak����Tpeak�0�+K��,
with ��0.4 and a zero-frequency limit of the peak in
��Tpeak�0��158 mK. At essentially the same temperature,
we find a fairly sharp peak in the zero-field magnetic specific
heat �see next section�, instead of a broad anomaly as ob-
served in LiHo0.045Y0.955F4. Also this finding appears to ex-
clude an interpretation in terms of a freezing transition in
Mn6.

We finally turn to the susceptibility as measured above Tc
in the paramagnetic region, which was plotted as 1/�� vs T
in the inset of Fig. 2 in Ref. 29. We first note that no evi-
dence for relaxation effects were found in this range. Up to a
frequency of 7700 Hz no appreciable �� was detected and
the measured �� smoothly joins the data measured above
2 K with the SQUID susceptometer. We may therefore con-
clude that in the whole temperature range down to Tc the
spin-lattice relaxation time is quite short, of the order 10−4 s
or less.

The high-temperature susceptibility data �i� corrected for
the demagnetizing field ��i�=�� / �1−Neff���� follow the
Curie-Weiss law �i�=C / �T−�� quite well down to approxi-
mately 0.3 K, with C=0.62�2� K and �=0.14�3� K. The
constant C equals, within the experimental errors, the theo-
retical value for isotropic spins NAg2�0�B

2 S�S+1� /3kBVm

=0.595 K, where S=12, g=2, and Vm=1647 cm3/mole is
the molar volume. The positive � confirms the ferromagnetic
nature of the ordered phase. The fact that mean field theory is
so well obeyed down to very close to Tc is as expected for a

FIG. 2. �Color online� Real �a� and imaginary �b� components of
the ac susceptibility at the indicated frequencies. Inset: magnifica-
tion of ���T� to evidence the frequency dependence of the peak.
The solid lines in panel �a� give the calculated behavior of the
paramagnetic susceptibility �no interactions� for three values of the
crystal field anisotropy constant D. In these calculations, the effect
of the demagnetizing fields of the grains and the sample holder has
been introduced as described in the Appendix.
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dipolar ferromagnet.45–48 We remark that the behavior of the
powder susceptibility we observe for Mn6 in Fig. 2 closely
resembles previous powder data for Cs2NaGdCl6 �cf. Fig. 3
of Ref. 45� and LiHoxY1−xF4 �x=0.46� �cf. Fig. 1 in Ref. 49
and Fig. 4 in Ref. 42�. Both materials are considered to be
examples of anisotropic dipolar ferromagnets. Although
weak ferromagnetism �i.e., canted antiferromagnetism�
would also lead to ��T=Tc�=1/N, this would be accompa-
nied by a negative Curie-Weiss �, whereas we observe a
positive value. Moreover, for canted antiferromagnetism an
antisymmetric interaction term of the form d · �Si
S j� is
needed �see, e.g., Ref. 50� and this is not expected for a
system of equivalent magnetic moments interacting by dipo-
lar interactions, as is the case here. For metamagnetic sys-
tems, having ferromagnetic nearest neighbor interactions and
weaker further neighbor couplings, also a positive value for
� can be found but the magnetic ordering below Tc due to the
further neighbor interaction is basically antiferromagnetic.
Consequently, although the value of ��T=Tc� can be much
higher than for nearest neighbor antiferromagnets, it will fall
still far below the ferromagnetic limit of 1 /N. We therefore
conclude that the evidence for ferromagnetic dipolar order in
Mn6 presented here is quite strong. Additional studies, for
instance of the spontaneous magnetization below Tc, would
of course be welcome to provide further proof.

B. Zero-field specific heat

Specific heat data c taken in zero-applied field are shown
in Fig. 3 as a function of temperature on a double logarith-
mic scale. Above 2 K, the specific heat is dominated by the
contribution from the lattice phonons that can be reasonably
fitted by the well-known low-T Debye approximation: clatt
� �T /�D�3, with a Debye temperature �D�29 K. Such low
values are commonly observed in the molecular cluster
compounds,5,15,28 reflecting the weak bonding between the
cluster molecules in such molecular solids.

In the lowest temperature range below 0.1 K, the specific
heat is seen to remain rather high valued, which can be
mainly ascribed to the expected contribution from the 55Mn
nuclear spins, the energy levels of which are split by the
hyperfine interaction with the Mn3+ electronic spins s=2 �see
Sec. III D below�. This contribution will become more
clearly and directly visible in the field-dependent studies,
where it will be shown to be describable by a term
cnuclT

2 /R�5.2
10−3 K2, which is plotted as the dashed line
in Fig. 3. Anticipating the discussion below, we subtract this
hyperfine contribution, as well as the phonon �T3 term from
the raw data in Fig. 3, in order to obtain the magnetic spe-
cific heat cel associated with the cluster electron spin S=12
only, as plotted in Fig. 4. The resulting curve shows two
characteristic features. At a temperature Tc�0.15�2� K a
peak is observed, that can be associated with the transition to
long-range magnetic order, in good agreement with the value
for Tc deduced from the peak in the ac susceptibility extrapo-
lated to zero frequency. Above Tc, one observes a widely
extended “high-temperature tail,” that reflects the weak zero-
field splittings �ZFS� of the S=12 multiplets by the crystal
field interactions. We recall that even for a D value as small
as 0.013 K the total splitting of an S=12 multiplet will still
be an appreciable DS2=1.9 K. In the absence of magnetic
intercluster interactions the ZFS of such a multiplet would
lead to a multilevel Schottky curve, shown as the dashed-
dotted curve in both Figs. 3 and 4, where the fit to the ex-
periment leads to the estimate �D� /kB�0.013 K, in reason-
ably good agreement with the values quoted above. In
contrast with the highly anisotropic molecular clusters Mn12,
Mn4, and Fe8, where the multilevel ZFS Schottky is found
above 1 K and is the most pronounced feature of the experi-

FIG. 3. �Color online� Zero-field specific heat of Mn6 plotted
as a function of temperature. Solid line: phonon contribution
�C /R=0.010 T3�. Dashed-dotted line: Schottky contribution due to
crystal field splitting of the S=12 multiplet as calculated with
D /kB=0.013 K. Dashed curve: expected nuclear contribution from

the 55Mn nuclear spins.
FIG. 4. �Color online� �a� T dependence of the electronic spe-

cific heat at zero applied field �circles�. The dashed-dotted line is
the Schottky anomaly calculated with D /kB=0.013 K. The solid
line is the Monte Carlo �MC� calculation for an orthorhombic lattice
of 1024 Ising spins with periodic boundary conditions. For each
point, 2
104 MC steps per spin were performed. �b� T dependence
of the entropy obtained by integration of the electronic specific heat
curve.
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mentally observed magnetic specific heat,5,15,28 its presence
in Mn6 is masked at the low-T side by the ordering anomaly
produced by the effects of the intercluster magnetic interac-
tions. Numerical integration of cel /T between 0.08 K and
4 K gives a total entropy change 
sel /R=3.5�2� per mole,
close to the expected total entropy for a fully split S=12
multiplet, namely 
sel /R=ln�2S+1�=3.22. This confirms the
consistency of the above subtraction procedure used to ob-
tain cel. The variation with temperature of the entropy, sel /R,
is also shown in Fig. 4. We note in particular that at Tc itself,
the entropy only amounts to about 1R per mole, indicating
that only the lowest energy levels of the cluster spins
are involved in the actual magnetic ordering process, the
majority of the higher-lying levels being already depopulated
�the lowest lying doublet ground state on its own would
already give a contribution to the entropy of R ln 2
=0.69R per mole�. Indeed, the distance to the nearest lying
excited state would be equal to �2S−1�D�0.3 K in the non-
interacting limit.

C. Monte Carlo simulations

To simulate the zero-field specific heat data, Monte Carlo
�MC� calculations were performed for an S=12 Ising model
of magnetic dipoles on a body-centered orthorhombic lattice
containing Z=2 molecules, with axes ax=15.7 Å, ay
=23.33 Å, and az=16.7 Å. This choice approximates the
crystal structure of Mn6O4Cl4�Et2dbm�6, that is the most
closely related compound which yielded sufficiently large
crystals for x-ray studies. To further simplify the Monte
Carlo simulations, we approximated the monoclinic structure
by an orthorhombic one. The density, 	=1.45 g/cm3, was
estimated from the Mn6O4Br4�Me2dbm�6 compound. The re-
sulting molar volume is a few percent larger than what would
be obtained from the lattice parameters used in the Monte
Carlo simulation, but this discrepancy is due entirely to the
approximation of orthorhombic structure. The Hamiltonian
includes the dipolar interaction term as well as the anisotropy
term −DSz

2 given in Eq. �1�. For T�0.5 K the intermolecular
dipolar interactions become important and remove the de-
generacy of the �±m� spin doublets. The MC simulations
show that the ground state is indeed ferromagnetically or-
dered, as observed, and predict a shape for cel that is in good
agreement with the experiment. In the upper panel of Fig. 4,
we show cel as calculated assuming all molecular easy �z�
axes to point along az, i.e., one of the two nearly equivalent
short axes of the actual lattice. Similar results were obtained
for other orientations chosen for the anisotropy �z� axis. We
note that our simulations give Tc=0.22 K, which is slightly
higher than the experimental Tc=0.161�2� K. This difference
may be due to the Ising approximation taken for the inter-
cluster dipolar interaction and to uncertainties in the values
of the lattice parameters. In fact we note in passing that an
almost perfect coincidence of our calculated curve with the
experimental data may be obtained by assuming a smaller
value of the magnetic moment, i.e., taking g=1.75 instead of
g=2.00.

To pursue this point further, additional MC simulations
were performed for the same crystal lattice, but now with

classical Heisenberg spins replacing the S=12 Ising spins. To
investigate the sensitivity of our results to the type of aniso-
tropy, the sign and magnitude of D were varied. These cal-
culations resulted in the phase diagram shown in Fig. 5,
which we include here since it illustrates the complicated
way in which the nature of the actual ground state and the
value of Tc may depend on the combination of the long-
range dipolar interaction and the anisotropy parameter. Al-
though the ground state for this lattice is always found fer-
romagnetic, it can be either “uniaxial,” with strong pref-
erence for the spins to lie along the ay axis �chosen for this
particular example to be the anisotropy axis z of Eq. �1��, or
“planar,” in the sense that the ax-az plane becomes an easy
plane, with a weak preference for a given direction in the
plane, as sketched in the figure. Interestingly, the switching
point between these “uniaxial”and “planar” orientations is
not at D=0. The reason for this is as follows. Because the
crystal lattice under consideration is far from being cubic,
the dipolar interaction energy is rather anisotropic. The dipo-
lar energy is minimized when the magnetization M points in
the direction �in the ax-az plane� shown in the inset on the
left-hand side of Fig. 5. Therefore, M points along this di-
rection for D�0. On the other hand, the energy minimiza-
tion for D�0 is a competing process. Clearly, dipolar inter-
action must become dominant for sufficiently small values of
D. The numerical results show that this occurs if 0�D /kB
�3 mK. The numerical data points in Fig. 5 also show that
Tc varies sharply within the −0.01�D /kB�0.01 K range.
System size effects and computer time restrictions do not
allow us to determine whether Tc vanishes completely. The
lowest numerical value obtained is as small as Tc�0.03 K at
D /kB�3 mK. Outside this narrow range of D, Tc is already
almost equal to the limiting values of �0.7 K and �0.3 K,
reached for infinite negative and positive D, respectively.
Such a variation of Tc with anisotropy, as well as the form of
the calculated and observed specific heat ordering anomaly,
appear to be specific for dipolar interactions. They differ
widely from the corresponding behavior known for three-
dimensional �Heisenberg, Ising, XY� ferromagnetic lattices
with nearest neighbor interaction only.51 For instance, in
those models the variation of Tc with anisotropy is restricted

FIG. 5. Calculated critical temperature Tc as a function of the
anisotropy parameter D, for classical Heisenberg spins.
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to about 20% of the Tc value, which moreover is highest for
the Ising �“uniaxial”� case. It is also interesting to compare
these Monte Carlo calculations with the predictions of
simple mean field theory. The latter gives Tc=2S2Jeff /kB and
Tc=2S�S+1�Jeff /3kB, respectively for D→ +� and D=0,
where Jeff is an effective interaction constant. The ratio be-
tween these two limits, which is 3S / �S+1�, is about 2.5
times larger than what is obtained by Monte Carlo calcula-
tions.

In concluding this section we may stress that our detailed
calculations have evidenced that for a dipolar magnet the
value of Tc may vary strongly with anisotropy and lattice
symmetry. This illustrates the danger in drawing conclusions
about the nature of the magnetic interactions, i.e., whether
they are of dipolar origin or not, just by comparing the value
of kBTc with the dipolar interaction energy of a pair of near-
est neighboring spins. Our detailed calculations specific for
this compound show a good quantitative agrement assuming
just dipolar coupling, both as regards the value of Tc and the
shape of the specific heat anomaly. Furthermore, the predic-
tion that the ordering is ferromagnetic, as observed, is quite
robust since it is independent of the details of the simula-
tions. All this confirms that LRMO in Mn6 is mainly driven
by dipolar interactions.

D. Field-dependent specific heat: Nuclear spin contribution

We next discuss the time-dependent magnetic specific
heat cm=c−clatt measured under varying applied magnetic
fields Ba, as plotted in Fig. 6. Even for the lowest Ba value,
the ordering anomaly is already fully suppressed, as expected
for a ferromagnet. Accordingly, we may account for these
data with the Hamiltonian �1� neglecting dipolar interactions.
The Zeeman term splits the otherwise degenerate �±m� dou-
blets, and already for Ba�0.5 T the level splittings become

predominantly determined by Ba, so that the anisotropy term
can then also be neglected. As seen in Fig. 6, the calculations
performed with D=0 �dotted curves� reproduce quite satis-
factorily the data at higher temperatures.

However, when the maxima of the multilevel Schottky
anomalies are shifted to higher T by increasing Ba, an addi-
tional contribution is revealed at low T. It is most clearly
visible in the curves for 1 T�B�2.5 T, and varies with
temperature as cmT2 /R�4
10−3. We attribute this contribu-
tion to the already-mentioned high-temperature tail of the
equilibrium nuclear specific heat cnucl

�eq�. As discussed in Sec.
IV, this specific heat should be dominated by the contribu-
tions of the six 55Mn nuclear spins �I=5/2� and of the 114
protons present in each molecule. The energy levels of the
former are split, even at zero field, by the strong on-site
hyperfine interactions with the Mn3+ electronic spins s=2.
For the specific heat analysis this interaction can be approxi-
mated by Hhf=AI ·s, where A is an effective isotropic hyper-
fine coupling constant. By contrast, we may neglect the
hyperfine splitting of the protons because it can be expected
to be small compared to their nuclear Zeeman splitting for
Ba�1 T. This is indeed confirmed by the NMR experiments
shown below. The high-temperature limit of the nuclear spe-
cific heat can therefore be approximated by the sum of two
contributions,52

cnucl
�eq�T2

R
� 6 


1

3
A2s2I�I + 1� + 114 
 	��HBa

2kB

2

, �3�

where �H=2.675
108 rad T−1 s−1 is the protons gyromag-
netic ratio. Taking A /kB=8.6 mK as estimated from the
NMR spectra measured for the same sample �see Sec. III E�,
we obtain the dashed line shown in Fig. 6 at zero field. This
is the same contribution that was subtracted from the zero-
field data shown in Fig. 4. The difference between the calcu-
lated and experimental cnucl

�eq�, which becomes especially evi-
dent for the Ba=2 T curve, can be due to the shift of the
55Mn nuclear energy splittings by the applied field, which is
neglected in Eq. �3�.

A remarkable feature of the experimental data that is not
reproduced by these equilibrium calculations is that, at the
lowest T, the nuclear specific heat drops abruptly to a base-
line of about 3
10−3R. This remaining specific heat is prob-
ably a background feature arising from incomplete correction
for the field-dependent addenda contributions. The crossover
temperature T* where the drop of cm occurs depends on Ba
but also on the characteristic time constant �e of our �time-
dependent� specific heat experiment: As is shown in the inset
of Fig. 6, the deviation from the �calculated� equilibrium
specific heat is found at a lower T when the system is given
more time to relax. Interestingly, the specific heat becomes
even smaller than the expected contribution of the protons.
The drop therefore shows that, below T*, the nuclear spins of
both the 1H and 55Mn atoms cannot attain thermal equilib-
rium with the lattice phonons within the experimental time �e
because the longitudinal nuclear spin-lattice relaxation time
becomes too short. This relaxation effect can be described as
follows:

FIG. 6. Temperature dependence of the magnetic specific heat
cm at Ba=0.5 T ���, 1 T ���, 2 T ���, 2.5 T ���, 3 T ���, and
6 T ���. The dotted lines represent the calculated electronic contri-
bution, whereas the dashed line is the expected nuclear specific heat
at zero field calculated with Eq. �3�. The solid lines represent the
total time-dependent cm �electronic+nuclear� calculated accounting
for the nuclear T1n �see text�. Inset: detail of cm�T� at Ba=2 T, for
long ��100 s� and short ��1 s� experimental times. The dashed
lines are the calculated contributions arising from the 55Mn and 1H
nuclear spins.

MAGNETIC DIPOLAR ORDERING AND RELAXATION IN¼ PHYSICAL REVIEW B 73, 134406 �2006�

134406-7



cnucl��e� = cnucl
�eq��1 − exp�− �e/T1n�� , �4�

where, to simplify the discussion, we have used the same
nuclear spin-lattice relaxation �NSLR� time T1n for both pro-
tons and 55Mn although they can obviously differ from each
other. According to Eq. �4� the specific heat decreases fast
when T1n becomes of the order of �e. This crossover to a
nonequilibrium regime �as measured by time-dependent spe-
cific heat� provides therefore direct information on the tem-
perature and field dependence of the nuclear T1n.

As is well established,53 T1n�T ,Ba� can be related to the
time-dependent part of the transverse hyperfine field as pro-
duced by the fluctuations of the electron spin. For the case of
Mn6 both the electron spin fluctuations due to spin-lattice
coupling and to dipolar spin-spin interactions will have to be
considered. A more extensive theoretical treatment is given
below in Sec. IV, in terms of existing models for nuclear
relaxation in magnetic crystals. As will be seen, this treat-
ment predicts the behavior of the longitudinal nuclear spin-
lattice relaxation time at low temperature and high fields
��3 T� to be given by

1

T1n
� �0Ba

3 exp	−
g�BBa

kBT

 , �5�

where �0 is a constant that depends on the electronic spin-
lattice relaxation rate and on the details of the relaxation
mechanism. This shows that an exponential temperature de-
pendence of the NSLR rate is expected at high fields. The
effect of the field is to polarize the electron spins, which
reduces the fluctuations of the hyperfine field, thus effec-
tively disconnecting the nuclear spins from the lattice.

As seen from Eq. �5� the nuclear spins can be taken out of
equilibrium either by decreasing T down to T* at constant
field �as in Fig. 6�, or by increasing Ba up to a given value B*

at constant T. The latter effect is indeed also observed ex-
perimentally, as shown in Fig. 7 for T=0.3 K and 0.6 K. In
this figure the transition to nonequilibrium is obvious from
the fact that the data measured in high field fall far below the
expected nuclear contributions �dashed lines�. The inset of
Fig. 7 shows B*�T*� obtained either from T sweeps at con-
stant B �as in Fig. 6� or from B sweeps at constant T �as in
Fig. 7�. The two methods prove to be fully consistent with
each other. The fit of B*�T*� using Eq. �5� gives an average
value of �0�40 s−1 T−3. Using this value of �0 we have
calculated the time-dependent cnucl from Eq. �4�. Adding this
to the calculated electronic specific heat yields the solid lines
in Figs. 6 and 7, which can be seen to be in reasonably good
agreement with the experimental data over the whole range
of field and temperature.

E. 55Mn NMR and nuclear relaxation

The nuclear spin-lattice relaxation in Mn6 has been fur-
ther investigated by 55Mn nuclear magnetic resonance. Apart
from the fundamental question as to by which mechanisms
the magnetic relaxation proceeds in this isotropic molecular
magnetic crystal, it is of interest to compare with the typical
behavior observed recently for the highly anisotropic single-
molecule magnets like Mn12-ac.34–36

As is well known, it is difficult to observe NMR for nuclei
of paramagnetic ions due to the very large and strongly fluc-
tuating magnetic fields produced at the nuclei by the electron
spin through the �on-site� hyperfine interactions. As a conse-
quence, nuclear resonance lines become very broad and spin-
lattice relaxation rates too fast to be measured. To enable the
observation of the NMR signals, one should therefore take
recourse to the low-temperature and high-field regime, in
which electron spin fluctuations can be expected to be suffi-
ciently suppressed. Accordingly, we performed our experi-
ments at T=0.9 K, using a 3He cryostat, and fields in the
range 3 to 7 T.

The 55Mn NSLR was studied by measuring the recovery
of the nuclear magnetization after an inversion pulse. By
integrating the echo intensity we obtained recovery curves as
those shown in Fig. 8�a�. For the ease of comparison be-

FIG. 7. �Color online� Field dependence of the magnetic specific
heat at T=0.3 K �solid dots� and T=0.6 K �open dots�. The dashed
and dotted lines represent respectively the calculated nuclear �see
Eq. �3�� and electronic contributions to the equilibrium specific
heat. The thick and thin solid lines give respectively the equilibrium
cm and the time-dependent cm calculated accounting for the field-
dependent nuclear T1n. Inset: B*�T*� obtained from T sweeps,
as in Fig. 6 �open dots�, or from B-sweeps, as in the present figure
�solid dots�. From the fit �solid line� to Eq. �5� we extract
�0�40 s−1 T−3.

FIG. 8. �Color online� Inversion recovery �a� and decay of trans-
verse magnetization �b� for the 55Mn nuclei at T=0.9 K, Ba=5 T,
and �=251.5 MHz. The lines in �a� are fits to Eq. �6� with
��0.5 �dashed� and �=1 �solid�. The solid line in �b� is a fit to
Eq. �7�.
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tween different curves, we renormalize the vertical scale
such that M�0� /M���=−1 and M�t�T1n� /M���=1, even
though usually �M�0��� �M����: this is just an artifact that
occurs when the NMR line is much broader than the spec-
trum of the inversion pulse, and does not mean that the
length of the � pulse is incorrect. Since the 55Mn nuclei have
spin I=5/2, the recovery of the nuclear relaxation for the
central line in the quadrupolar split manifold is described
by54

M�t�
M���

= 1 − �100

63
e−�15t/T1n��

+
16

45
e−�6t/T1n��

+
2

35
e−�t/T1n��
 ,

�6�

where 1/T1n is the nuclear spin-lattice relaxation rate, and �
is a stretching exponent, which needs to be introduced to
account for the large inhomogeneity of the NMR line, which
causes the inversion recovery to consist of a combination of
recoveries with different rates. We typically found an optimal
value of ��0.5, although the choice of the stretching expo-
nent does not strongly influence the value of 1 /T1n extracted
from the fit.

The transverse spin-spin relaxation �TSSR� rate 1 /T2n
was studied by measuring the decay of echo intensity upon
increasing the waiting time � between the � /2 and the �
pulses. The decay of transverse magnetization M���� can be
fitted to a single exponential

M��2��
M��0�

= e−2�/T2n, �7�

as shown in Fig. 8�b�.
The field-sweep NMR spectra in Fig. 9 clearly show that

it is impossible to determine whether there are inequivalent
sites in the molecule, as regards the hyperfine coupling
�compare with the case of Mn12-ac �Ref. 55��. This may be
due to the large quadrupolar splitting expected in Mn3+ sites,
plus the fact that our sample is an unoriented powder. As
expected from the internal ferromagnetic structure of the

cluster electron spins, the 55Mn spectrum shifts to higher
fields when lowering the frequency. The spectra can be fitted
by a Gaussian shape with total width 2�B�2.2 T. If this
width were due to quadrupolar splitting 
�Q only, one would
deduce 
�Q�7 MHz: this estimate can be obtained from a
comparison to the Mn�1� line in Mn12-ac, where 
�Q
=0.72 MHz yields 2��=2.4 MHz,55 i.e., 2�B=2�� /
��Mn/2���0.23 T, where �Mn=6.64
107 rad T−1 s−1 is the
55Mn gyromagnetic ratio. Such an estimate is thus even
larger than the highest 
�Q�4.3 MHz found in the Mn�2�

sites of the less symmetric Mn12-ac cluster.55 We expect
therefore that the random orientation of the crystallites and,
eventually, the presence of inequivalent Mn sites as regards
the hyperfine coupling, are also contributing to the observed
broadening. Indeed, when decreasing the frequency by
5 MHz the maximum of the spectrum shifts only by 0.24 T,
instead of the 0.47 T that would be expected when all the
local hyperfine fields are antiparallel to Ba. We conclude that
the observed spectrum, as well as the NSLR and TSSR data,
should be considered as obtained from a mixture of nuclear
signals arising from randomly oriented crystallites with
largely overlapping and quadrupolar-split NMR lines from
all the Mn sites in the cluster. Extrapolating to Ba=0 the field
dependence of the peak of the spectrum, one obtains ��0�
�360 MHzÞBhyp�34 T, very similar to the highest value
found in the Mn�3� site of Mn12-ac.55 Finally, in connection
with the discussion of the nuclear specific heat of the previ-
ous section, it is interesting to mention that the 1H resonance
is found at a value of field given simply by BH�� /�H �the
excluded region in the spectra shown in Fig. 9�. This con-
firms that the local hyperfine fields do not appreciably shift
the 1H resonance frequency and, therefore, for sufficiently
high fields �Ba�1 T�, the hyperfine interaction of protons
can be neglected, as we did.

Figure 10 shows the field dependencies of the NSLR rate
1/T1n and the TSSR rate 1/T2n, measured at constant fre-

FIG. 9. �Color online� 55Mn NMR spectra at T=0.9 K and
measuring frequencies �=246.5 MHz �down triangles� and
�=251.5 MHz �up triangles�. The gap in the data around
Ba�5.8 T is due to the crossing with the 1H line arising from the
Zeeman-split proton levels. The lines are Gaussian fits with total
width 2�B�2.2 T.

FIG. 10. �Color online� Field dependencies of the 55Mn NSLR
�full squares, left scale� and TSSR �open circles, right scale� at
T=0.9 K and �=251.5 MHz. Notice the factor 104 between left
and right scales. The hatched area around 5.8 T indicates the region
where the 1H line overlaps with the 55Mn resonance. Dashed
line: calculated 1/T1n�Ba� according to Eq. �5� for the value
�0=40 s−1 T−3 as extracted from specific heat experiments. This
represents exactly the same line as in the inset of Fig. 7. Solid line:
fit to Eq. �34� below with parameters discussed in the text. Dotted
line: 1 /T2n calculated according to Eq. �25�.
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quency �=251.5 MHz and temperature T=0.9 K. From the
discussion above it is clear that these data must be inter-
preted with a certain caution, since shifting Ba at constant �
means that we are sampling each time a different portion of
the NMR signal, which means different quadrupolar satel-
lites, different orientation of the crystallites, etc. Neverthe-
less, the agreement with the estimate of T1n obtained by spe-
cific heat data �inset of Fig. 6� turns out to be satisfactory.
We can directly compare the NSLR rates 1 /T1n�Ba� obtained
from respectively NMR and specific heat data by plotting
�dashed line in Fig. 10� 1/T1n�Ba� as calculated from Eq. �5�,
with T=0.9 K and fixing �0=40 s−1 T−3 as obtained from the
fit of B*�T*� in the inset of Fig. 7. The agreement is seen to
be reasonable. The solid line in the same figure represents a
fit to the 1/T1n�Ba� based on a model described by Eq. �34�
of the following section, with parameters given in the discus-
sion there.

In Fig. 10 we also show the TSSR rate 1/T2n�Ba�, with
ordinate axis shifted in order to compare its field dependence
to that found for the NSLR rate. As explained below, we
expect 1 /T2n�Ba��exp�g�BBa /kBT� at high fields. This de-
pendence, and the quantitative result calculated according to
Eq. �25�, are shown as a dotted line in Fig. 10 and yield the
right order of magnitude of the observed T2n�0.1–1 ms.

IV. DISCUSSION: MAGNETIC HYPERFINE
INTERACTIONS AND NUCLEAR

MAGNETIC RELAXATION

In this section we apply theoretical results for magnetic
hyperfine interactions and nuclear magnetic relaxation in
magnetic insulating solids to interpret the data of the previ-
ous sections. We recall that for such materials direct relax-
ation channels such as quadrupolar interactions connecting
nuclear spins to the lattice become ineffective at low tem-
peratures. Thus the electron spins present have to serve as an
intermediary between nuclei and phonons in some way or the
other and we have to consider the interconnected spin dy-
namics of both nuclear and electron spin systems and their
coupling to the lattice. As will be shown below, for highly
polarized electron spin systems, such as Mn6 in high fields at
low temperature, the relaxation behavior can be adequately
described in terms of theoretical models previously devel-
oped in the field of dynamic nuclear polarization. These
same models should also provide a good basis to describe the
relaxation in highly anisotropic single-molecule magnets like
Mn12-ac and Fe8 below their blocking temperatures, where
an extreme polarization of the electron spins is induced by
the crystal field. Although several groups have described the
application to molecular magnets of some general theories of
nuclear relaxation,35,56–58 it appears that the role of the elec-
tronic dipolar coupling has so far been overlooked. We there-
fore consider worthwhile to give a detailed overview of the
different ingredients needed to arrive at a consistent picture
describing the behavior we observe in both the NMR and the
specific heat of Mn6, being confident it will be quite useful
for the other materials mentioned as well. We will briefly
come back to this point in the conclusion section, drawing a
comparison with our observations in Mn12-ac. We start with

an evaluation of the relevant hyperfine interactions between
the cluster spins and the various nuclear spins in the Mn6
molecular cluster. Quite generally,53,59 the hyperfine interac-
tion Hamiltonian of a nuclear moment I with the surrounding
electron spins sj can be written in the form of the bilinear
coupling

Hhf = �
j

I · Ã · sj . �8�

Here the hyperfine interaction Ã is a second rank tensor and
summation is over electron spins on both the same atom and
surrounding atoms. It is often convenient to interpret the hy-
perfine coupling in terms of a magnetic hyperfine field: Bhf

=−��n��−1s · Ã, acting on the nuclear spin in addition to the
applied field Ba. �n is the nuclear gyromagnetic ratio. The
total magnetic Hamiltonian for the nuclear spins then be-
comes

Hhf = − �n�I · �Ba + Bhf� = − �n�I · Btot. �9�

In principle Hhf will be time dependent since both Ã and sj
can depend on time due to, respectively, atomic motions �not
considered here� and fluctuations of the electron spins. Pro-
vided that the frequency of these fluctuations is fast com-
pared to the nuclear Larmor frequencies produced in the
static case, the nuclear resonance is still well defined be it at
a frequency that is shifted with respect to that for Bhf=0, the

shift being proportional to the time average of Ã�t� ·s. In the
effective field picture the hyperfine field can be split up into
a static part, �Bhf�, and a time-dependent part Bhf�t�= �Bhf�
+b�t�. The time-dependent fraction, b�t�, is usually much
smaller and can then be treated as a perturbation that may
produce relaxation of the nuclear polarization. Neglecting
the quadrupolar interactions, the remaining magnetic hyper-
fine interaction may be decomposed into contributions com-
ing from the coupling of the nuclear moment with the orbital
motions of the electrons, the dipolar interactions with the
electron spins and, in case a finite density of electrons is
present at the nuclear site, the part due to the Fermi-contact
interaction. Thus we may write �Bhf�=Bdip+BL+BF, in an
obvious notation. As for the relative strengths of these con-
tributions, for nuclei �such as the present 55Mn� residing on
magnetic atoms the Fermi-contact term is strongest by far,
with BF�10–102 T, followed by the orbital and dipolar in-
teractions with electrons on the same atom �on site�, typi-
cally of order 10 T. For ions with closed or half-filled shells
both BL and Bdip vanish, whereas also for non-S-state ions,
such as Mn3+, the orbital moment can be quenched by
crystal-field splittings, so that BL becomes negligible. Fur-
thermore, nuclei on nonmagnetic ligand atoms directly coor-
dinating the magnetic ions via covalent bonds may also ex-
perience substantial Fermi-contact interaction, of order
1–10 T. Nuclei on more distant nonmagnetic atoms
will mainly experience the long-range dipolar interactions,
giving typically Bdip�0.1–1 T.

For the 55Mn nuclei on the Mn3+ ions �with nuclear spin
I=5/2 and electron spin s=2� of the present compound Mn6
we deduced in Sec. III E a resonance frequency �extrapolated
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to Ba=0� centered around 360 MHz �corresponding to �Bhf�
=34 T�, which is almost the same as the value 364 MHz
Kubo et al.55 recently found for one of the two Mn3+ sites in
Mn12-ac. According to their analysis, the corresponding Bhf
=34.5 T for this site results from the combination of Fermi-
contact and dipolar fields BF=41 T and Bdip=14 T that are of
opposite sign. As they point out, the value for BF should not
vary much for the same ion in comparable coordinations,
quoting values for Mn3+ in TiO2 and in MnFe2O4 of, respec-
tively, BF=42 T and 36 T �with Bdip=12 T and 11.5 T, again
of opposite sign�. We may therefore assume similar values
for these fields in Mn6. As is often done, in order to estimate
the resulting nuclear energy level splittings responsible for
the measured hyperfine specific heat, we have in Secs. III B
and III D approximated the net time average of the diagonal
part of the �slightly anisotropic55� hyperfine interaction by
an effective isotropic scalar interaction Hhf,is=As ·I, where
A=−�n�Bhf /s, s=2 and A /kB=8.7 mK �corresponding to
Bhf=34 T�. As for the other nuclei present in Mn6, the only
sizable contribution to be expected is that arising from the
long-range dipolar interactions of the proton spins with the
surrounding electronic spins. Since these dipolar fields are
small, their contribution may be neglected in zero-applied
field as compared to that of the 55Mn nuclei, and only be-
comes substantial for applied fields exceeding 1 T. Although
transferred hyperfine interactions with nuclei on the oxygen
and Br ions that are directly bonded covalently to the Mn
atoms could be substantial,55 we may nevertheless neglect
their contributions in comparison with the other ones in view
of the low abundance of the 17O isotope and the low number
of Br atoms present.

Considering next the nuclear spin relaxation �NSR� we
remark that the longitudinal NSR rate, 1 /T1n, is given quite
generally by the expression

1

T1n
=

1

2�
m,n

Wm,n�Em − En�2��
m

Em
2 , �10�

where Wm,n denotes the probability for a transition between
nuclear energy levels m ,n induced by the perturbation con-
sidered. As mentioned, we assume the main source for NSR
to be the time-dependent fluctuations of the electron spins
s�t� that produce fluctuating components b�t� of the hyper-
fine field. The theory has been developed by Moriya,60–62 on
basis of the general theory of magnetic resonance absorption
of Kubo and Tomita.63 Two possible sources for the electron
spin fluctuations have to be considered, namely electron
spin-lattice relaxation, characterized by the longitudinal elec-
tron spin-lattice relaxation rate 1 /T1e, and spin-spin relax-
ation, due to magnetic interactions �dipolar or exchange� be-
tween the electron spins and characterized by the transverse
electron spin-relaxation rate 1 /T2e. Obviously, hyperfine in-
teraction terms producing NSR should involve operator com-
binations as I±sz, I+s− and I−s+, I+s+ and I−s−. The first of
these distinguishes itself in that a nuclear spin flip is not
combined with an electronic spin flip. It follows that this first
type involves transitions at NMR frequencies �=�n, the oth-
ers at ESR frequencies �=�e±�n��e. In the high-T ap-
proximation, the NSR rate can be expressed in terms of the

spectral densities f j
� of the two-spin �i� j� and autocorrela-

tion �i= j� functions �si
��0�sj

��t�� at these frequencies as

1

T1n
=

2

3
s�s + 1��

j

�Ajf j
z��n� + Bjf j

±��e�� , �11�

f j
���� = �

−�

+�

�si
��0�sj

��t��e−i�tdt �� = ± ,z� . �12�

The coefficients Aj and Bj are constants depending on the
details of the hyperfine interactions. For the ease of discus-
sion we approximate the Fermi-contact interaction by an iso-
tropic scalar on-site hyperfine coupling and neglect possible
orbital contributions. Adding the dipolar interaction, the hy-
perfine Hamiltonian becomes:

Hhf = AIi · si +
�0

4�
�e�n�2�

j
� Ii · s j

rij
3 − 3

�Ii · rij��s j · rij�
rij

5 
 ,

�13�

where �e is the electronic gyromagnetic ratio. For the terms
responsible for NSR one then obtains

H� = Ii
+�

j

Dij
z sj

z�t� + Ii
+��1/2�Asi

− + �
j

�Dij
−sj

− + Dij
+sj

+�
 + c.c.,

�14�

where Dij
z and Dij

± denote the components of the dipolar cou-
pling tensor connecting Ii

+ with sj
z and with sj

±, respectively,
and c.c. stands for complex conjugates. It is important to
note that for a pure scalar hyperfine interaction only the
transverse spectral densities f j

±��e� do appear. Assuming an
exponential decay of the spin-correlation functions, the sca-
lar interaction leads to the NSR rate53

1

T1n
=

1

2
A2�

−�

+�

�s+�0�s−�t��ei��e−�n�tdt

=
1

3
s�s + 1�A2 T2e

1 + ��e − �n�2T2e
2 . �15�

As noted above, relaxation then requires energies ��e of
the order of the electronic level splittings. By contrast
the dipolar interaction contains terms of different
symmetry,53,59 so that it contributes to both transverse and
longitudinal terms. In particular it contains the operator Dij

z

�−�3/2�sin � cos �e−i� that may induce a nuclear flip unac-
companied by an electron flip, thus involving the much
smaller energy ��n. The NSR rate due to this process, after
averaging over the angular dependence, is obtained as53

1

T1n
=

3

5
	 �0

4�

2

��e�n��2r−6�
−�

+�

�sz�0�sz�t��e−i�ntdt .

�16�

Considering now first the case that the electron spin fluc-
tuations arise from electron spin-lattice relaxation, and as-
suming again an exponential decay of the autocorrelation
function, in this case with longitudinal relaxation rate 1 /T1e,
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�sz�0�sz�t�� =
1

3
s�s + 1�exp�− t/T1e� , �17�

the NSR rate by this process is found to be given by

1

T1n
�EZ� =

2

5
	 �0

4�

2

��e�n��2r−6s�s + 1�
T1e

1 + �n
2T1e

2 , �18�

an expression first derived by Bloembergen64 for the nuclear
spin-lattice relaxation by paramagnetic impurities in diamag-
netic crystals. The superscript �EZ� is added to indicate that
this nuclear relaxation is driven by the spin-lattice relaxation
of the electron-Zeeman reservoir. Comparing Eqs. �15� and
�18� it is clear that, unless the electronic linewidths would be
comparable to the level splittings �e, the latter process will
outweigh the previous one by the large factor ��e /�n�2. In
most cases of interest one further has �nT1e�1, so that one
may write approximately

1

T1n
�EZ� �

2

5
	 �0

4�

2 ��e�n��2r−6s�s + 1�

�n
2T1e

=
2

5
	Bdip

Btot

2 1

T1e
.

�19�

Here Bdip= ��0 /4����e�s�s+1�r−3 stands for the electronic
dipolar field at the nuclear site, and Btot=Ba+Bhf=�n /�n is
the total field responsible for the nuclear Zeeman splittings.53

In the next step we have to compare this result with the
NSR rate arising from spin-spin interactions, which for Mn6
amount to the dipolar interactions between the electronic
cluster spins S=12. We note that since the total spin S=12 of
the Mn6 cluster results from the strong ferromagnetic in-
tramolecular exchange between the atomic spins s=2, the
fluctuations of the total spin are obviously related to those of
the constituting atomic spins and vice versa. Thus, although
both the hyperfine interactions and the electron spin lattice
coupling basically involve the atomic spins, the atomic spin
fluctuations nevertheless are in a one-to-one relationship
with those of the cluster spins. Due to such spin-spin inter-
actions the spectral density will no longer be given by a
Lorentzian. Instead of the exponential decay of the correla-
tion functions, Eq. �17�, one usually assumes a Gaussian ap-
proximation for the autocorrelation functions,60–62

�sz�0�sz�t�� =
1

2
�s+�0�s−�t�� =

1

3
s�s + 1�exp�− �int

2 t2� .

�20�

For the longitudinal NSR rate one obtains

1

T1n
�ED� =

�2�

3
�n

2Bdip
2 �int

−1 exp�− �n
2/2�int

2 � , �21�

where �ED� indicates that this process is driven by fluctua-
tions in the electron-dipolar reservoir. For the transverse re-
laxation one finds similarly

1

T2n
=

1

2T1n
�ED� �1 + exp�− �n

2/2�int
2 �� , �22�

from which it follows that 1 /T2n�1/T1n
�ED�. Here �int stands

for the electronic dipolar spin-spin interaction,65 which in

our case can be estimated from the dipolar ordering tempera-
ture, ��int�kBTc, and also corresponds to the electronic
TSSR rate, �int�1/T2e.

At this point it is important to emphasize that the above
derivations are essentially only valid at high temperatures
and low applied fields, since the effects of polarization of the
electronic spins by the applied field have been neglected. As
noted already by Moriya61 and in later work on dynamic
polarization,66,67 the more the electron spins become polar-
ized, the less they will be able to relax the nuclear spins. To
account for this, one should replace the time dependencies of
the electronic spin s�t� by its fluctuating part, �s�t�=s�t�−s0,
where s0 denotes the thermal average of s. Thus, instead of
an expression as in Eq. �17� for the decay of the electronic
spin, one should take61

��sz�0��sz�t�� = ��sz�0� − s0
z��sz�t� − s0

z��

= ��sz − s0
z�2�exp�− t/T1e�

= S��/�X�s0
z�X�exp�− t/T1e�

= Ss��/�X�BS�X�exp�− t/T1e� , �23�

using the fact that the thermal average of each Mn3+ spin sz

is given by sBS�X�, where X=g�BBaS /kBT, s=2, and BS is
the Brillouin function for the total molecular spin S. Accord-
ingly, the expression �17� for the electron spin autocorrela-
tion function should be multiplied by the factor 3S�s
+1�−1�BS /�X. Restricting in what follows to the simplest
case of spin S=1/2, as appropriate for the present experi-
ments in the high-field/low-T range where only the two low-
est lying electron Zeeman states are relevant, this factor re-
duces to �1−tanh2 X� /2, with X=g�BBa /2kBT. We thus
obtain for 1 /T1n

�EZ� instead of Eq. �19� the relation

1

T1n
�EZ� �

1

5
	Bdip

Btot

2

�1 − tanh2 X�
1

T1e
, �24�

whereas instead of Eq. �21� one has now

1

T1n
�ED� �

1

T2n
�ED� �

�2�

6

��nBdip�2

�int
�1 − tanh2 X�exp�− �n

2/2�int
2 � .

�25�

In both cases, since tanh X gives the degree of polarization of
the electron spin, one observes that when this approaches
unity the nuclear relaxation rate goes to zero, as to be ex-
pected. For the electron-dipolar relaxation channel one
should notice that, although the actual electronic linewidth
1/T2e strongly depends on the electronic polarization �the
second moment of the absorption line is proportional to 1
−tanh2 X, cf. Ref. 52�, �int in �25� is still given by the dipolar
coupling as calculated in the high-T limit.65

Proceeding next to compare the above predictions with
the high-field NMR experiment, we may already notice that
Eq. �25� yields the right order of magnitude for 1 /T2n. From
the value of Tc�0.16 K, we deduce the electronic dipolar
broadening to be �int�2
1010 rad/s. With NMR frequen-
cies of order �n�1.5
109 rad/s the factor exp�−�n

2 /2�int
2 �

becomes �1. Further, we have Btot�30 T and Bdip
��1/3�Btot�10 T, yielding �nBdip�6
108 rad/s. For ap-
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plied fields Ba�5 T the polarization correction factor �1
−tanh2 X� becomes of order 10−3 to 10−4. From Eq. �25� with
the numerical factors quoted above we thus find the predic-
tion �cf. Fig. 10, dotted line�: 1 /T2n

�ED��104 to 103 s−1 for the
transverse NSR-rate arising from electron spin-spin interac-
tions, i.e., in the same range as the experimental transverse
rate. Conversely, the data clearly show that 1 /T1n�1/T2n,
contrary to the prediction of Eq. �25�. Indeed, this process
basically only establishes the thermal equilibrium between
the nuclear and the electronic spin systems, i.e., without con-
sidering the relaxation of the latter toward the phonon bath.
For the complete description of the nuclear spin-lattice relax-
ation process we obviously have to investigate the spin-
phonon coupling mechanism as well.

In order to estimate the electronic 1/T1e, we remark that
the electron spin-lattice relaxation rate arising from transi-
tions between the two lowest Zeeman levels of the S=12
multiplet due to the direct process will be given by the
sum of the transition rates w↑ and w↓ due to absorption and
emission of phonons, respectively,52

1

T1e
= w↑ + w↓. �26�

Since the phonon modulation of the crystal field can be ex-
pected to be the main source of this coupling, we may apply
to Mn6 the calculations developed by Leuenberger and
Loss,68 obtaining

w↑ = Ve-ph�g�BBa�3 1

exp�2X� − 1
, �27a�

w↓ = Ve-ph�g�BBa�3 1

1 − exp�− 2X�
, �27b�

Ve-ph =
D2S�2S − 1�2

6�	cs
5�4 , �27c�

where S=12, D /kB=0.013 K is the uniaxial anisotropy con-
stant, 	=1.45 g/cm3 is the density, and cs the sound velocity.
Within the Debye model, the latter is obtained from the ex-
perimental Debye temperature �D=29 K as

cs =
kB�D

�
	6�NA

Vm

−1/3

= 1.3 
 103 m/s. �28�

Substituting into Eq. �26� yields

1/T1e � 104Ba
3 coth X , �29�

with Ba in Tesla. �It should be noted that the value calculated
for Ve-ph is very sensitive to the values used for �D and D /kB
so that it obviously is subject to a large uncertainty margin.�
For instance, Ba=5 T and T=1 K yields 1/T1e�104 s−1. Be-
cause of the very small value of the anisotropy constant D in
Mn6, 1 /T1e is thus expected to be much lower than the typi-
cal values �107 s−1 found, e.g., in Mn12-ac. This also im-
plies that a model for the TSSR rate based on the random
changes in local hyperfine field due to electron-phonon exci-
tations, as recently used to describe 1/T2n in Mn12-ac,35

would lead in this case to a quantitative estimate that is about

three orders of magnitude lower than our experimental result.
Nuclear relaxation to the lattice can now occur in two

ways, either directly via the spin-lattice relaxation fluctua-
tions of the individual electron spins, or in a two-step process
by spin-spin relaxation to the electron dipolar reservoir fol-
lowed by relaxation to the lattice. The direct spin-lattice re-
laxation �single-ion� process is described by Eq. �24�, which
becomes

1

T1n
�EZ� � 21	Bdip

Btot

2

Ba
3 coth X�1 − tanh2 X� . �30�

For large X, coth X�1 and �1−tanh2 X��4 exp�−2X�. With
Bdip /Btot�1/3 one obtains

1

T1n
�EZ� � 9Ba

3 exp�− g�BBa/kBT� , �31�

with Ba in Tesla. As we have seen, both the specific heat and
the NMR data yield a field dependence of 1 /T1n that is the
same as in Eq. �31�, with a prefactor of about 40. The pre-
diction of Eq. �31� is therefore qualitatively satisfactory but
quantitatively slightly too low.

Next we consider the two-step relaxation process on basis
of the spin-spin interaction process. Intuitively this is easily
understood as follows: Relaxation of the nuclei by spin-spin
interactions involves 1/T2e which will be of order 109 Hz or
higher, implying that the electron spin-spin interactions can
be very effective in relaxing the nuclear spins. However, re-
laxation is then toward the electron spin system, and the
ultimate relaxation to the lattice has to occur in a second
step. This situation has often been met for nuclear relaxation
in magnetic crystals or in diamagnetic insulators with para-
magnetic impurities, notably in connection with the phenom-
enon of dynamic nuclear polarization.65,69,70 In the theoreti-
cal treatments it has been proven necessary to consider the
Zeeman term and the spin-spin interaction term in the Hamil-
tonian of a spin system �electronic or nuclear� as separate
energy reservoirs, to each of which separate temperatures
can be assigned that may differ quite substantially from one
another �see Refs. 65 and 70�.

Applied to our present problem, this leads to the block
diagram sketched in Fig. 11 �the nuclear-dipolar reservoir is
omitted here since its energy is so small that it plays no role
at the relevant temperatures�. The electron-Zeeman �EZ� and
electron-dipolar �ED� energy reservoirs will be at the same
�lattice� temperature in zero-applied field. However, when
with increasing field the electronic level splitting �e starts to
exceed the electronic dipolar broadening, the two reservoirs
become progressively separate entities, characterized by dif-
ferent temperatures and largely different heat capacities. This
arises since the EZ reservoir is strongly coupled to the pho-
non bath and can be considered to remain in equilibrium
with the lattice regardless of any nuclear relaxation event.
The ED reservoir on the other hand, has a heat capacity that
decreases rapidly with field. Although the ED reservoir is
coupled to the lattice at a rate �2/T1e, i.e., twice the electron
spin-lattice relaxation rate,70 it is also strongly coupled to the
nuclear Zeeman �NZ� system at a rate given by Eq. �25�, i.e.,
of the order of 1 /T2n. In high fields, therefore, the nuclear
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relaxation will take place in two stages. In the first stage the
NZ and ED systems will become rapidly in equilibrium at
basically the same fast rate that determines the experimen-
tally observed 1/T2n. Subsequently, the coupled NZ+ED
systems will relax toward the lattice at the much slower rate,

1

T1
* =

2

T1e

CED

CNZ + CED
, �32�

which for the case CNZ�CED would become roughly equal
to 2/T1e �CED/CNZ�. Here the symbols CED and CNZ stand
for the �field-dependent� specific heats of the ED and the NZ
reservoirs. The situation is seen to be analogous to the
phonon-bottleneck phenomenon, well known in paramag-
netic relaxation. Applied to our present case, we calculate
CNZ from Eq. �3� to be of order 0.006 R at T=0.9 K and
B=5 T �cf. Figs. 8 and 9�, which value depends only weakly
on applied field. CED in zero field can be estimated as52

CED

R
=

6

5
	 �0

4�

g2�B
2 S�S + 1�
3kBT


2

�
j�i

1

rij
6 , �33�

after averaging over the angular dependence of the dipolar
coupling, as appropriate for an unoriented powder sample.
Using the same lattice parameters as for the Monte-Carlo
simulations yields CED�0.004 R at T=0.9 K. CED then de-
pends on the electronic polarization as CED�X�=CED�0��1
−tanh2 X��4 CED�0�exp�−g�BBa /kBT�, since for high fields
only the lowest Zeeman level is available for the electron
spins.70 All this leads to a global rate for the nuclear spin-
lattice relaxation

1

T1
* � 208Ba

3 coth�X�
0.004�1 − tanh2 X�

0.006 + 0.004�1 − tanh2 X�

� 550Ba
3 exp�− g�BB/kBT� , �34�

that has the same field dependence as Eq. �31�, but with a
prefactor of about 550 instead of 9, meaning that the two-
step spin-spin relaxation should be the fastest process by
almost two orders of magnitude in the high-field region. The

solid line in Fig. 10 is obtained from Eq. �34� but assuming
a prefactor of order 25.

At this point it is important to recall that the prefactors in
both Eqs. �31� and �34� are affected by a large numerical
uncertainty originating from the expression for 1 /T1e, which
contains the electron-phonon coupling constant Ve-ph, Eq.
�27c�. This constant is proportional to D2 and �D

−5, and both
these quantities have rather large error bars. However, the
values of D and �D influence in the same way the relaxation
rates via the electron-Zeeman and the electron-dipolar chan-
nels, thus the latter is expected to dominate in any case by
almost two orders of magnitude. Due to their strong influ-
ence on 1/T1e, allowing both D and �D to vary by only a
factor of 1.5 would already yield the correct quantitative
prefactor in Eq. �34�.

Summarizing the results of this section, we may state that
both the longitudinal and transverse nuclear relaxation that
we observe at high applied fields are in excellent qualitative
and even quantitative agreement with the model based on
fast dipolar relaxation of the hyperfine-coupled nuclear-
Zeeman system to the electron-dipolar reservoir, followed by
much slower relaxation of the combined systems via the
electron spin-lattice channel. The direct nuclear spin-lattice
relaxation process by single-ion electron spin-lattice relax-
ation predicts a similar field dependence but is calculated to
be much slower at high fields. At low fields one will have
�e��int, so that the electron-dipolar and the electron-
Zeeman systems will become “on speaking terms,” and a
subdivision of the two electron spin reservoirs is no longer
valid. In this range, however, NSR by means of the scalar
hyperfine interaction, Eq. �15�, should also become impor-
tant �since then no longer �n��e, whereas T2e�T1e�.

V. CONCLUDING REMARKS

In conclusion, our experiments on Mn6 show that dipole-
dipole interactions between molecular magnetic clusters may
indeed induce long-range magnetic order at low temperatures
if the anisotropy is sufficiently small. Spin-lattice relaxation
is then fast enough to produce equilibrium conditions down
to the low temperatures needed. We should add that similar
conditions could in principle also be reached in the highly
anisotropic cluster systems, for which it was shown that by
applying magnetic fields perpendicular to the anisotropy
axis, the spin-lattice relaxation can be tuned and made simi-
larly fast through the process of magnetic quantum tunnel-
ing. However, it is very rare to observe magnetic ordering
phenomena in those systems. One exception known to date28

originates from an unusually high tunneling rate already in
zero field. Instead, for the majority of the anisotropic clusters
it is likely that, given the magnitude of the fields needed to
have a considerable increase of the relaxation rate �B�

�1 T�, any longitudinal component of the field would create
a Zeeman splitting that is much larger than the energy in-
volved in the magnetic dipolar ordering. We found indeed
that in Mn6 the ordering transition is removed already for
relatively small fields ��0.5 T�. In a recent neutron diffrac-
tion experiment on a Mn12-ac single crystal, however, Luis et
al.71 achieved an extremely accurate alignment of the field

FIG. 11. �Color online� Block diagram of the nuclear and elec-
tronic spin systems involved in the relaxation process at high fields,
and the relative rates of energy transfer.
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�to within 0.1 degree� and obtained evidence for a ferromag-
netic phase induced by the transverse field.

We have also studied the nuclear spin dynamics of Mn6,
both directly by NMR experiments and through the hyperfine
contribution to the field-dependent specific heat. The agree-
ment between the two techniques is very good, and also pro-
vides an interesting comparison with the nuclear spin dy-
namics in the anisotropic single-molecule magnet Mn12-ac.
Both qualitatively and quantitatively, the nuclear magnetic
relaxation data turn out to be in good agreement with predic-
tions obtained from theories developed earlier for relaxation
in paramagnetic crystals and for dynamic polarization. In
high fields, the observed nuclear relaxation is dominated by
electron spin fluctuations arising from the dipolar interac-
tions between cluster spins. In spite of the large Zeeman
splittings between the cluster-spin levels produced in such
high fields, these fluctuations are able to relax the nuclei
through the dipolar part of the hyperfine interaction. In this
field range the electron dipolar and the electron Zeeman sys-
tem are basically decoupled. Relaxation of the nuclear spins
then proceeds in two steps, namely an initial rapid relaxation
to the electron dipolar system via the electron spin-spin in-
teraction channel, followed by a much slower relaxation of
the combined nuclear-electron spin systems to the lattice
through the electron spin-lattice channel. It is of interest in
this regard to note that the values for the longitudinal and
transverse relaxation rates as observed for Mn12-ac in the
low-temperature �T�0.9 K� quantum regime,36 where the
electron spin fluctuations can be attributed to quantum tun-
nelling of the cluster spins, fall only slightly below the
present observations for Mn6 at T=0.9 K. Below the block-
ing temperature ��3 K� the cluster spins of Mn12-ac become
almost fully polarized even in zero field due to the strong
crystal-field splittings of the electron spin levels, the distance
between the first excited state from the ground state amount-
ing to more than 10 K. The temperature independent value
found for the transverse nuclear relaxation rate, 1 /T2n
�100 s−1, could be well explained in terms of intercluster
nuclear spin diffusion, i.e., nuclear flip-flops arising from the
dipolar interaction between nuclear spins in neighboring
clusters. The same physical mechanism should also put a
lower bound to the transverse nuclear rate in Mn6, which is,
however, not relevant due to the presence of the faster spin-
spin relaxation process.

For the longitudinal rate 1 /T1n for Mn12-ac a value of
�0.03 s−1 is found below 1 K, slightly depending on tem-
perature. This value agrees with the nuclear-spin-mediated
tunneling rate estimated for the fast-relaxing molecular spins
in Mn12-ac. As argued by Morello et al.,36 the tunneling pro-
cess can at the same time provide a relaxation channel for the
nuclei to the electron-dipolar system. Similar to the above-
discussed case of Mn6 in high field, relaxation to the lattice
should then occur in a second step through the electron spin-
lattice coupling.
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APPENDIX: ESTIMATION OF THE EFFECTIVE
DEMAGNETIZING FACTOR

In this Appendix, we derive an approximate expression
for the effective demagnetizing factor Neff appropriate for the
cylindrically shaped container filled with the grains. This
problem is notoriously complex and can only be approxi-
mately solved. In a first step the relation should be found
between the applied field Ha and the local field Hloc acting on
a reference grain in the container. Approximating the grains
as point dipoles, the difference �Hloc−Ha� will be due to the
contributions to the field arising from all the other dipoles
inside the container. Adopting the well-known Lorentz con-
struction, the dipole summation is split into one inside a
�sufficiently large� sphere around the reference grain and a
contribution from the dipoles outside this sphere. For this
second contribution the dipoles are usually assumed to form
a homogeneous continuum so that it is just proportional to
the difference in demagnetizing factors of the container
�Ncont� and of the sphere �1/3�. As for the first summation, it
would be zero for a cubic arrangement of the dipoles. This
will not be the case here since the grains are randomly
packed, but since a valid estimate is not easily obtained, and
we may expect it to be small, we shall just neglect it. One
then obtains

Hloc = Ha − fM�Ncont − 1/3� . �A1�

Here f denotes the filling volume fraction of the grains in the
container and M is the magnetization of the grains.

In the next step we have to correct Hloc for the dipolar
contributions arising from the magnetic material inside the
grain. In case of a ferromagnetic material, one usually only
takes the shape-dependent demagnetizing correction into ac-
count. An argument for this may be found in that the mag-
netization process for the ferromagnet is mostly determined
by the mobility of the domain walls, which will react to the
macroscopically averaged internal field. For simplicity, we
first consider the case of zero magnetocrystalline anisotropy
for which the demagnetization factor as well as the magne-
tization and fields can be treated as scalars. We thus obtain
for the internal field Hi inside the grain

Hi = Hloc − NgrainM = Ha − NgrainM − fM�Ncont − 1/3� .

�A2�

From the definition: Hi=Ha−NeffM, we thus finally find

Neff = Ngrain + f�Ncont − 1/3� . �A3�

If, by contrast, the grain has uniaxial magnetic anisotropy,
we should distinguish between the parallel �i,� and the per-
pendicular �i,� intrinsic susceptibilities in the response to the
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internal magnetic field. These susceptibilities depend on the
magnitude of the anisotropy parameter D. They can be ob-
tained, from the numerically calculated eigenstates and ei-
genvalues of the spin Hamiltonian, using the Van Vleck’s
formalism as described in, e.g., Ref. 72. In this case Eq. �A2�
becomes

Hi = Hloc − Ñgrain�i
˜Hi , �A4�

where Ñgrain and �i
˜ are respectively the diagonal demagne-

tizing and intrinsic susceptibility tensors. By combining Eqs.
�A1� and �A4� it is possible to find a relationship between the

measured susceptibility � and the two components of �i
˜ . For

the case when the anisotropy axes are randomly oriented in
the sample, we find

� =
�eff

1 + f�eff�Ncont − 1/3�
, �A5�

where the susceptibility �eff corrected for the demagnetizing
factor of the grains equals

�eff = � 2�i,�

3�1 + �i,�/3�
+

�i,�

3�1 + �i,�/3�
 . �A6�

This relationship was used to calculate the theoretical pow-
der susceptibilities shown in Fig. 2.
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