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We perform a general study of spin ordering on the pyrochlore lattice with a 3:1 proportionality of two spin
polarizations. Equivalently, this describes valence bond solid conformations of a quantum dimer model on the
diamond lattice. We determine the set of likely low-temperature ordered phases, on the assumption that the
ordering is weak, i.e., the system is close to a “U�1�” quantum spin liquid in which the 3:1 proportionality is
maintained but the spins are strongly fluctuating. The nature of the nine ordered states we find is determined by
a “projective symmetry” analysis. All the phases exhibit translational and rotational symmetry breaking, with
an enlarged unit cell containing 4–64 primitive cells of the underlying pyrochlore. The simplest of the nine
phases is the same “R” state found earlier in a theoretical study of the ordering on the magnetization plateau
in the S=3/2 materials CdCr2O4 and HgCr2O4. We suggest that the spin-dimer model proposed therein
undergoes a direct transition from the spin liquid to the R state, and describe a field theory for the universal
properties of this critical point, at zero and nonzero temperatures.
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I. INTRODUCTION

Charge and/or magnetic order is an apparently central fea-
ture of the ground states of Mott insulators. The detailed
nature of this order can be difficult to understand theoreti-
cally, particularly when “frustration” is present. By frustra-
tion, we mean the presence of competing interactions, which
lead, in some appropriate “classical” limit, to a large number
of degenerate ground states. This degeneracy is lifted by
fluctuations, thermal and quantum, or additional interactions
beyond those of the classical limit. However, the classical
degeneracy can be lifted in many different ways, making the
ultimate ground state very sensitive to details of the Hamil-
tonian. Apart from demanding an extremely detailed micro-
scopic understanding of a given material �always desirable,
but not so easy to come by�, is there any way to attack such
problems? The approach we follow in this paper is to pre-
sume that fluctuations �in this case quantum� are strong,
which requires that the ordering itself is weak �i.e., the
charge and/or spin modulations are small in amplitude�. If
so, we may presume the system to be close to some “liquid”
state, in which no order �in the conventional sense—but see
below� is present. One may then explore the possible ordered
states which occur as weak instabilities of the liquid.

Recently, such a view to charge ordered states of two-
dimensional lattice boson systems has been systematically
pursued in Refs. 1 and 2, with specific precedents in Refs. 3
and 4. In that case, the liquid state was taken to be a super-
fluid. There, the possible charge ordered Mott insulating
states proximate to the superfluid were discussed by consid-
ering the instabilities due to proliferation of vortices. This
was made systematic by uncovering the multiplet structure
of the vortex states, determined by symmetry. In particular,
vortices were shown to transform under a projective repre-
sentation of the lattice space group, or projective space/
symmetry group �PSG�.36 The PSG was shown to determine
the structure of the action of the critical theory for the
superfluid-Mott transition, and the nature of the possible

charge ordered Mott phases. The PSG depends upon the lat-
tice symmetries �space group� and the mean conserved bo-
son density. All the above considerations for bosons apply
equally well to spin models with U�1� rather than full SU�2�
symmetry, with the conserved Sz taking the role of boson
“charge.” This situation is not uncommon, as it is realized
whenever an approximately isotropic magnet is subjected to
a uniform magnetic �Zeeman� field. We will focus on this
realization here.

In this paper, we will apply an analogous set of ideas to
bosons or spins on the three-dimensional pyrochlore lattice.
The pyrochlore lattice, consisting of corner-sharing tetrahe-
dra �Fig. 1�, takes a central role in the study of geometrical
frustration in three dimensions. A number of materials, in

FIG. 1. �Color online� The pyrochlore lattice structures, shown
as a network of corner-sharing tetrahedra. The atoms occupy the
corners of the teterahedra.
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which electronic and/or spin degrees of freedom reside on
this lattice, have been intensely studied in this light in recent
years. Theoretically, the Heisenberg antiferromagnet on the
pyrochlore lattice is interesting as a candidate “spin
liquid,”5,6 in which the fluctuations—thermal or quantum—
among frustration-induced degenerate quasi-ground-states
prevent the occurrence of long-range magnetic order at tem-
peratures well below the Curie-Weiss temperature, possibly
all the way down to T=0. Quantum spin liquid states can
sustain anomalous spin-1 /2 spinon excitations,7 forbidden in
conventional phases of matter.

We therefore choose to take as our proximate liquid phase
not a superfluid �or magnetically ordered phase�, but instead
a particular quantum spin liquid, a so-called “U�1�” spin liq-
uid state �see Ref. 8 and references therein�. A general fea-
ture �e.g., on different varieties of lattices� of such states is
that they exhibit an emergent electromagnetism, i.e., they
support an “artificial photon,” and excitations can carry
emergent U�1� electric and magnetic gauge charges �see
Refs. 6,9,10 and references therein�. The spinons carry the
elementary quanta of the electric charge �of both positive and
negative sign in two species of spinon�. Another, gapped,
topological excitation, a monopole, carries the dual magnetic
gauge charge. A transition out of the spin liquid state to a
state without broken continuous symmetries is generally de-
scribed as a condensation of these monopoles. The nature of
such a transition, and of the proximate spatially ordered
states occurring on the other side of the transition is deter-
mined by the monopole PSG. The ingredients determining
this PSG, as explored on the cubic lattice in Refs. 11 and 12,
are the lattice symmetries and the values of some conserved
“background” U�1� gauge charges, which characterize differ-
ent U�1� liquid states.

To fix these background charges, we will focus on a spe-
cific model containing a U�1� spin liquid phase on the pyro-
chlore lattice. In Ref. 13, this model was argued to describe
the physics on the magnetization plateaus observed recently
in CdCr2O4 and HgCr2O4,14,15 which are spin-3 /2 antiferro-
magnets with this lattice structure. In particular, the model
presumes a local constraint �which may be understood as the
restriction to the classical ground state subspace� of three Cr
spins fully polarized �Sz= +3/2� along the applied field, and
another fully polarized antiparallel to it �Sz=−3/2�, on each
tetrahedron.13,16 We refer to this condition as the “3:1” con-
straint. The model of Ref. 13 arises as an effective Hamil-
tonian in this constrained subspace, and takes the approxi-
mate form

HQDM = V�
P

��˝A��˝A� + �˝B��˝B��

− K�
P

��˝A��˝B� + H.c.� , �1�

where �P indicates a sum over all hexagonal plaquettes on
the pyrochlore lattice, and �˝A� , �˝B� are specific states with
alternating majority and minority spins ��↑↓↑↓↑↓� and
�↓↑↓↑↓↑�� on the given plaquette. This model is exactly
equivalent to a number of other models in the theoretical
literature. First, it can be mapped directly to a quantum

dimer model on the diamond lattice, the diamond lattice sites
being centers of pyrochlore tetrahedra �see Sec. II�. A num-
ber of such dimer models have been considered in the
literature.17–22 Second, the dimer model in turn can be rewrit-
ten as a particular compact U�1� gauge theory. The 3:1 con-
straint of the spin model maps directly to the background
charge of this gauge theory. In this way, the essential ingre-
dients fixing the monopole PSG are determined. A systematic
analysis of the spatially ordered states proximate to the spin
liquid is therefore possible, and is the main subject pursued
in this paper.

More microscopically, it is possible to show that the spin-
dimer model of Eq. �1� indeed exhibits a U�1� spin liquid
ground state when the dimensionless parameter v=V /K sat-
isfies vc�v�1. This argument, analogous to the ones in
Refs. 6 and 22, is described in Sec. II B. The critical cou-
pling vc is not known, but based on numerical analysis of
other similar models probably satisfies vc�−0.5 or so.20–23

For the application to CdCr2O4 and HgCr2O4, it was esti-
mated in Ref. 13 that v�−1.2�vc. The nature of the ground
state in that case may perhaps be more accurately understood
by extrapolation from the limit v→−�. The ground state can
be determined classically in that limit, and in Ref. 13 was
found to exhibit a particular spatial ordering pattern with a
quadrupled unit cell. It can be understood by
order-by-disorder24–26 reasoning as the classical state with
the most possible “resonances”—off-diagonal quantum
moves via the K term in Eq. �1�—with other states. We there-
fore refer to it as the “R” state.

The alternate approach, which we pursue here, is to ap-
proach the physical limit from the spin liquid state, asking
which ordering pattern emerges from the PSG analysis. Re-
markably, we find that the simplest possible ordered state
proximate to the U�1� spin liquid is the R state. This suggests
the possibility that the R state in the physical limit may be
close to a phase transition to the spin liquid state. The analy-
sis of this paper provides an analytical framework for such a
transition, of both quantum and of thermal nature.

Apart from the simplest R state, a number of ordered
phases come out of this analysis, and are shown in Figs.
11–19. A salient feature of all these phases is that they ex-
hibit an enlarged unit cell relative to that of the original
pyrochlore lattice. Interestingly, this set of phases therefore
does not contain the simplest ferrimagnetic ordered state il-
lustrated in Fig. 2, in which the unit cell is not enlarged
though the point group symmetry of the crystal is lowered.
This indicates that the ground states selected out of the clas-
sically degenerate ground state manifold are identifiably dif-
ferent from those preferred by other degeneracy breaking
mechanisms, such as, e.g., antiferromagnetic second-
neighbor exchange coupling. Identification of the precise na-
ture of the ordered state in experiments therefore indirectly
gives useful information on the importance of quantum fluc-
tuations.

The remainder of the paper is organized in the following
way. In Sec. II we describe our theoretical model �lattice
QED�. In Sec. III we illustrate and motivate the dual trans-
formation we make on the Hamiltonian introduced in the
previous section. In Sec. IV we derive and present the effec-
tive action for the monopole degrees of freedom that appear
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in the dual theory. We then study the action in the mean-field
approximation in Sec. V and present the resulting charge
ordered phases in Sec. VI. In Sec. VII we carry out a renor-
malization group analysis of the action. Finally in Sec. VIII,
we conclude with a discussion of the phase diagram and
critical phenomena in the spin-dimer model at nonzero tem-
peratures. Important but lengthy formulas and results are
given in the Appendixes.

II. THEORETICAL MODEL: FROM SPINS
TO COMPACT LATTICE QED

In this section, we reformulate the 3:1 quantum spin-
dimer model of Eq. �1� as a lattice U�1� gauge theory, and
describe its phase diagram, which contains both spin liquid
and ordered states. This Hamiltonian has a single dimension-
less parameter v=V /K, so the zero-temperature phase dia-
gram is entirely determined by v �we fix K�0 by
convention—its sign can be changed by a suitable canonical
transformation, and has no significance�. We discuss the
structure of this phase diagram.

A. Equivalence to compact lattice QED

First, it is useful to discuss how the model can be cast into
a lattice U�1� gauge theory. A reader not familiar with lattice
QED may wish to consult the review by Kogut.27 As men-
tioned in the Introduction, it is first convenient to pass from
the pyrochlore to the diamond lattice. This is accomplished
by focusing on the centers of the tetrahedra �labeled by the

sites a and b in Fig. 3� that make up the pyrochlore. The
centers of these tetrahedra make up a diamond lattice. Each
site on the pyrochlore lattice connects two nearest neighbor
tetrahedra, and can be identified with a link between the
centers of the two tetrahedra. Thinking in terms of the cen-
ters of the tetrahedra as the sites of a new lattice, the spins sit
on the links of a diamond lattice. The spin states may there-
fore be regarded as dimer coverings of the links of the dia-
mond lattice, and the effective Hamiltonian as a quantum
dimer model.

The gauge nature of the problem is simply a consequence
of the local 3:1 constraint on each pyrochlore tetrahedron, or
equivalently, that each diamond site is covered by a single
dimer. To map this onto a more conventional gauge theory,
we note further that the diamond lattice is bipartite, so we
can define “up” �u� and “down” �d� sublattices correspond-
ing to neighboring tetrahedra in the original pyrochlore lat-
tice, as illustrated in Fig. 3. We can define thereby a discrete
oriented electric field variable on the diamond lattice links,
equal to zero if the corresponding pyrochlore site is a major-
ity site, and equal to ±1 if the pyrochlore site is a minority
one, choosing the field to always point from the up to the
down diamond sublattice. We specify the spin-dimer con-
figurations on the pyrochlore by a discrete variable n̂i �i is a
pyrochlore lattice site�, such that

n̂i = �0 majority site,

1 minority site.
	 �2�

Mathematically, for the site i lying on the diamond link
ab,

Eab = �an̂ab, �3�

where

�a = �+ 1, a � u ,

− 1, a � d .
	 �4�

The electric field direction can be identified by the index
ordering that gives it a positive value, as in Fig. 3.

FIG. 2. �Color online� The simplest ordered state consistent with
the 3:1 proportion of majority to minority sites, which does not
exhibit an enlarged unit cell, and has only a fourfold degeneracy. In
the spin language, this state has three spins aligned with the field
and one antialigned, so we will denote this as a “ferrimagnetic”
state, analogous to the ferrimagnetic state found in two-dimensional
triangular lattice antiferromagnets in a field. This state is not generi-
cally proximate to the U�1� spin liquid.

FIG. 3. Section of a pyrochlore lattice. The pyrochlore sites are
denoted by i and the tetrahedra are identified by a ,b labels. Draw-
ing links between the tetrahedron centers forms the links of a dia-
mond lattice, with the tetrahedron centers corresponding to the sites
of the diamond lattice. The figure indicates the bipartite nature of
the diamond lattice, which is evident in the notion of up �down�
pointing tetrahedra as indicated by the labels u �d�.
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The model we construct requires that each tetrahedron
must include 1 minority site,

N̂a 
 �
i�a

n̂i = 1, �5�

where the label a identifies the various tetrahedra, and i is
summed over pyrochlore lattice sites on tetrahedron a. See
Fig. 3 for an illustration. This 3:1 constraint on the pyro-
chlore lattice in the QED formulation maps directly into

�a = div E� , �6�

which is rather reminiscent of Gauss’ law, where we have

used the lattice divergence div E� =�bEab. The “charge distri-
bution” in this picture is that of alternating positive and
negative charges on the diamond lattice. Positive charges sit
on the u sublattice, and negative charges sit on the d sublat-
tice.

A further consequence of this mapping is the presence of
global topological charges, which are conserved in periodic
�or infinite� systems. In particular, if one draws any surface
not passing directly through diamond sites, the net electric
flux through this surface is conserved. If this surface is com-
pact and closed, this gives no additional information beyond
the Gauss’ law of Eq. �6�. However, one may also consider
noncompact surfaces that extend across the entire sample,
and the electric flux through such surfaces is not determined
by Gauss’ law. A sufficient set of surfaces are the four non-
parallel flat planes containing two-dimensional triangular lat-
tices of pyrochlore sites �any two such parallel planes have
the same electric flux�. We denote the corresponding four
electric fluxes by a four-vector �E1 ,E2 ,E3 ,E4�. The fluxes
may be chosen positive, and can in principle take any integer
value from 0�Ei�N�, where N� is the number of triangular
sites in the plane. By the 3:1 �Gauss’ law� constraint, the sum
E1+E2+E3+E4=N� is fixed. The electric flux sector contain-
ing the ground state varies with v.

It is conceptually useful to also map the full Hamiltonian
of the model to a form more familiar in lattice QED. To do
so, we must introduce the phase operator 	̂i conjugate to the
number operator n̂i, satisfying

�	̂ j, n̂i� = + i
 ji, �7�

where 
ij is the Kronecker delta function. The operator e+i	j

creates a minority site at site j, and using it we can construct
any hopping term we wish for minority sites �down spins�.
With the canonical “rotor” variables n̂i, and 	̂i, in principle
an infinite set of number states with all integer eigenvalues
of n̂i are allowed. To faithfully represent the original spin-
dimer model, therefore, we will include a large term U in the
Hamiltonian which, in the limit U→�, restricts the site oc-
cupancies to n̂i=0,1 as desired. We thereby obtain

H =
U

2 �
i

n̂i�n̂i − 1� + Ut�
a

�N̂a − 1�2

+ V�̋ �
n1,1
n2,0
n3,1
n4,0
n5,1an6,0 + �ni ↔ 1 − ni��

−
K

2 �̋ �e+i�	1−	2+	3−	4+	5−	6� + H.c.� . �8�

Here ˝ denotes the hexagonal plaquettes on the pyrochlore
lattice, and the indices on 	 enumerate the site �links� on the

hexagon. The constraint operators N̂a commute with H by
construction, so for sufficiently large Ut the ground state will
indeed satisfy Eq. �5�. Moreover, when the constraint is en-
forced, the Ut term plays no further role. Formally, we are
principally interested in the limit U /K→�, as described
above.

The K term when rewritten in this way appears as a rather
complicated-looking multi-particle hopping amplitude. In
fact, this form is actually the simplest one allowed by the
constraint �5�. The hopping of a down spin from one lattice
site to another can be decomposed into a series of hops along
nearest-neighbor links, so it is sufficient to analyze the sim-
plest allowed moves. In general, the hopping on a nearest-
neighbor link will violate �5� on two separate tetrahedra.
Thus, any series of such hopping events will do the same.
Analysis shows that it is only possible to hop between tetra-
hedra along closed contours. On the pyrochlore lattice the
smallest closed contours are hexagonal plaquettes. Any other
closed contour on the lattice can be constructed from these
minimal moves, so we shall consider exclusively this “ring
exchange hopping” on the hexagonal plaquettes. Such moves
are illustrated in Fig. 4.

This Hamiltonian can now be reexpressed as a lattice
gauge theory. Analogously to the definition of the electric
field, we define the vector potential as

Aab = �a	ab. �9�

The electromagnetic variables introduced above obey the
same canonical commutation relations as 	̂ and n̂, since
�a

2=1,

FIG. 4. �Color online� Ring exchange hopping on a hexagonal
plaquette. The hopping flips between A and B type plaquettes, and
is the only simple hopping event that preserve the one boson per
tetrahedron constraint.
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�Aab,Eab� = i , �10�

on the same link, and the commutator is 0 on different links.
Note that from their definitions, Eab is integer valued �and in
particular =0, ±1� and Aab is a 2�-periodic phase variable
since the operator ei	̂ creates a particle.

In the new variables the ring exchange term becomes

e+i�A1+A2+A3+A4+A5+A6� + H.c. = e+iA� ·d�� + H.c.

= 2 cos�curl A� �
˝

, �11�

where we have introduced the lattice curl

�curl A� �
˝

= �
r�r���˝

A� r�r��. �12�

In this form, the previously complicated-looking form of the
K term becomes transparent.

After substituting the new variables, the Hamiltonian �8�
takes the form

H = const +
U

2 �
�a,b�

�Eab −
�a

2
�2

− K�̋ cos�curl A� � + V�̋ �
curl E� ,3 + 
curl E� ,−3� ,

�13�

where the constant is a result of reorganizing the first term of
�8� into a quadratic form. By identifying the curl of the vec-
tor potential with a magnetic field running through the

plaquettes, B� =curlA� ,

H = const +
U

2 �
�a,b�

�Eab −
�a

2
�2

− K�̋ cos B� + V�̋ �
curl E� ,3 + 
curl E� ,−3� . �14�

After these manipulations, the spin-dimer Hamiltonian has
been formulated as a compact quantum electrodynamics in
3+1 dimensions. Equation �14� is very similar to the stan-
dard form of compact QED, but does differ from it by the
presence of the rather ugly V term and the modification of
the E2 term by the �a /2 “background field.” Please recall
also that we are expected to take the limit U→� to recover
the spin and dimer model. Despite the differences, Eq. �14�
does share all the same internal symmetries as the more con-
ventional QED form. It is therefore expected to share the
same properties in regimes where universality is mandated.

B. Phase diagram of the quantum spin and dimer model

Let us now return to the microscopic form of the spin-
dimer model, and the question of the phase diagram. We will
employ the QED formulation where useful in this analysis.
For v=V /K→−�, the off-diagonal K term can be neglected,
and ground state is determined by minimizing the �negative�
V term over classical spin/-dimer configurations. The solu-
tion is the R state, shown in Fig. 11. This state has only a
discrete degeneracy, and is separated from other excited

states by a gap �of O�V��, so it is expected to be stable to
perturbation theory in K. Therefore the R state is the ground
state for v�vc1, with some vc1�1. In the R state, the elec-
tric flux is equally divided, Ei /N�=1/4, apart from O�1/N��
corrections for some frustrated boundary conditions.

For v�1, the ground state can be found by rewriting the
Hamiltonian as follows:

HQDM = K�
P

��˝A� − �˝B����˝A� − �˝B��

+ �v − 1�K�
P

��˝A��˝A� + �˝B��˝B�� . �15�

In Eq. �15� HQDM has been expressed as a sum of positive
semidefinite projection operators, with coefficients that are
all positive for v�1. Therefore the energy is bounded below
by zero, and any zero-energy state is a ground state. In par-
ticular, any classical state that contains no A or B hexagons is
automatically a ground state. As a simple example, consider
the “ferrimagnetic” state, with no enlargement of the unit cell
but broken rotational symmetry. It is described as follows.
On the diamond lattice, each vertex has four links emanating
from it, which we label by �=0,1 ,2 ,3. The ferrimagnetic
state �oriented along a specific � direction in space� has the
same 3:1 arrangement on all identical tetrahedra. Explicitly,
it can be written

�Ferri�� = �
a�u

�na,� = 1� , �16�

where the product is taken over the u sublattice of tetrahedra
shown in Fig. 3. This state clearly obeys the 3:1 constraint
�5�—one minority site on the � corner of each tetrahedron.
And moreover, it contains no A or B plaquettes, and hence is
a zero-energy ground state for v�1. The ferrimagnetic state
is in the “furthest” topological sector from the R state, with
Ei= �N� ,0 ,0 ,0� �and permutations�.

The ground states in this regime are, however, highly de-
generate, and many other classical configurations are pos-
sible. All such states are “frozen” in that, for any value of v,
they are exact eigenstates with trivial dynamics, being anni-
hilated by the off-diagonal K term in Eq. �1�.

At the point v=1, Eq. �15� simplifies �the last term drop-
ping out�, but remains the sum of positive semidefinite pro-
jectors. This is the so-called Rokhsar-Kivelson �RK� point.
The ground state space is enlarged, and contains now states
in addition to the frozen ones. In particular, many configura-
tions containing A and B hexagons are now allowed, pro-
vided the first projector in Eq. �15� annihilates the quantum
state. One construction of this type is especially simple. Take
a uniform superposition of all possible spin configurations,
ignoring the 3:1 constraint. Now project this onto the 3:1
manifold. This is known as the RK wave function. It can be
further broken into substates, e.g., by projecting out all the
frozen states. It can also be projected into any of the electric
flux sectors.

On reducing v to values slightly below unity, the second
term in Eq. �15� becomes again nonzero but negative
semidefinite. This indicates configurations with A and B
hexagons are now preferred in the ground state. The frozen
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states are then highly excited and energetically unfavorable.
Instead, by an application of the reasoning of Ref. 6, the
ground state can be argued to be a U�1� spin liquid state.

We summarize this argument, and the nature of the U�1�
state. It is by now well known that RK wave functions for
dimer models on bipartite lattices �like the diamond� display
power-law equal-time correlations. These correlations may
be understood as arising from the 3:1 constraint. In particu-
lar, the calculation of equal-time correlations in the RK state
reduces to a problem of three-dimensional classical statistical
mechanics: performing a statistical average over discrete
electric field configurations subject to the Gauss’ law con-
straint of Eq. �6�. It turns out that the long-distance behavior
of these correlations is captured simply by taking an effec-

tive classical free energy density proportional to �E� �2 and

treating E� as a continuous Gaussian �but constrained� vari-
able. The resulting correlations have a “dipolar” power-law
form.6,28

By an argument originally due to Henley,25 these power
laws can be understood in the quantum theory as follows.
Evidently, the discreteness of the electric field is unimportant

at the RK point. Consequently, it is natural to treat E� and B�

as continuous, write an effective action quadratic in these
fields, and apply the Gauss’ law constraint. However, there is
an additional feature dictated by another peculiarity of the
model. As we have pointed out already, all possible electric
flux sectors are degenerate at the RK point. This implies that

there should be no cost in the energy to shift E� by a uniform
constant �at the RK point�. Henley’s argument therefore in-
dicates an appropriate effective Hamiltonian density is

Heff = a�curl E� �2 + b�B� �2 + �1 − v��E� �2. �17�

The last �E�2 term must vanish at the RK point, but is ex-
pected to become nonzero if one perturbs away from it. For
v=1, this form can be shown to precisely reproduce the mi-
croscopically calculated correlations of the RK wave func-
tion, with specific constants a ,b. For v larger than 1, the

negative �E� �2 term favors the sectors with “large electric

flux,” i.e., the frozen states, as expected, and E� itself devel-
ops a nonzero expectation value. For v slightly less than 1,

the positive �E� �2 term instead favors the “minimal electric
flux” sector with Ei=N� /4.

At low energies, for v�1, therefore, it is expected that
the a term above can be dropped in favor of the  term,
making the effective Hamiltonian simply that of the usual
non-compact QED. This indicates the system is in the “Cou-
lomb phase” of the gauge theory, which has the usual prop-
erties expected of �3+1�-dimensional electrodynamics. In
particular, unit test gauge charges can be introduced and in-
teract via bounded 1/r Coulomb potentials. Such a gauge
charge corresponds in the original pyrochlore magnet to a
“spinon” excitation with fractional spin ±3/2. Thus the Cou-
lomb phase is indeed a spin liquid, and in respect of the U�1�
gauge structure, this state is called a U�1� spin liquid.

A key difference from standard “noncompact” QED does
appear at nonzero energies, as a consequence of the fact that

the B� is defined modulo 2�. The divergence of this magnetic

field is the sum of magnetic field values coming out of the
plaquettes enclosing one cell in the diamond lattice. With the

modulo 2� redundancy, configurations with div B� an integer
multiple of 2� are allowed. Thus, compact QED allows mag-
netic monopoles with quantized magnetic charge. These have
a finite energy cost and are gapped excitations in the U�1�
spin liquid.

Although the Coulomb phase emerges in a nontrivial way
from the spin-dimer model in the vicinity of the RK point,
we can mimic its low-energy physics more simply. In par-
ticular, the same phase is obtained from Eq. �14� by dropping
the diagonal V term, and taking nonzero but finite U �instead
of U→��. This gives a “softened” model with the same
universal properties as the original spin and dimer model. It
is a remarkable fact that, by the preceding arguments, these
two “sins” compensate each other and give the proper behav-
ior of the original spin and dimer model for v�1, in the
Coulomb phase.

III. DUALITY AND MONOPOLE FORMULATION

On reducing v from values just below 1, eventually the
spin-dimer model must undergo a transition out of the spin
liquid state. The resulting state can be mimicked in the soft-
ened model by increasing U /K. The eventual outcome can
be understood as follows. For U�K the “magnetic field”
term is subdominant, and so the electric field is a good quan-
tum number. This limit is somewhat complicated in Eq. �14�,
because the U term selects two degenerate values Eab=0,�a
as low-energy states of each bond. Indeed this recovers the
original effective spin-3 /2 model, which is of course still
non trivial. However, one can readily understand in this limit
the basic nature of the other phases of the theory. To do so,
we imagine generalizing the U term to include electric field
interactions on nearby bonds. This will generally break the
large U degeneracy in favor of some particular global ar-
rangement of Eab=0,�a values. Because of the discreteness
of Eab, deviations from this ground state are likewise dis-
crete, any local rearrangement of the pattern results in a non-
zero increase in energy, i.e., there is an energy gap. Gauge-
neutral excitations are created in this way. Either a set of Eab
fields are modified along links forming a closed curve, or a
pair of diamond lattice sites �on which the Gauss’ law con-
straint is violated� is created, with a modified path of Eab
fields connecting them. The latter corresponds to a particle-
antiparticle pair, and costs an energy proportional to the
length of the path. Hence the pair itself is bound, the bound
state being gauge neutral. The individual gauge-charged ex-
citations are said to be confined by the linear potential be-
tween them. The confined phase corresponds to having the n̂i
operators certain in �8�—a Mott insulating phase, with some
sort of diagonal ordering. In contrast to the Coulomb phase,

the B� field in the confining phase is very strongly fluctuating,
so monopoles are no longer good excitations. In fact, it is
appropriate to think of the confined phase as a Coulomb
phase which has been destroyed by Bose condensation of
monopoles. The presence of a delocalized monopole conden-
sate can be thought of as leading to strong �gauge� magnetic
fluctuations in the ground state.
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We therefore wish to reformulate the lattice QED model
so that the monopole excitations of the Coulomb phase are
explicit. Here we follow Hermele et al.6 with slight differ-
ences. As the reader will recall, the electric and magnetic
fields in Maxwell’s equations are dual when there are no
charges or currents present. While there are no currents in
our system, Eq. �6� shows we do have a charge distribution.
The duality transformation is

E� ab = curl � + e�ab
�0�, �18�

B� = curl A� . �19�

We have thus introduced an explicit operator for the mag-

netic field B� and an “electric vector potential” � , whose ex-

ponential creates a ‘magnetic field’ since an exponential of A�
creates an “electric field,” via Eqs. �9�, �4�, �3�, and �10�.
Here e��0� is a classical electric field created by the charge
distribution,6 and

div e��0� = div E� = �a. �20�

It is convenient to choose e�ab
�0� to be integer valued, so that

curl� may also be taken integer valued. A simple choice is to
take the classical configuration corresponding to one of the
3:1 states, e.g. just ea,a+�

�0� =�a
�0 �Fig. 5�.
The Hamiltonian in the dual language takes the form

H =
U

2 �̋ �curl � + e�0� −
�a

2
�2

− K�
r,r�

cos B� , �21�

where we denote the sites of the dual lattice by r, and its
links by r ,r�. The hexagons now denote the plaquettes of the

dual lattice. �Note the change in the summation subscripts on
both the first and second terms.�

The dual fields obey the canonical commutation relations

�Br,r�,r,r�� = + i , �22�

and the commutator vanishes for different links. The new
fields are once again conjugate variables. Br,r� is defined
modulo 2�—an angular variable, and the r,r� variable is
integer valued.

Standard manipulations can now be used to “soften” the
inconvenient integer constraint on r,r�, remove the period-
icity of Br,r�, and make the monopole variables explicit. The
reader is referred to Refs. 11 and 29 and references therein
for details. These manipulations are inexact, but do not
change the structure of the phase diagram in the vicinity of
the transition from the Coulomb to confining phase. One
obtains

H =
U

2 �̋ �curl � − ē�2 +
K

2 �
r,r�

B� 2

− w�
r,r�

cos��r − �r� − 2�r,r�� , �23�

where now r,r� and B� are real variables. In Eq. �23�, one
may freely shift ē by a gradient, changing only the overall
zero of energy, since such a gradient does not couple to
curl� . We have used this freedom to modify the original
e�0�+�a /2 terms to

ēa,a+� = �a�1

4
− 
�0� , �24�

which has no divergence, but has the same curl as the origi-
nal “source” fields. As promised, explicit monopole degrees
of freedom have been introduced. A monopole number op-

erator Nr is slaved �by a dual Gauss’ law constraint� to the B�

field,

div B� = 2�Nr. �25�

It is conjugate to the dual phase �r, such that

��r,Nr�� = + i
r,r�. �26�

Equation �25� is another U�1� gauge constraint, so it is not
surprising that the monopole hopping term w respects a dual
�noncompact� gauge symmetry.

Although the monopole number Nr �which can be both
positive or negative reflecting the two signs of flux emanat-
ing from a monopole� appears nowhere explicitly in Eq. �23�,
it is implicit through the constraint of Eq. �25�. In the Cou-
lomb phase for large K, therefore, monopoles are energeti-
cally costly �though their energy is finite, as is easily verified
by integrating the associated B2 energy density�, with a gap
of O�K�. Through the w term, however, monopoles do not
reside in localized states with Nr= ±1, but instead in super-
positions of such states, with only �rNr= ±1. As K is de-
creased, the monopole energy gap decreases, and at some
point it will reach zero. This point corresponds to the con-
finement transition discussed in the previous section.

FIG. 5. �Color online� Direct and dual diamond lattices are dual
to one another. The plaquettes of one lattice correspond to the links
of its dual lattice.
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IV. FORMALISM—MONOPOLE DEFECTS
ON THE DIAMOND LATTICE

A. Ground state manifold

To understand the confinement transition, we must under-
stand the nature of the lowest energy monopole and anti-
monopole states, which condense at the transition. They are

equivalent by B� →−B� symmetry, so it is sufficient to study
just the monopole states. The ultimate field theory will con-
sist of a relativistic field for each member of the monopole
multiplet, since the relativistic description includes particles
and antiparticles �here antimonopoles� on equal footing. We
will apply for the most part a �dual� mean-field approach,
taking curl = ē in �23�, and neglecting fluctuations of 
around this value. This is sufficient to analyze the spectrum
of ordered phases near the U�1� quantum liquid. Fluctuations
will be restored later in Sec. VII.

We may thus consider the manifold of states with one
monopole, i.e., Nr=1 on one and only one site of the dual
lattice, and Nr=0 on all other sites. Through the w term in
�23�, the wave function of the monopole delocalizes, and is
described by a tight-binding model, which we may write as

Htb = − w �
�r,r��

��†�r����r�e−ir,r� + H.c.� , �27�

where �r ,r�� denotes a summation over nearest neighbors on
the diamond lattice. Here �r

† and �r are creation and annihi-
lation operators for the monopole. Note we have absorbed a
factor of 2� into the vector potential relative to �23� to make
our notation more conventional. By our mean-field assump-
tion, r,r� is a c-number vector potential carrying a “flux”
�actually electric flux� given by 2�ē. Since it appears only in
a periodic exponential, the form in Eq. �24� is equivalent to a
flux of 2� /4=� /2 through each dual plaquette.

This can be understood as follows. The original compact
QED theory had a staggered background charge of �a on
each direct lattice site. The monopoles, as magnetic charges,
see this in the same way electric charges would see a stag-
gered lattice of magnetic monopoles and antimonopoles.
These ‘monopoles’ and ‘antimonopoles’ �we use single
quotes to denote the dual view, since these are actually the
background gauge charges� are distributed in an alternating
fashion at the center of each cell of the dual diamond lattice.
The neighboring cells to a cell containing a ‘monopole’ all
contain ‘antimonopoles.’ Each ‘monopole’ has a “charge” of
2�. Since all lattice directions are equivalent, the ‘magnetic’
flux going out of each face of the cell must be the same, as
illustrated in Fig. 6. The structure of the diamond lattice is
made of cells where each cell has 4 faces, as opposed to the
cubic lattice which has six faces for each of its cells �cubes�.
Thus we conclude that each face in the diamond lattice has a
flux of 2� /4=� /2 going through it in the direction from a
‘monopole’ cell to an ‘antimonopole’ cell. The �r monopole
particle thus experiences Aharonov-Bohm fluxes of precisely
this sort as it moves through the lattice.

It proves convenient to describe the links of the diamond
lattice by �r ,r��= �a ,�� where a�u denote the sites of the u
sublattice, and �� �0,1 ,2 ,3� enumerate the four links ema-

nating from each u site. Furthermore, we can enumerate the
u sublattice sites by r�=� j=1

3 nja� j where a� j �a�1= �a /2��ŷ
+ ẑ� ,a�2= �a /2��x̂+ ẑ� ,a�3= �a /2��x̂+ ŷ�� are the primitive Bra-
vais lattice vectors of the fcc lattice, and nj span the integer
numbers. We refer to this coordinate system as “index”
space.

We shall now focus our attention on finding the ground
state manifold of this Hamiltonian. First we must find an
appropriate choice of the vector potential giving the desired
flux pattern through the faces inside the lattice. To this end,
the index space notation proves particularly useful. One such
possible vector potential is

0�n�� = 0, � �n�� = �1�n��,2�n��,3�n��� 
 ���Q� · n�� ,

�28�

where Q� = �� /2��1,0 ,−1� and �� = �1,1 ,2� �Fig. 7�.
We proceed to diagonalize the hopping term. General

eigenstates cannot be found analytically, however minimum
energy eigenstates can. We find eight ground state eigen-

modes, denoted �� and �̄� where the indices run through

FIG. 6. �Color online� Alternating charge distribution emits
‘magnetic’ field lines through the faces of a diamond lattice cell.

FIG. 7. �Color online� Projected diamond plane view of vector
potential pattern—links between the honeycomb planes have 0

=0. All links with the same vector potential value are in the same
color.
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�=0,1 ,2 ,3. The details of the eight eigen-modes are are left
for Appendix A.

B. Symmetries

The eight k-space minima can be related by the symme-
tries of the Hamiltonian. Each one of the symmetries is rep-
resented by an operator that commutes with the Hamiltonian.
However, some of the symmetry operators do not commute
with each other. If we choose to represent the Hilbert sub-
space of the minimum energy states of the Hamiltonian using
a basis of eigenstates that are also eigenstates of a symmetry

operator Ŝ1, then for a different operator Ŝ2 with which it

does not commute �Ŝ1 , Ŝ2��0 the basis states will not be

eigenstates of Ŝ2. Thus by acting with Ŝ2 on the eigenstates

of Ŝ1, one may generate another linearly independent eigen-
state of the Hamiltonian with the same energy. Such a struc-
ture therefore constrains the minimum size of ground state
multiplets. This idea should be familiar from the representa-
tion theory of SU�2� in standard quantum mechanics.

While the symmetry group of the diamond lattice is the

space group Fd3̄m,30 the dual Hamiltonian itself transforms
under a projective symmetry group �PSG�, since a vector
potential  appears explicitly. The PSG differs from the
space symmetry group by a specific gauge transformation
accompanying every space symmetry operation.

We can describe the entire symmetry group using a re-
duced set of operators—generators—from which any sym-
metry operation can be constructed as a product of members
in the reduced set. One can find a minimal such reduced set.
We shall consider the minimal set of the point symmetry
group, as well as the three primitive translations. We leave
the complete description of the PSG to Appendix B, and only
state here that the reduced set comprises three �fcc� transla-
tions tj, a reflection symmetry i, an inversion symmetry p, a
twofold rotation symmetry r2, and a threefold rotation sym-
metry r3.

Our convention is to denote symmetry operations in the
space symmetry group by lowercase letters, and the corre-
sponding PSG operations by uppercase letters. The space
group obeys some group algebra, which is just a multiplica-
tion table. It can be constructed by imposing a set of alge-
braic rules on the generators alone, of the form

ŝ1 ¯ ŝn = 1, �29�

where ŝi are generators. The details of these relations are left
to Appendix C.

To obtain the PSG we must add gauge transformations to
each of these symmetry operations. Consider a symmetry

operation Ŝ with the following action on the lattice sites in
real space coordinates ŝ :r→r�. Now add a gauge transfor-
mation to accompany the lattice site transformation

Ŝ:��r� → ��r��e−i��r�. �30�

Let us examine what this transformation does to a generic
hopping term in the Hamiltonian

Ŝ:�†�r2���r1�e−ir1,r2 → �†�r2����r1��e
+i���r2�−��r1�−r1,r2

�.

�31�

We require that the Hamiltonian be invariant under this
transformation, and so we must have

e+i���r2�−��r1�−r1,r2
� = e−ir1�,r2�, �32�

or put more simply

��r2� − ��r1� − r1,r2
= − r1�,r2�

�mod 2�� . �33�

Using this procedure we can find the appropriate gauge
transformations for each of the symmetry operations in our
reduced set. We leave the details to Appendix B.

The PSG has a modified group algebra. The relations
among the generators differ only slightly from those in the
space group, which are given in Eq. �C1�. Consider any suc-
cession of symmetry operations that takes every site on the
lattice back to itself. The same succession of the “gauged”
operations can therefore only perform a gauge transforma-
tion on the lattice model. Since all the gauged symmetry
operations leave the Hamiltonian invariant, and the various
terms in the Hamiltonian depend explicitly on the vector
potential, any gauge transformation that is not uniform �a
global gauge transformation� will modify the vector potential
by introducing nonzero gradients in the gauge transforma-
tion. We conclude, therefore, that any succession of symme-
try operations that leave the lattice sites in place can only
undergo an additional global gauge transformation when
those operations are gauged. A rule in the algebra �29� is in
general modified into

Ŝ1 ¯ Ŝn = e+i�, �34�

where � is some angle. The PSG algebra differs from the
space symmetry group algebra �C1� only in the following
rules:

tj+1 · tj · tj+1
−1 · tj

−1 = 1 �35�

in the space algebra, and

T̂j+1 · T̂j · T̂j+1
−1 · T̂j

−1 = − i �36�

in the PSG algebra.
The eight ground state modes we found span the ground

state manifold, and so any linear combination of these states
is also a ground state,

� = �
�=0

3

�	�,u�� + 	�,d�̄�� , �37�

where 	�,a now denote the complex amplitudes of the eight
eigenmodes. Given the symmetry operations in momentum
space, we find the ground state manifold is closed and com-
pletely connected—no disconnected subsets of the manifold
exist.

We now assume that these eight fields are slowly varying
with position on the lattice, so we can treat them using a
continuum limit. However, these eight fields will still be re-
quired to respect the symmetry of the underlying lattice.
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The eight slowly varying fields 	�,a transform under a
particular eight-dimensional irreducible representation �ir-
rep� of the PSG. In fact, we prove in Appendix F that this is
the minimum dimension of a representation of the PSG. It is
convenient to change the field basis to

	0u =
�0 + �1

�2
, 	2u =

�0 − �1

�2
,

	1u =
�2 + �3

�2
, 	3u =

�2 − �3

�2
,

	0d =
�0 + �1

�2
, 	2d =

�0 − �1

�2
,

	1d =
�2 + �3

�2
, 	3d =

�2 − �3

�2
. �38�

This basis realizes a “permutative representation” of the
PSG, in the nomenclature of Ref. 1. That is, the symmetry
operations of the PSG act on these fields by a combination of
permutations and simple diagonal phase rotations. See Eqs.
�D1�–�D6�. Because of this structure, the action takes a par-
ticularly simple form in this basis.

C. Effective low-energy action

Our goal is to describe a low-temperature condensate
phase of the monopole defects. Limiting the discussion to
zero temperature, we set out to construct a phenomenological
Landau-Ginzburg �LG� action to access the condensate
phase. We concentrate on the ground state manifold of the
monopole defects, ignoring any higher energy modes, and
construct a low-energy effective continuum action in the
eight field components of �37�. The various terms allowed in
the action must be invariant under the PSG in the eight-
dimensional representation �D1�–�D6�. As the effective ac-
tion will live in a �3+1�-dimensional spacetime, we seek
terms only up to quartic order in the field operators—any
higher-order terms will be irrelevant in the renormalization
group sense.

To quadratic order only one invariant exists,

�1 = �
j

��� j�2 + �� j�2� , �39�

a typical mass term, where the indices enumerate j
=0,1 ,2 ,3.

At quartic order we find four invariants

��1�2 = �����2 + ����2�2,

�2 = �
i�j

�� j�2��i�2 + �
i�j

�� j�2��i�2,

�3 = ����2����2, �4 = �
ijkl

�ij
kl�k�l�i

*� j
*, �40�

where the sums over indices are always over 0, 1, 2, 3 unless
otherwise stated, and the vector notation implies a four-

component vector. We shall not specify the � tensor explic-
itly, as it is long and complicated. We leave it to Appendix E.

The new set of independent terms obeys numerous con-
tinuous symmetries in a rather transparent manner �for brev-
ity we do not specify the discrete symmetries of these terms�.

�1� �1 is invariant under a full U�8� symmetry, as it is just
the norm of an eight-dimensional complex coordinate vector.

�2� �2 is invariant under a �U�1��8 symmetry, since it
depends only upon the magnitudes of the field components in
the new basis. We may change freely and independently the
phase of each field component.

�3� �3 is invariant under a U�4��U�4� symmetry, be-
cause it involves only the norm of two four-dimensional
complex vectors.

�4� �4 obeys a �U�1��2 symmetry group corresponding to
the following transformation:

" j � j → e+i
� j , � j → e+i�� j . �41�

The action as a whole is invariant under a �U�1��2 symmetry,
governed by the �4 invariant.

The only microscopic symmetry of the action is the dual
U�1� gauge invariance, i.e., identical phase rotations of all
field components. This changes just the overall phase of the
monopole wave function, and has no physical consequence
�it is a true gauge�. The other “staggered” U�1� rotation �with

=−� in Eq. �41�� is accidental, occurring only in the prox-
imity of the critical point at which truncation to the quartic
action is a good first approximation. It will be broken if we
include sufficiently high-order terms in the action. Our inves-
tigation concluded that the staggered U�1� symmetry persists
at 6th order, but ultimately breaks down to a discrete sym-
metry �Z4� at eighth order. The remaining discrete symmetry
Z4 can be identified as part of the lattice PSG.

Finally, the most general low-energy effective action up to
quartic order is

S = �
r,�
����� − i��� j�2 + ���� − i��� j�2

+ �̃�1 + �1�1
2 + �2�2 + �3�3 + �4�4 +

1

2e2F2� ,

�42�

where a sum over j, as well as integration over spacetime are
implied, and �1/2e2�F2 is the Maxwell term in the action,
with F��=���−���. Here  is the continuum version of
the vector potential  appearing in Eq. �27�. The � j are phe-
nomenological couplings undetermined in our theory.

Higher-order terms can be ignored for a renormalization
group �RG� analysis �in 3+1 dimensions, they are irrelevant
in the RG sense, and can be treated perturbatively when nec-
essary�, but must be taken into account in a mean-field analy-
sis to which we now turn.

V. MEAN-FIELD THEORY

We now turn to analyze our effective action �42�. Using
mean-field theory �MFT� we can find the various phases of
this action. Replacing the fields with their average values, we
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obtain a Lagrangian density L that must be minimized with
respect to the field averages.

At first we ignore the �4 term, since it has the lowest
symmetry. We shall examine only the ordered phases which
occur for weak �4 �and higher-order coefficients �5 ,�6 when
necessary—see below� for simplicity. Scaling all the cou-
plings to that of �1

2 we get

M2 = −
�̃

�1
, �1 =

�2

�1
, �2 =

�3

�1
+ 2, �3 =

�4

�1
. �43�

The mean-field Lagrangian density with �3=�4=0 is

L/�1 = �− M2����2 + �����2�2 + �1�
i�j

�� j�2��i�2�
+ ��→ �� + �2����2����2. �44�

We first find the mean-field minima with M2�0 in the
�1,2 plane. The resulting phase diagram is illustrated in Fig.
8. We label the “phases” by the number of nonzero compo-

nents of �� and ��, ordered from largest to smallest, with the
notation N1+N2. The “phases” are as follows.
�1�0,�2�2. In this region, only one field component

condenses, so this region is labeled 1+0.
�1�0,−2��2�2. Here one field component of each set

��i ,� j� condenses, so this is a 1+1 region.
�1�0,�2�2�1+�1

3
4

�. Here all the field components of
one of the two sets condense, denoted 4+0.
�1�0,−2�1+�1

3
4

���2�2�1+�1
3
4

�. Here all the eight
field components are nonzero, so it is a 4+4 region.

It should be pointed out that specifying the number of
nonzero components of the complex fields does not necessar-
ily specify a unique charge-ordered phase of the problem.
Physically, these charge-ordered states break only discrete
space group symmetries, and so are expected to lead to only
a discrete degeneracy of ground states. In our dual gauge
formulation, each physically distinct state is represented by a
“cycle” in the monopole field space, along which the phase
of all the fields is varied together by a uniform angle which
can go from 0 to 2�. This variation has no physical signifi-

cance since this is a gauge symmetry. Other continuous
phase freedoms of the mean field solutions, which do not
vary the phases of all components identically, are however
not a pure gauge freedom. Such a �artificial� freedom can
only be a result of truncating the dual action to quartic order.

In fact, only the 1+0 phase lacks any such “emergent”
phase freedom. In particular, the different 1+0 states ob-
tained by choosing each of the eight possible components
nonzero are physically distinct, and the phase of this nonva-
nishing field is pure gauge, with no physical significance.
Thus, the 1+0 states are eightfold degenerate. The �3 term
vanishes for such states and does not change this conclusion.
These states exhibit an enlarged unit cell, comprising four
unit cells of the underlying lattice, and containing 16 pyro-
chlore lattice sites. �In fact, we will find that all our mean-
field states have an enlarged unit cell. The amount by which
the unit cell is enlarged can be computed by explicitly check-
ing how a given mean-field state transforms under an arbi-
tary translation using the PSG.� The Bravais lattice formed
by these enlarged unit cells is simple cubic �sc�. It is note-
worthy that this phase is the R state found in Ref. 13.

The other 1+1, 4+0, and 4+4 solutions retain at least
some physically meaningful phase freedom even when �3 is
included in the action. Consider first the 4+0 case. For such
configurations, the �3 term vanishes, so the phases of all four
nonzero fields remain free at quartic order. Only the overall
phase of the four fields is gauge, and hence will remain
undetermined—and unphysical—to all orders. To fix the re-
maining three phases, we must consider higher-order terms.
In this case, sixth order is sufficient, and there is one term
which resolves the continuous degeneracy:

L6 = �5 Re�e−i�/4���0
*�3�1�2�3 − ��1

*�3�0�2�3 − ��2
*�3�0�1�3

+ ��3
*�3�0�1�2� − ��� → ���� . �45�

In the N=4+0 phase for �5�0, one minimum energy
state is

�� = �1,e+i3�/4,e+i�/4,1� . �46�

It is part of a set of 792 total states, which can be generated
from this one by the PSG. For �5�0, one configuration is

�� = �1,e+i�/4,e+i�/4,1� , �47�

which is part of a set of 384 degenerate states connected by
the PSG. The enlarged unit cell comprises 16 unit cells of the
original lattice, and contains 64 pyrochlore lattice sites. The
“supercells” are arranged in a body-centered cubic �bcc� Bra-
vais lattice.

In the 1+1 case, there is a single undetermined physical

phase, an opposite phase rotation of �� and ��. This is a direct
result of the “staggered” U�1� symmetry of the action at sixth
order. Any such solution breaks this staggered U�1�, and so
making such a rotation gives a different solution. The stag-
gered U�1� symmetry is broken only at eight order, by 8
distinct terms. In the 1+1 case, only one of these terms is
nonvanishing. It takes the form

FIG. 8. Two-dimensional mean-field theory phase diagram ��2

vs �1� of simplified free energy, �3=0. The phases exist only within
the bounds of the dashed lines. The thick continuous lines show
boundaries between the different phases.
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L8 = �6 Re����0
*�4 − ��1

*�4 − ��2
*�4 + ��3

*�4�

� ��0
4 − �1

4 − �2
4 + �3

4�� . �48�

The nature of the phase depends upon the sign of �6. In each
case, there are 64 physically distinct ground states: four

choices each for the nonzero component of �� ,��, and four
inequivalent phase minima of Eq. �48�.

Of the many states we mention one configuration for �6
�0,

�0 = �0 = 1, �49�

and one configuration for �6�0,

�0 = e−i�/4�0 = 1. �50�

The enlarged unit cell comprises 16 unit cells of the original
lattice, and contains 64 pyrcohlore lattice sites. The “super-
cells” are arranged in a simple hexagonal Bravais lattice,
with a ratio of c /a=4�1.5 in standard notation.

In the 4+4 case the relative phases in each quartet are
determined at fourth order by �3, and the same “staggered”
U�1� symmetry as in the 1+1 case remains.

For �4�0 one possible configuration is

�� = �1,e+i�/4,e+i�/12,e−i�/6� ,

�� = e+i�4�1,e+i7�/12,e+i7�/12,e−i�/2� , �51�

and for �4�0 a possible configuration is

�� = �1,e+i�/4,e+i3�/4,e+i�/2� ,

�� = e+i�4�1,e−i3�/4,e−i3�/4,e−i�/2� . �52�

Many �over 10 000 in each case� other configurations are
possible, and connected via the PSG to this state.

The “staggered” U�1� symmetry is lifted by various
eighth-order terms. Depending on the various couplings of
the eighth-order terms, we get that the staggered U�1� breaks
into the same two Z4 multiplets as the 1+1 state does. We
shall not belabor the details of all eight of these terms. Equa-
tion �48� alone suffices to access both multiplets. For �6
�0

�4 − �0 =
�

4
+ n

�

2
�53�

and for �6�0

�4 − �0 = n
�

2
. �54�

Finally, in any one of these cases, the enlarged unit cell com-
prises 4�4�4=64 unit cells of the original lattice, and
therefore contains 256 pyrochlore lattice sites. The “super-
cells” are arranged in a face-centered cubic Bravais lattice,
with the primitive lattice vectors taken four times larger rela-
tive to the original fcc lattice.

Using a direct mapping between the monopole defect den-
sity and the spin density variations described in the next
section, we can depict the latter in Figs. 9–19

VI. ORDERING PATTERNS

Having found the various allowed monopole defect con-
densate phases in the abstract order parameter space by al-
gebraic considerations, we want to identify the physical spin
�Si

z� ordering patterns in each case.
The density of the monopole defects is a varying scalar

density. As it is the only spatially varying scalar in the prob-
lem, the spin density must have similar spatial variation.
More precisely, both densities must obey the same symme-
tries,

��r�i� � �Si
z� , �55�

where ��r�� is the monopole defect density. The monopole
defect density can be found by taking the wave function �37�
squared,

��r�� = ���r���2. �56�

The resulting density is now a function of the field values
	�,a. By inserting the values for the different MFT phases,
we can recover the density.

FIG. 9. �Color online� Notation for the spin density pictures.
Triangles with a site at the center represent up-pointing tetrahedra.
Triangles with no site at the center represent down-pointing
tetrahedra.

FIG. 10. �Color online� The spin density variations in the 1+0
phase—a three-dimensional image. One field component only has a
nonvanishing expectation value. Here only minority sites in one
Kagome plane and in the triangular plane “above” the page are
shown. Those in the triangular plane “below” the page are omitted
to keep the image uncluttered.
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In some phases, however, the symmetry breaking is not
manifest in the scalar density, but rather in the current or
kinetic energy:

Jr,r� = i��*�r�����r��e−ir,r� − c.c.� ,

Kr,r� = ��*�r�����r��e−ir,r� + c.c.� . �57�

Both the current density and the local kinetic energy can
be encoded in a complex valued vector,

vr,r� = �*�r�����r��e−ir,r�. �58�

The imaginary and real parts will give us �half� the current
density and the local kinetic energy, respectively.

Each plaquette in the dual diamond lattice corresponds to
a pyrochlore lattice site at the center of the plaquette. Any
monopole defect “object” we can define on the dual
plaquettes is also defined on the direct pyrochlore lattice
sites, and encodes the symmetry of the MFT phase. There-

fore, the function must be “similar” to the spin density on
these sites, in the sense of giving the correct symmetry of the
latter. An appropriate function is a loop integral �curl� of the
complex current around the plaquette

�
r�r���˝

vr�r�� � n
˝

= ni. �59�

We can formalize this argument by considering Maxwell’s
equations, with magnetic monopoles

curl E� = −
�B�

�t
+ J�b, curl B� = +

�E�

�t
+ J�e,

div E� = �e, div B� = �b, �60�

where the magnetic monopole density and current are de-
noted with a subscript b. In a static system integrating the
first equation over some surface we get, by Stokes theorem,

FIG. 11. �Color online� The spin density variations in the 1+0
phase—same phase as in Fig. 10 for comparison. This phase has an
enlarged unit cell of 2�2�1=4, in a simple cubic Bravais lattice.

FIG. 12. �Color online� The spin density variations in the 1+1
phase, for �5�0. One each of the four � and � fields has a nonva-
nishing expectation value. The expectation values have identical
magnitude. This phase has an enlarged unit cell of 2�4�2=16, in
a simple hexagonal Bravais lattice.

FIG. 13. �Color online� The spin density variations in the 1+1
phase, for �5�0. One each of the four � and � fields has a nonva-
nishing expectation value. The expectation values have identical
magnitude. This phase has an enlarged unit cell of 2�4�2=16, in
a simple hexagonal Bravais lattice.

FIG. 14. �Color online� The spin density variations in the 4+0
phase, for �4�0. The four field components of either the � or � set
have a nonvanishing expectation value of identical magnitude. This
phase has an enlarged unit cell of 16, in a bcc Bravais lattice.
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�
C

J�b · d�� = �
C

curl E� · d�� = �
S

E� · dA� . �61�

From this last expression it is evident that the loop integral of
the monopole defect current gives the electric flux through
that loop. The lattice version of the electric flux is a constant
plaquette “area” times the electric field penetrating perpen-
dicular to that plaquette

�
r�r���˝

Jr�r�� = Eab � ni. �62�

In conclusion the variations in the spin density can be related
to the loop sums of the monopole defect current around
plaquettes of the dual diamond lattice. Armed with this
knowledge we can plot a function to show the spin density
variations. We plot the “spin density” so defined for each of
the phases obtained in mean field theory in Figs. 11–19.

VII. RG ANALYSIS

In this section, we briefly consider the effect of fluctua-
tions on the mean-field critical behavior of our effective ac-
tion. Our primary focus in this paper is not on quantum criti-
cal phenomena, but rather on the nature of the ordered
phases close to the U�1� spin liquid state. These results for
the ordered phases are independent of the contents of this
section.

By simple power counting, the problem of a generalized
“Ginzburg-Landau” theory in 3+1 dimensions �with a many-
component “superconducting” field  �� is in its upper critical
dimension, so one expects either of two possibilities. One
possibility is that the Gaussian fixed point is marginally
stable, and mean-field behavior is correct up to logarithmic
factors. The other possibility is that the Gaussian fixed point
is marginally unstable, and the true critical behavior is a
strong coupling problem; most probably, such flows to strong
coupling indicate a weak fluctuation-induced first-order tran-
sition.

Here we follow Balents et al.,1,2 who generalized the cal-
culations of Halperin, Lubensky, and Ma31 and Brezin et
al.,32 and consider a general q-component �U�1�� action

S0 =� dDr��
�=0

q−1

���� − i�� ��2 + s� ��2 +
1

2e2F2� ,

S1 =
1

4
� dDr �

�,m,n,i=0

q−1

u�m;ni �
* m

* n i. �63�

Here we have written the theory for a general space-time
dimensionality D. For the quantum critical point of interest,
D=3+1=4 total space-time dimensions. For this very gen-
eral action the RG flows obtained by an � expansion are1,2

FIG. 15. �Color online� The spin density variations in the 4+0
phase, for �4�0. The four field components of either the � or � set
have a nonvanishing expectation value of identical magnitude. This
phase has an enlarged unit cell of 16, in a bcc Bravais lattice.

FIG. 16. �Color online� The spin density variations in the 4+4
phase, for �4�0, �6�0. All eight field components have a nonva-
nishing expectation value of identical magnitude. This phase has an
enlarged unit cell of 4�4�4=64, in a fcc Bravais lattice.

FIG. 17. �Color online� The spin density variations in the 4+4
phase, for �4�0, �6�0. All eight field components have a nonva-
nishing expectation value of identical magnitude. This phase has an
enlarged unit cell of 4�4�4=64, in a fcc Bravais lattice.
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de2

d�
= �e2 −

Cq

3
e4,

du�m;nk

d�
= �� + 2!�u�m;nk − a2e4C�
�n
mk + 
�k
mn�

− C�
ij
�1

2
u�m;ijuij;nk + u�i;njumj;ki + u�i;kjumj;ni� ,

! = a1e2C , �64�

with spatial dimension d=3−�. Here !=a1e2C is the anoma-
lous dimension of the fields. The constants C ,a1,2 were
calculated1,2 in an � expansion. For our case �=0 since our
model is in 3+1 space-time dimensions. Thus the � expan-
sion results hold exactly: C=1/8�2, a1=3, a2=6.

We take directly  →� ,� in the action �42� to make con-
tact with the couplings � j

umm;mm = 4�1,

umn;mn = 4��2 +
1

2
�1�, n � m ,

umn̄;mn̄ = ��3 + 2�1� ,

uab̄;cd̄ = �4�ab̄
cd̄, a � c, b � d , �65�

where the indices �0, . . . ,3 and the indices with overbars
denote the � j quartet of field components. All other uijkl cou-
plings vanish in our special case. This “structure” encodes in
it the specific symmetry group of our lattice model. There-
fore, the RG flow equations should preserve this general
structure—only four independent couplings, and the � tensor
must retain its structure. This provides a good check that we
have indeed included all possible quartic terms allowed by
the symmetry of the problem.

Some manipulation gives us the flow equations for our
four couplings:

d�1

d�
= − C�3e4 − 6e2�1 + 8�1

2

+ 16�1�2 + 16�2
2 + 8�1�3 + 2�3

2� ,

d�2

d�
= C�6e2�2 − 2�1�2 + 2�2

2 − �4
2� ,

d�3

d�
= 2C�16�2

2 + 3e2�3 − 6�1�3 − 8�2�3 + �3
2 − 3�4

2� ,

d�4

d�
= 2C�3e2 − 6�1 − 2�3 − �4��4. �66�

The only fixed point allowed by the RG equations is a trivial
fixed point with all coupling strengths vanishing �i=0, e=0.

The stability or lack thereof of such coupled nonlinear
differential equations is not obvious. We would like to know
if there is a subspace of codimension zero of the four-
dimensional phase space �we may project it onto the e=0
plane since the evolution e�0 is clearly monotonically de-
creasing toward zero� in which all couplings scale toward
zero. While we have not been able to prove this is not the
case, our numerical and analytical investigations have found
no such stable regime. We did find a few specific fine-tuned
stable solutions, but these were all unstable to infinitesimal
perturbations. Thus we believe that the mean-field critical
behavior is always destabilized by fluctuations. We expect
this probably signals a fluctuation-driven weakly first-order
transition. Intuitively, this is a result of the gauge field
fluctuations,31 which lead to attractive interactions amongst
the monopoles, driving bound state formation. Note that this
result is reliable only for the zero-temperature transition with
D=3+1=4, the upper critical dimension, where the pertur-
bative renormalization group treatment is justified. In D=3
+0, the same field theory may well have nontrivial stable �if
one parameter is tuned to criticality� fixed points. We will
return to this point in the discussion below.

FIG. 18. �Color online� The spin density variations in the 4+4
phase, for �4�0, �6�0. All eight field components have a nonva-
nishing expectation value of identical magnitude. This phase has an
enlarged unit cell of 4�4�4=64, in a fcc Bravais lattice.

FIG. 19. �Color online� The spin density variations in the 4+4
phase, for �4�0, �6�0. All eight field components have a nonva-
nishing expectation value of identical magnitude. This phase has an
enlarged unit cell of 4�4�4=64, in a fcc Bravais lattice.
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VIII. DISCUSSION

In the preceding sections, we have presented a systematic
study of the zero temperature ordered phases proximate to a
“half-polarized” �from the 3:1 constraint� U�1� spin liquid on
the pyrochlore lattice, based on a projective symmetry group
analysis of the monopole excitations of the liquid state. One
of these states would be expected to occur on reducing v in
the spin and dimer model starting from a value ��1� within
the spin liquid state. The ordered phases, determined at the
mean-field level, all break discrete symmetries of the pyro-
chlore lattice, and in particular we find a generic unit cell
enlargement, with the minimal cell size four times that of the
underlying pyrochlore lattice, and a maximal unit cell 64
times larger. The simplest R state, with the smallest unit cell,
is the same one which was found to be the ground state in the
“classical” spin or dimer limit v→−�. It therefore seems
likely that the spin and dimer model exhibits only two phases
for v�1, and hence a direct quantum phase transition from
the U�1� spin liquid to the R state. If this is indeed the case,
one may contemplate the possibility that HgCr2O4 �or other
pyrochlore chromates� might be close to this quantum criti-
cal point.

While previous work13 and the main text has focused al-
most entirely upon the ground state properties of the spin and
dimer model, it is interesting to consider the more general
problem at nonzero temperature T�0. A schematic phase
diagram in the v−T plane is illustrated in Fig. 20. We will
focus on the region v�1, and will not discuss the physics of
the thermal ensemble of “frozen” states occuring for v�1.
First, we note that the R state has a gap to all excitations, and
breaks only discrete lattice symmetries. We therefore expect
that the R state will persist at T�0 up to some nonzero
critical temperature Tc�v��0 for v�vc. By contrast, the
U�1� quantum spin liquid ground state breaks no symmetries.
Therefore, in the dimer model, no transition is expected for
vc�v�1 as T is increased from zero to infinity. We thus
expect just the single phase boundary emanating from the
quantum critical point, shown in Fig. 20.

It might appear from these observations that the thermal
ordering transition at Tc�v� should be a rather ordinary one,
described by the usual Landau-Ginzburg-Wilson �LGW� ap-
proach based on the order parameter of the R state. In fact

this is incorrect, and T�0 problem is rather more interesting.
To see this, let us consider the “paramagnetic” state obtained
for very high temperature in the dimer model. The physics of
such classical, infinite-temperature dimer models �and other
similarly constrained models� have been considered by sev-
eral authors.6,22,28 As shown in these works, due to the dimer
constraint, even at infinite temperature the dimer model has
nontrivial power-law “dipolar” correlations. Such dipolar
correlations are not captured by the conventional LGW
theory which retains only the order parameter.

To understand these dipolar correlations, and a proper for-
mulation of the phase transition in the spin-dimer model, it is
instructive to return to the monopole field theory in Eq. �63�.
Let us rewrite this effective action making space and time
coordinates separate and explicit:

S0 =� d3r�
0

�

d���
�=0

q−1

���� − i0� ��2 + ���� − i� � ��2 + s� ��2

+
1

2e2 ���� − ��0�2 +
1

2e2 ��� � � �2� ,

S1 =
1

4
� d3r�

0

�

d� �
�,m,n,i=0

q−1

u�m;ni �
* m

* n i. �67�

Here �= �kBT�−1 is the inverse temperature. To derive a
theory of the thermal phase transition at T�0, we use stan-
dard logic to proceed from Eq. �67�. In particular, at T�0,
imposing periodic boundary conditions �as demanded by the
trace defining the quantum statistical mechanical partition
function� in imaginary time leads to a set of discrete bosonic
Matsubara frequencies "n=2�n /�, with integer n. Because
of the time-derivative term, all modes with "n�0 have en-
hanced “masses” relative to the zero Matsubara frequency
mode, and can be integrated out. Practically speaking, this
amounts to assuming the order parameter is constant in
imaginary time, �� �=0. Similarly, we may take ��� =0, and
by a choice of gauge, 0=0. Carrying out this procedure, we
find S0+S1=F /kBT, where F=F0+F1 is an effective classi-
cal free energy:

F0 =� d3r��
�=0

q−1

���� − i� � ��2 + s� ��2 +
1

2e2 ��� � � �2� ,

F1 =
1

4
� d3r �

�,m,n,i=0

q−1

u�m;ni �
* m

* n i. �68�

Equation �68� is precisely the classical “Ginzburg-
Landau” free energy for a multicomponent superconductor in
three dimensions, with the quartic interaction u�m;ni deter-
mined by the PSG. The interpretation of this result is quite
simple. In the U�1� spin liquid, the monopole is a well-
defined, bosonic particle excitation, and carries the “mag-
netic” gauge charge. The magnetic gauge charge is con-
served in the theory. As already discussed, the ordered �R�
state at zero temperature is understood as a condensate of
these monopoles. In fact, within the quantum dimer model,
the bosonic monopole can condense at a nonzero tempera-

FIG. 20. �Color online� Schematic phase diagram of the spin-
dimer model in the v−T plane. At zero temperature, we suppose
there is a direct transition from a U�1� spin liquid to the R state at
v=vc�1. The thick �red online� portion of the T�0 phase bound-
ary is first order, while the thin �blue online� boundary denotes a
possible nontrivial “non-LGW” second-order transition at higher
temperature.
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ture, just as in an ordinary Bose-Einstein condensate. Thus
Eq. �68� is nothing but the “classical” free energy describing
the “superfluid” transition of this monopole. Because it car-
ries a nonzero magnetic gauge charge, it is coupled to the
electric vector potential � , just as the electric charged Coo-
per pair condensate is coupled to the magnetic vector poten-
tial in ordinary superconductivity.

Thus we are led to this remarkable and unconventional
description of the T�0 phase transition between the para-
magnet and the R state. Without the 3:1 spin-dimer con-
straint, this transition would certainly be expected to be gov-
erned by conventional Landau theory. What is the nature of
the unconventional transition? According to the d=4−� ex-
pansion approach �discussed in Sec. VII�, this transition is
fluctuation-driven first order. However, this conclusion is
known to be often incorrect for the physical case of
Ginzburg-Landau transitions in three dimensions. In particu-
lar, a class of related models, N-component Ginzburg-
Landau theories with U�N� symmetry, have been investi-
gated in a number of cases. First, for sufficiently large N,
these transitions can be shown to be second order in an ex-
pansion around N=�. Second, for N=1, a duality transfor-
mation has been used to demonstrate that the transition can
be continuous, in the inverted XY universality class.33 A simi-
lar duality analysis, in conjunction with numerics, has been
used in arguing for continuous critical behavior for N=2.34 It
therefore appears quite likely that continuous critical behav-
ior is possible in these models for any N. By analogy, con-
tinuous critical behavior of the theory of Eq. �68� seems
quite possible. We thus suggest that the paramagnetic to R
state transition in the spin-dimer model constitutes a non-
LGW universality class. Note that, since the RG analysis in
Sec. VII concluded that the T=0 quantum phase transition is
weakly first order, the phase boundary for very small but
nonzero temperature must remain discontinuous. We there-
fore expect a multicritical point separating on the T�0 phase
boundary separating first order from continuous non-LGW
critical behavior. The continuous and first order portions of
the phase boundary are shown in Fig. 20 by thin �blue on-
line� and thick �red online� lines, respectively. It would be of
considerable interest to investigate this classical phase tran-
sition in the the spin-dimer model numerically. This could be
done on a purely classical dimer model, with K=0, and so
would require only classical Monte Carlo methods.

As remarked above, without the 3:1 spin-dimer constraint,
the classical phase transition would certainly be expected to
be described by LGW theory. For any microscopic model,
such as the spin-3 /2 Heisenberg model of Ref. 13, the 3:1
constraint is not expected to be exactly obeyed. At zero tem-
perature, however, pyrochlore tetrahedra violating the 3:1
constraint are gapped excitations, and are not present in the
ground state on the plateau. Consider configurations in which
a single tetrahedron violates the constraint by having either
zero or two minority spins instead of one. In the mapping to
the gauge theory, these particular excitations can be viewed
as states with “electric” gauge charge ±1 �relative to the
static background gauge charge of the plateau states� on the
tetrahedron in question. They also carry physical spin �Sz

= ±3/2 relative to the plateau states. This follows because
the total spin can be written as

Stot
z =

1

2�
t

St
z, �69�

the factor of 1 /2 being required since each spin is contained
in two tetrahedra. These excited states can therefore be
viewed as fractional spin excitations, or “spinons,” in this
particular example. In any case, because they cost only finite
energy, there will be a non-vanishing concentration of such
electric gauge charges at T�0, due to thermal activation.
The typical separation of the electric gauge charges is ex-
pected to behave exponentially at low temperature, �
�exp�� /kBT�, if � is the gap to the electric charged par-
ticles. This has several effects. First, the dipolar correlations
of the paramagnetic phase of the spin-dimer model will cross
over to the usual exponential ones of an ordinary paramag-
net, for lengths larger than �. Moreover, the “plasma” of
electric charges is expected to give rise to a linear confining
potential between oppositely �magnetically� charged mono-
poles. This will bind the monopoles and antimonopoles into
gauge-neutral pairs, the radius of this bound state being at
least as large as �. It is only these pairs that can Bose con-
dense. When � is large, there is a crossover behavior. On
approaching the paramagnetic to R state transition, the cor-
relation length grows in a manner first governed by the non-
LGW theory of Eq. �68�. Once the correlation length exceeds
the monopole-antimonopole binding length, these pairs may
be considered well formed, and the critical behavior changes
to that described by Bose condensation of the pairs. The
creation and annihilation operators for the monopole-
antimonopole bound states are expected to be proportional to

���� �  �
* ��. �70�

Since  �
* and  � transform under conjugate representations of

the PSG, and hence ���� is gauge neutral, it transforms not
under the PSG but simply the ordinary lattice space group.
Hence ���� can be decomposed into irreducible representa-
tions of the space group, which are precisely the usual Lan-
dau order parameters. Thus the critical behavior sufficiently
close to the phase boundary, when the 3:1 spin-dimer con-
straint is not rigidly enforced, is indeed governed by LGW
theory as expected on general grounds. The conventional
LGW analysis is straightforward, and will be presented in
Ref. 35. It predicts that the paramagnetic to R state transition
should be first order, due to the presence of a cubic invariant.
For kBT#�, it will be weakly so along the thin �blue� por-
tion of the phase boundary in Fig. 20. Of course there is no
such crossover in the spin-dimer model, for which the con-
straint is rigidly enforced.

In summary, we have studied the phase structure of a
spin-dimer model on the pyrochlore or diamond lattice. It
contains an interesting quantum paramagnetic “U�1� spin liq-
uid” phase at zero temperature, as well as an ordered R state
at T$0. We derived a novel monopole field theory to de-
scribe the quantum and classical phase transitions between
the quantum and classical paramagnets and the R state. Prior
work in Ref. 13 indicates that the half-polarized magnetiza-
tion plateau of the spin-3 /2 Heisenberg antiferromagnet on
the pyrochlore lattice is described by this model, with a cou-
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pling constant that places it in the R state at low temperature.
It is interesting to contemplate the possibility that the experi-
mental materials CdCr2O4 and HgCr2O4 might be near the
quantum phase transition of the paper to the spin liquid state.
It would indeed be exciting were some homologous material
to actually realize the U�1� spin liquid in its plateau ground
state. To this end, we note that, were a spin-1 /2 pyrochlore
antiferromagnet to be realized experimentally, the quantum
effects would be significantly further increased, and a U�1�
spin liquid might well be expected theoretically. We leave
such tantalizing possibilities as open questions.
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APPENDIX A: GROUND STATE EIGENMODES

The diamond lattice is bipartite and can be thought of as
being made of two fcc sub-lattices one shifted from the other

by the vector b� =− 1
4 �a�1+a�2+a�3� where a� j are the fcc primi-

tive vectors. We introduce the notation

!1�n�� = ��r�� , !2�n�� = ��r� + b�� , �A1�

where r� denotes sites on a fcc lattice, r�+b� are the sites of the
second fcc lattice comprising the diamond lattice, and n� are
the “index” space coordinates on the fcc lattice.

Defining the Fourier transform of the wave function !,
and its inverse as

!�n�� = �
k��BZ

d3k�

�2��3!�k�� · e+ik�·n� ,

!�k�� = �
n�

e−ik�·n� · !�n�� , �A2�

we can write out the eigenstates in a compact manner

�� = �
�=0. . .3

a=1,2

c�
�a�!a�p��,��e−i��/2���,

�̄� = �
�=0. . .3

a=1,2

c−�
�ā�!a�q��,��e−i��/2���, �A3�

where �0� denotes the vacuum state, and

p��,� = p� + �Q� +
�

2
��� ,

q��,� = d� − p� + �Q� +
�

2
��� , �A4�

where p� = �� /2 ,� /4 ,� /4� and d� = �� /2 ,0 ,��. The coeffi-
cients are

c�,�
�a� = c�

�a�e−i��/2���, �A5�

where c�
�a�=c�,0

�a� are the coefficients for the �=0 state. Fi-
nally, the unnormalized coefficients c�

�a� are

c�
�1� = �1,− i,

− i

1 + �2
,

1

1 + �2
� ,

c�
�2� = �3 − i

�10
,

1 − 2i
�5 + �10

,−
1 + 3i

�10�1 + �2�
,
2 + i
�5

� . �A6�

APPENDIX B: PROJECTIVE SYMMETRY GROUP

We start by enumerating some diamond lattice symme-
tries. Since the diamond lattice is made up of two fcc lattices,
it inherits the translations of the fcc lattice

t̂ j:r� → r� + a� j . �B1�

Next we consider a threefold rotation symmetry

r3:�x,y,z� → �z,x,y� , �B2�

and a twofold rotation

r2:�x,y,z� → �x,− y,− z� . �B3�

There is also a reflection symmetry

i:�x,y,z� → �x,z,y� . �B4�

Finally we have an inversion symmetry that effectively
swaps between the two fcc sublattices

p:r� → b� − r� . �B5�

To construct the PSG we attach gauge transformations to
each symmetry operation. This is most easily done in the
index space coordinates, and we now list the action of the
PSG operations on the wave functions. First are the three
lattice translations

T̂j:!�n�� → !�n� + a� j�e−i�j�n��, �B6�

where

� j�n�� = − ��� · n��Qj . �B7�

The inversion symmetry

P̂:!�n�� → %̂x · !�− n��e−i�C�n��, �B8�

where %x is the x Pauli matrix, and

�C�n�� = − d� · n� = −
�

2
�1,0,− 2� · n� . �B9�

The threefold rotation

R̂�3�:!�n�� → !�R̂�3� · n��e−i�R3
�n��, �B10�

with the gauge transformation

�R3
�n�� = n� · B̂1 · n� + 
� · n� , �B11�

where
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B̂1 =
�

4
, �1 1 2

1 2 1

2 1 1
�, 
� = −

�

4
�1,2,1� . �B12�

The twofold rotation

R̂�2�:�!1�n�� → !1�R̂�2� · n��e−i�R2

�1��n��,

!2�n�� → !2�R̂�2� · n� + a�1�e−i�R2

�2��n��.
	 �B13�

The gauge transformations for the two spinor components
are different,

�R2

�1��n�� = n� · B̂2 · n� + ��1 · n� , �B14a�

�R2

�2��n�� = n� · B̂2 · n� + ��2 · n� , �B14b�

where

B̂2 =
�

2 �0 1 1

1 1 0

1 0 1
� , �B15�

and

��1 =
�

2
�− 1,1,2�, ��2 = ��1 +

�

2
�1,2,1� . �B16�

Finally, the reflection symmetry

Î:!�n�� → !†�Î · n��e−i�Î�n��, �B17�

and the gauge transformation is

�Î�n�� = n� · B̂3 · n� + �� · n� , �B18�

where

B̂3 = −
�

4 �2 1 1

1 2 1

1 1 2
�, �� =

�

2
�1,1,1� . �B19�

One can take the Fourier transform of these symmetry
operations, to find their action on !�k�� and then deduce how
the eight ground state eigenmodes transform under them.
The transformation rules �D1�–�D6� are the result of that
analysis. It is a good check that the ground state manifold is
invariant under every one of these symmetries. Although the
ground state manifold need not be completely connected by
the symmetry operations, in our case it is.

APPENDIX C: GROUP ALGEBRA

The diamond lattice symmetry group, described by the
reduced set of operations introduced in the text, obeys the
algebra

r3
3 = 1, r2

2 = 1, p2 = 1, i2 = 1,

r3 · p · r3
−1 · p = 1, ti · tj · ti

−1 · tj
−1 = 1,

�p · tj�2 = 1, r3 · tj · r3
−1 · tj+1

−1 = 1,

r2 · t1 · r2 · t1 = 1, r2 · t2 · r2 · t1 = t3, r2 · t3 · r2 · t1 = t2,

i · t1 = t1 · i , i · t2 = t3 · i , i · t3 = t2 · i ,

i · r3 = r3
−1 · i , i · r2 = r2 · i , i · p = p · i . �C1�

APPENDIX D: GROUND STATE MANIFOLD
PERMUTATIVE REPRESENTATION OF PSG

In the basis of �38� the PSG realizes a permutative
representation,1 i.e. each generator can be written as G
=��G�P�G�, where ��G� is a diagonal matrix with unimo-
dular complex entries, and P�G� is a permutation matrix,

acting on the eight-component vector ��� ,���. One finds:

��T̂1� = diag�i,i,1,− 1,1,1,− i,i� ,

P�T̂1� = �43218765� , �D1�

��T̂2� = diag�z,z,iz,iz,− iz,− iz,z,z� ,

P�T̂2� = �21436587� , �D2�

��R̂�2�� = diag�z*,z,− z*,− z,z,z*,z*,z� ,

P�R̂�2�� = �21437856� , �D3�

��R̂�3�� = diag�z,1,− z*,− 1,z,1,z*,1� ,

P�R̂�3�� = �32417685� , �D4�

��P̂� = diag�1,1,1,− 1,1,1,1,− 1� ,

P�P̂� = �56781234� , �D5�

��Î� = diag�w,w,iw,− w,− w,w,iw,w� ,

P�Î� = �86754231� . �D6�

Here z=ei�/4 ,w= �1−2i� /�5, diag�·� is the diagonal matrix
with entries ·, and permutations are specified in the standard
way by the result of permuting the integers 1, ¼, 8. Finally,

Î should be understood as acting after complex conjugation
of the monopole field vector

Î:���,��� → ��Î�P�Î����*,��*� . �D7�

APPENDIX E: � TENSOR

The � �in Eq. �40�� tensor was hiding the following ex-
pression:
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�4 = �
ijkl

�ij
kl�k�l�i

*� j
* = �1�1�0

*�0
* + �2�2�0

*�0
* + i�3�3�0

*�0
*

− �0�1�1
*�0

* + i�3�2�1
*�0

* + �2�3�1
*�0

* − �3�1�2
*�0

*

+ �0�2�2
*�0

* + i�1�3�2
*�0

* − �2�1�3
*�0

* + i�1�2�3
*�0

*

− �0�3�3
*�0

* − �1�0�0
*�1

* − �3�2�0
*�1

* − i�2�3�0
*�1

*

+ �0�0�1
*�1

* − i�2�2�1
*�1

* − �3�3�1
*�1

* − �3�0�2
*�1

*

− �1�2�2
*�1

* + i�0�3�2
*�1

* − �2�0�3
*�1

* + i�0�2�3
*�1

*

+ �1�3�3
*�1

* + �2�0�0
*�2

* − i�3�1�0
*�2

* + �1�3�0
*�2

*

− i�3�0�1
*�2

* − �2�1�1
*�2

* + �0�3�1
*�2

* + �0�0�2
*�2

*

+ i�1�1�2
*�2

* + �3�3�2
*�2

* − i�1�0�3
*�2

* − �0�1�3
*�2

*

− �2�3�3
*�2

* − �3�0�0
*�3

* − i�2�1�0
*�3

* + �1�2�0
*�3

*

− i�2�0�1
*�3

* + �3�1�1
*�3

* + �0�2�1
*�3

* + �1�0�2
*�3

*

+ i�0�1�2
*�3

* − �3�2�2
*�3

* − i�0�0�3
*�3

*

− �1�1�3
*�3

* + �2�2�3
*�3

*. �E1�

APPENDIX F: PROOF THAT THE LOWEST DIMENSION
OF A REPRESENTATION OF THE PSG IS 8

We start by assuming that we are in a basis where T̂1 is
diagonal. Denote one eigenvector by

T̂1�0 = ��0. �F1�

The PSG algebra rule �36� dictates that T̂2 cannot be diagonal
in this basis. Using

T̂2 · T̂1 = T̂1 · T̂2�− i� , �F2�

we find �0 is connected to a four-cycle of eigenvectors

�m = T̂2
m�0, �F3�

with eigenvalues

T̂1�m = �im�m. �F4�

This proves that the translations must all be constructed only
of four-cycles. As a consequence, any representation of the
PSG can only be of a dimension d=4�n.

We know already that an eight-dimensional representation
�rep� exists �D1�–�D6�, so we need only consider the d=4
case, and show that it is impossible.

Assume we have a d=4 rep. Therefore, each eigenvalue is
nondegenerate, with a unique eigenvector. From �C1� we

know that the inversion and T̂1 commute. It is easy to show
that

�Î�m��im = T̂1�Î�m� �F5�

follows, and since only a unique eigenvector has this eigen-
value, we conclude that

�Î�m� = �m �F6�

and that in this rep I=1. From the PSG algebra we now have

ÎR̂�3� = R̂�3�
−1 Î Þ R̂�3� = R̂�3�

−1 . �F7�

The rotation R�3� is threefold, and therefore in this rep it is
also unity. Finally, as R�3�=1 using the rule

T̂2 = R̂�3�T̂1R̂�3�
−1 �F8�

we find T̂1= T̂2, and we have a contradiction.
This contradiction proves a four-dimensional rep of the

PSG is not possible, leaving us with d=8 as the lowest di-
mension of a rep of the PSG.
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