
Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses

A. P. Mirgorodsky,* M. Soulis, P. Thomas, and T. Merle-Méjean
Laboratoire de Science des Procédés Céramiques et de Traitements de Surface UMR 6638 CNRS, Faculté des Sciences, Université de

Limoges, 123, avenue Albert Thomas, 87060 Limoges Cedex, France

M. Smirnov
Fock Institute of Physics, Saint-Petersburg University, 194508 Petrodvoretz, Saint-Petersburg, Russia

�Received 5 September 2005; revised manuscript received 22 December 2005; published 28 April 2006�

To gain a better insight into the origin of the outstanding nonlinear optic susceptibilities of TeO2-based
glasses whose numerical characteristics are almost two orders of magnitude higher than those of SiO2-based
glasses, a comparative computer simulation of their dielectric properties was performed using ab initio studies
of a series of �SiO2�p and �TeO2�p polymer molecules. This comparison showed that these properties are
reproducible only in a TeO2 glass simulated as an ensemble of chainlike �TeO2�p polymer molecules with
p→�, which was interpreted as evidence for the essential nonlocality of the electronic polarizability mecha-
nism in that glass. The relevant model calculations showed the reasonableness of this hypothesis, which was
subsequently used to explain the influence of modifier content on the nonlinear optic susceptibility of the
tellurite glasses.
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I. INTRODUCTION

In 1988 Hall et al. discovered1 that oxide glasses can have
very high nonlinear optical �NLO� characteristics compa-
rable to those of chalcogenide glasses which were considered
at that time as the most nonlinear optic materials. Since then,
a large amount of research has been devoted to NLO prop-
erties of oxide glasses of various compositions. Therefore, it
was found that those properties are best exhibited by
TeO2-based glasses which offer exceptionally high nonlinear
susceptibilities.2–11 In particular, one of the greatest hyper-
susceptibilities of oxide glasses presently known is that of
pure TeO2 glass �50 times higher than that of pure SiO2
glass8�. Although, as a rule, this characteristic becomes less
pronounced in tellurite glasses, and its value markedly de-
creases with increasing modifier concentration, tellurite
glasses are regarded as rather �if not the best� promising
materials for NLO devices.

Attempts to understand the origin of the remarkable NLO
properties of TeO2-based glasses have been undertook in a
series of theoretical studies. Some of them3,8,9 were based on
semiempirical theoretical models;12–14 others used quantum-
mechanical calculations for small finite clusters having TeO4
and TeO3 fragments.3,6,10,15 None of them seem to be meth-
odologically and physically self-consistent. Actually, the
former studies took Lines’ approach12–14 concentrating on the
role of d electrons and ignoring the presence of electron lone
pairs, which can hardly be adequate for electronic properties
of structures involving atoms of tellurium and oxygen. The
latter studies suppose that the hyperpolarizability mechanism
of telluria-based glasses is localized within the first TeuO
coordination sphere, thus ignoring the experimental evidence
unequivocally indicating an intimate linkage among that
mechanism and glass polymerization; in other words, the ef-
fects of electron delocalization are not active here.

It can be added that in no case were the results of the
above mentioned theoretical studies compared quantitatively

with the actual properties of TeO2-based glasses. So whether
these studies were capable of reproducing the given experi-
mental data, thus providing some progress toward the under-
standing of its origin, is still an open question. Consequently,
an insight into the nature of the NLO properties of the
TeO2-based glasses remains a challenge for fundamental
solid state physics and chemistry.

Although the quantum-mechanics calculation techniques
seem to be the most adequate tool for attacking this problem,
it should be clearly understood that in principle such calcu-
lations are basically capable of providing numerical charac-
terization of the electronic properties of matter rather than
directly revealing their “driving forces.” It can be recalled
that the physical transparency which is so attractive in many
empirical models as a rule is lost in ab initio quantum-
mechanical calculations which, in fact, represent a kind of
“computer experiment.” Thus, from the methodological point
of view, the program of any ab initio study aiming to explain
particular properties of a given material should be based on
some initial hypothesis and ideas which can be confirmed �or
rejected� by computer simulation in considering a standard
“structure-property” problem.

The recent ab initio calculations of the structural and vi-
brational properties of the �TeO2�p polymers16 comple-
mented by lattice-dynamical studies of different crystalline
polymorphs of TeO2 �Ref. 17� made it possible to think that
chainlike clusters framed from the TeuOuTe bridges and
TeuO terminal bonds are the most adequate models of the
structural fragments of pure TeO2 glass.

The central hypothesis of the present study was that the
high nonlinear optic susceptibility of TeO2 glass comes from
electron delocalization effects within these chains. We
wanted to answer the following questions.

�1� Is this the case?
�2� Does the NLO susceptibilty of TeO2 glass depend on

the size of the structural fragments forming the glass frame-
work?
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�3� Why are the NLO characteristics of SiO2 glass �in
which a polymerization through SiuOuSi bridges occurs�
much weaker than those of TeO2 glass?

�4� In what way does the modifier concentration influence
the NLO susceptibility mechanism in tellurite glasses?

In order to reach this objective, a comprehensive ab initio
calculation of various �SiO2�p and �TeO2�p polymer clusters
was performed with the emphasis on their linear and nonlin-
ear polarizabilities which were used to simulate the linear
and NLO susceptibilities of SiO2 and TeO2 glasses by em-
ploying the model technique described below in Sec. III.
Additionally, a series of experimental data on the NLO sus-
ceptibility of alkaline tellurite glasses were treated in a simi-
lar way. So, to our knowledge, the present work is the first
joint theoretical study of the NLO properties of SiO2 and
TeO2-based glasses, based on the comparison of the mea-
sured values and the ab initio simulation.

The paper is organized as follows. Section II is mainly
devoted to experimental data on the NLO properties of the
glasses in question, and concerns a particular problem cus-
tomarily arising in this domain: namely, how the properties
measured for different light frequencies can be interrelated
and compared to those calculated for static electric fields.
Section III provides details about the theoretical scheme used
in this paper; Sec. IV summarizes the results of the calcula-
tions. They are discussed in Sec. V, giving rise to some fur-
ther hypotheses and ideas. Final conclusions are in Sec. VI.

II. OPTICAL SUSCEPTIBILITIES OF TeO2- AND
SiO2-BASED GLASSES

The polarization produced by a macroscopic electric field
E occurring in a homogeneous material is specified by the
polarization vector P �dipole moment per unit volume�
whose Cartesian components Pi are generally described as
functions of the field components Ei �i=x ,y ,z�. No strict
physical law is the heart of such a description which means
only the possibility to express the P�E� dependence in the
form of a Taylor series

Pi = �dPi/dEk�Ek + �1/2��d2Pi/dEkdEl�ElEk

+ �1/6��d3Pi/dEkdEldEm�EmElEk + ¯ . �1�

Here and below the Einstein summation convention is as-
sumed. Traditionally, decomposition �1� is presented just as a
sum of the linear, quadratic, and third-order parts:

Pi = Pi
�1� + Pi

�2� + Pi
�3� = �0��ik

�1�Ek + �ikl
�2�EkEl + �iklm

�3� EkElEm� ,

�2�

where �0 is the permittivity of vacuum. The tensor coeffi-
cients �ik

�1� are defined as linear dielectric susceptibilities, and
the quadratic and third-order susceptibilities are determined
by coefficients �ikl

�2� and �iklm
�3� .

The isotropy of bulk glass implies that its �ikl
�2� coefficients

are equal to zero, and imposes the following constraints upon
the �ik

�1� and �iklm
�3� components:7

�xx
�1� = �yy

�1� = �zz
�1�,

�xxxx
�3� = �yyyy

�3� = �zzzz
�3� ,

�xxyy
�3� = �xyyx

�3� = �xyxy
�3� ,

�xxxx
�3� = �xxyy

�3� + �xyyx
�3� + �xyxy

�3� = 3�xxyy
�3� . �3�

The NLO characteristics of glasses are frequently repre-
sented by the values �xxxx

�3� which will be referred to below as
the third-order NLO susceptibility denoted as ��3�. In prac-
tice, the linear susceptibility ��1� and the third-order NLO
susceptibility ��3� can be evaluated �see Ref. 7� as follows
�here and below the international unit system SI is used�:

��1� = n0
2 − 1, �4�

��3� = 2n2n0
2c�0/3, �5�

where c is the light velocity, and n0 and n2 are the linear and
nonlinear refractive indices, respectively, describing the rela-
tion between the refractive index n and the light intensity I:

n = n0 + n2I . �6�

The data on linear and NLO characteristics of TeO2-based
glasses are obtained by employing various experimental
techniques, and are scattered in a number of publications
using different unit systems in presenting the results. To
make our analysis of these data as self-consistent as possible,
they are assembled in Table I by using Eqs. �4� and �5�
jointly with the relation

��3��SI�/��3��esu� = 4�/�10−4c�2

borrowed from Ref. 18.
Table I shows that the linear indices n0 measured in the

wavelength interval between 840 and 1900 nm vary by about
10% with respect to its average value �which is close to n0 of
pure TeO2 glass equal8 to 2.11�. Theoretically, this fact can
be explained by frequency dispersion, described �see Ref.
12� as

��1����
��1��0�

= �1 −
�2

�0
2�−1

�7�

with �0 determining the value of the bonding-antibonding
energy gap Es=��0.

In fact, Eq. �7� gives an account of a lowest-order fre-
quency response for a two-level system with an unperturbed
energy splitting Es. In optics, the relation given by Eq. �7�
�written in the energy scale� is referred to as Sellmeier dis-
persion with the Es parameter denoted as the electronic Sell-
meier energy. As a rule, it adequately describes the relevant
experimental evidence in the area of normal dispersion ��
��0�.

For tellurite glasses, the Es value is evaluated8 as being
near 6.6 eV ��0=1.6�1016 Hz� corresponding to the light
wavelengths 	0 of 190 nm. By using that value, Eq. �7� pre-
dicts a ��1���� /��1��0� magnitude variation of about 1–5 %
within the light wavelength interval between 1900 and
840 nm, which is a good correspondence with the behavior
of the experimental values of ��1� in Table I. On the one
hand, this fact indicates the physical meaningfulness of the
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approximation presented by Eq. �7�; on the other hand, it can
be thought that the linear optical characteristics in Table I
�combined with energy and structural data� would provide an
objective estimation of the accuracy of the quantum-
chemical calculations used in this paper. We note that the
coefficient n0 of pure TeO2 glass equal8 to 2.11 exceeds no-
ticeably �but not dramatically� that of pure SiO2 glass equal
to 1.44.8

Let us focus now on the NLO properties. To the best of
our knowledge, no systematic measurements of the ��3� co-
efficients were reported, and the scattered data collected in
Table I differ dramatically even for glasses having the same
composition. We wish to underline that such inconsistencies
in the measured values cannot be explained by the frequency
dispersion effect. To argue this, the two-level perturbation
theory14 can be used providing the following frequency dis-
persion of the nonlinear susceptibility ��3�:

��3����
��3��0�

= �1 −
�2

�0
2�−4

�8�

We would like to point out that this general expression is
remarkably in agreement with the frequency dependence of
third-order NLO coefficients estimated from the ab initio
calculations of the Te�OH�4 cluster.19

Being used with �0=1.6�1016 Hz, this predicts that the
��3���� values should monotonically increase in the propor-
tion 1.07:1.25:1.72 for light beams having wavelengths equal
to 1500, 840, and 532 nm, respectively. It is not clear which
physical factor could be used to explain why the relevant
experimental ��3���� values vary nonmonotonically
�3.50:11.66:7.20�, as the data of Table I �for the glass with
20% of Nb2O5 taken from Refs. 6, 4, and 11� show. At
the same time, it is important that Eq. �8� shows that the
��3���� hypersusceptibilities of the TeO2-based glass mea-

TABLE I. Experimental data on refractive indices and NLO characteristics of TeO2-based glasses.

Percentage and type
of modifier oxide n0

n2

�10−19 m2/W�
��3�

�10−21 m2/V2�
��3�

�10−13 esu�
	

�nm� Reference

TeO2 pure 2.11 24.72 19.68 14.10a 1900 8

7.5Li2O 2.07 23.58 17.88 12.81 9

20Li2O 1.98 11.75 8.18 5.86

25Li2O 1.94 8.79 5.88 4.21

5Na2O 2.07 13.43 10.14 7.26

10Na2O 2.02 11.33 8.18 5.86 1900

20Na2O 1.94 10.13 6.73 4.82

7.5K2O 2.03 13.94 10.21 7.31

15K2O 1.93 10.87 7.19 5.15

20K2O 1.88 8.47 5.28 3.78

5Nb2O5 2.23 21.00 18.48 13.24 840 4

10Nb2O5 2.24 18.50 16.43 11.77

15Nb2O5 2.22 18.10 15.79 11.31

20Nb2O5 2.26 18.00 16.27 11.66

10Al2O3 2.04 17.40 12.82 9.18 10

15Al2O3 1.96 11.80 8.02 5.75 840

20Al2O3 1.93 10.90 7.19 5.15

10Al2O3 2.03 5.38 3.92 2.81 6

10Nb2O5 2.14 6.93 5.64 4.04

15Nb2O5 2.15 6.41 5.22 3.74

20Nb2O5 2.16 5.94 4.88 3.50 1500

18Tl2O 2.13 8.60 6.87 4.92

21Tl2O 2.09 8.90 6.91 4.95

13.5Tl2O-1.5Bi2O3 2.16 9.10 7.49 5.36

10LaO1.5 2.11 2.10 1.66 1.19 3�a�
15LaO1.5 2.10 1.96 1.54 1.10 1900

20LaO1.5 2.09 1.87 1.45 1.04

20Nb2O5-10PbO 1.4 532 11

20Nb2O5 7.2

6TiO2-2Li2O 8

20Nb2O5-2.5ZnO 8.2

aFigures printed in bold correspond to original data given in the cited papers.
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sured for 	 equal to 1900 and 1500 nm differ from the static
nonlinear susceptibility ��3��0� by about 4–7 % only. This
suggests that a static approximation can provide a quite ad-
equate estimation of the hypersusceptibilities of TeO2-based
glass manifested for sufficiently long waves.

Although the data on NLO properties of different glasses
represented in Table I are not self-consistent, nevertheless,
they always manifest the same tendency, namely, the NLO
coefficients of the �100−x�TeO2+xMiO j glasses increase
with decreasing modifier concentration. �Rare exceptions,
e.g., Refs. 3 and 5, which extend to glasses with modifiers
involving cations with extremely high polarizability are be-
yond our consideration.� Thus, concerning the glasses men-
tioned in Table I, pure TeO2 glass would have the highest
��3� susceptibility. Naturally, the knowledge of its experi-
mental value is of importance for our study. The result of
Ref. 7 seems to provide this �see Table I�. However, we
venture the opinion that it will be risky to consider this result
noncritically without taking into account the limiting values
��3� which can be estimated from Table I for various �100
−x�TeO2+xMiO j glass systems at x→0.

Two groups can be distinguished among the authors of the
works referred to in Table I. The first group is related
to Refs. 3, 8, and 9. All the measurements in these works
were performed for 	=1900 nm. The results of Ref. 7,
providing the ��3� value of pure TeO2 glass equal to 19.7
�10−21 m2/V2, seem to be confirmed by the data of Ref. 8
obtained for the TeO2uLi2O system �in extrapolating the
modifier quantity, to zero�, but those obtained in Ref. 9 for
TeO2uNa2O and TeO2uK2O systems give estimations
two times lower, i.e., about 10�10−21 m2/V2.

The data of the second group4,6,10 were obtained for 	
=840 nm �Refs. 4 and 10� and for 	=1500 nm.6 According
to these data, the long-wave limit of the ��3� �TeO2� value
can be estimated at about 10�10−21 m2/V2.

Thus, the analysis of the experimental data on the ��3�

susceptibility of the TeO2-based glass allows us to state that
the static limit of this value for pure TeO2 glass should lie
between 10�10−21 and 20�10−21 m2/V2. We believe that
the first of these values is more reliable.

The experimental ��3� values of the SiO2-based glass are
scattered within the interval �0.05–0.39��10−21 m2/V2.8,20

Thus, a comparison of the experimental data for the
TeO2-based glass and the SiO2-based glass shows beyond
any doubt that the former possesses superior NLO properties.
In particular, in analyzing a series of comparative studies
using the same experimental techniques, the following rela-
tions can be found: ��3��85TeO2-13.5Tl2O-Bi2O3� :��3�

��SF59�=2.65 �Ref. 6�, ��3��90TeO2-10Al2O3� :��3��SF59�
=4.8 �Ref. 10�, ��3��TeO2� :��3��SiO2�=50 �Ref. 8�. �SF59 is
the notation for commercial lead silicate glass produced by
Schott Glass Technologies.�

III. THEORETICAL SCHEME AND CALCULATIONS

The microscopic polarizability and hyperpolarizabilties of
a molecule are defined as the coefficients in linear and non-
linear terms in the expansion �similar to that in Eq. �1�� of

components of a molecular dipole 
 induced by an electric
field E acting on this molecule:


i = �ikEk +
1

2
�iklElEk +

1

6
iklmEmElEk + ¯ . �9�

To deduce a relationship between dielectric susceptibili-
ties ��1� and ��3� of an isotropic material and their micro-
scopic ”sources,” namely, linear polarizability �ik and third-
order hyperpolarizability iklm of the molecules that form
that material, the two following points should be taken into
account.

First, the macroscopic polarization P should be presented
through a sum of molecular dipole moments 
 over all N
molecules in volume V,

P =
�


V
,

which can be expressed as

P =

av

Vm
, �10�

where 
av= 1
N �
 is the average dipole moment and Vm

= 1
NV is the molecular volume �volume per one molecule�.
In isotropic materials, the vector form of Eq. �10� can be

replaced by a scalar representation by introducing the linear
polarizability � averaged over possible molecular orienta-
tions and the averaged third-order hyperpolarizability  de-
fined in Ref. 21 as

� =
1

3
��xx + �yy + �zz� , �11�

 =
1

5
�xxxx + yyyy + zzzzz + 2yyzz + 2xxzz + 2xxyy� .

�12�

After omitting in Eq. �9� the quadratic contribution to 
av
�which vanishes in isotropic materials�, the orientationally
averaged molecular dipole moment can be described in a
scalar form as


av = 
av
�1� + 
av

�3� = �E +
1

6
E3. �13�

Second, it should be taken into account that the macroscopic
field E in Eqs. �1� and �2� is an external field toward the
molecule, whereas the field E in Eqs. �9� and �13� must be
specified as a microscopic internal field �including, apart
from the macroscopic field, the contributions from the local
molecular dipole moments�. These two fields are interrelated
as

Eint = EextfL, �14�

and the values in question can be presented in the form

��1� =
1

�0Vm
�fL �15�
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��3� =
1

6�0Vm
fL

3 �16�

where fL is the Lorentz factor which in the case of an isotro-
pic material is given by the expression

fL = 1 +
1

3
��1� = �1 −

�

3�0Vm
�−1

�17�

Now the question arises: Which molecular clusters can be
taken as models of the structural blocks of TeO2 glass?
Theoretically, it seems to be evident that the condensation of
the TeO2 polar molecules would pass through the formation
of polymerized associations. These can also be found in the
gaseous and liquid phases, and thus would be inherent in a
glassy phase.

The results of a preliminary ab initio study showed that in
the case of TeO2, such associations can exist in the form of
various �TeO2�p polymer molecules.16 The preliminary esti-
mations of the NLO characteristics of TeO2 glass deduced
from the calculated third-order hyperpolarizabilities of those
molecules provided quite promising results.17

In the present paper, we develop this approach and apply
it to two groups of polymers: the �TeO2�p molecules �with p
varying up to 12�, and the �SiO2�p polymer molecules �with
p up to 9�. The comparative analysis of the results obtained
allows us to offer a hypothesis concerning the peculiarities of
the polarization mechanisms of TeO2 and SiO2 glasses which
account for the dramatic difference in their NLO properties.

As a computational ab initio method, the density func-
tional theory realized in Beck’s three-parameter hybrid
method using the Lee-Yang-Parr correlation functional22

�B3LYP� was chosen. This method, being run within the
3-21G** basis set by the GAUSSIAN program,23 was found to
be capable of reproducing satisfactorily the energies, geom-
etries, and vibrational spectra of many-electron systems such
as molecules containing several tellurium atoms. The effi-
ciency of this method was confirmed in preceding studies of
tellurium oxide16,17,24,25 and silicon oxide26,27 molecules.

During the calculations, the static polarizability tensor �ik
was first computed analytically for every �XO2�p molecule
�X=Si,Te�, and then the third-order hyperpolarizability ten-

sor ijkl=
d2�ij

dEkdEl
was deduced by numerical differentiation

with respect to the static electric field E.
The volume Vm of the molecules was evaluated as

Vm = pVs with Vs = M/d , �18�

where M is the mass of the XO2 formula unit, d is the rel-
evant glass density, and the Vs value can be specified as the
specific volume of the XO2 unit in the molecule.

Now, from a joint consideration of Eqs. �15�–�18�, the
final forms of the relations for ��1� and ��3� are

��1� =
�s

�0Vs
�1 −

�s

3�0Vs
�−1

, �19�

��3� =
s

6�0Vs
�1 −

�s

3�0Vs
�−3

, �20�

with

�s = �/p and s = /p . �21�

The values �s and s will be referred to below as the
specific linear polarizability and specific third-order hyper-
polarizability of a given polymer, respectively. By using the
experimental data on the densities of SiO2 glass28 and of
TeO2 glass,29 the values Vs=45.2 Å3 and Vs=47.8 Å3 were
evaluated for the SiO2 and TeO2 glasses, respectively. In
fact, they represented the constant parameters in Eqs. �19�
and �20�.

IV. RESULTS

A. Structures of SiO2-based polymers

The calculations revealed a series of stable �SiO2�p poly-
mers with p�9, the geometries of which were determined
theoretically by energy optimization. A complete list of poly-
mer molecules obtained in this way is represented in Table II.
Some of the structures are shown in Fig. 1. It is seen that the
polymerization of SiO2 molecules includes the formation of
SiO4 tetrahedrons and SiO3 groups interconnected by com-
mon edges or common corners. As a result, cycles built up of
SiuOuSi bridges are formed. Among optimized molecular
structures listed in Table II, one can distinguish such cycles
with N bridges �N�6�. We use Ni to label different molecu-
lar structures. So the structure consisting of two three-
membered cycles �Fig. 1�a�� is referred to as 3-3. Cycles
surrounded by other cycles are labeled with N in parentheses.
This is the case of the structure shown in Fig. 1�h� consisting
of four three-membered cycles which is labeled as �3�-3-3-3.
Another type of polymerization proceeds through formation
of chains built up of edge-sharing SiO4 tetrahedrons. One
representative of this family is shown in Fig. 1�c�. Formally,
these chains can be considered as being part of two-
membered cycles. Alternatively, such cycles can be referred
to as double Si� O

O
	Si bridges.

The structure with p=8 shown in Fig. 1�g� was obtained
by geometry optimization of the initial configuration formed
by eight Si atoms in the corners of a cube and 12 O atoms in
the middle of the edges. The residual four O atoms were
attached to four Si atoms which form a tetrahedron. So the
initial configuration was taken as a cube formed by four SiO4
tetrahedrons and four SiO3 pyramids interconnected by com-
mon corners. The optimized structure shown in Fig. 1�g�
�and denoted as “cube” in Table II� retains the topology of
the initial one, even if the OuSiuO angles have changed.

B. Structures of TeO2-based polymers

The theoretical structures of the �TeO2�p polymer mol-
ecules found by the ab initio calculations are many and
varied.16 They are partially shown in Fig. 2.

The diversity of the theoretical structures of the �TeO2�p

polymer molecules, found by the ab initio calculations, is
larger. These structures have been discussed in a previous
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paper.16 Some examples are shown in Fig. 2 and the energies
of all molecules are represented in Table III. From this figure
it is seen that threefold- or fourfold-coordinated atoms of
tellurium can be found in these structures. The threefold-
coordinated Te atoms are in the apexes of the TeO3 pyra-
mids. As a rule, one bond of such a pyramid is terminal and
the two others form the TeuOuTe bridges. As for the
fourfold-coordinated Te atoms, their coordination polyhe-
drons are conventionally regarded as distorted trigonal bi-
pyramids �TBPs� called bisphenoids. They contain two axial
bonds �2.08–2.15 Å� which form an angle of the order of
160°–180°, and two equatorial bonds �1.89–1.96 Å� forming
an angle about 100°.

Several structural types can be distinguished among the
�TeO2�p polymer molecules: �1� cycles formed by corner-
sharing TeO3 pyramids �Fig. 2�a��; �2� chains formed by
edge-sharing TBPs �Fig. 2�b��; �3� rings formed by self-
switching of these chains �Fig. 2�c��.

Various combined structures can be obtained by associa-
tion of the above listed basic structures. For example, cross-
ing of two chains leads to formation of a quasiplanar struc-
tures �Fig. 2�e��. Another example, assemblage of several

rings or cycles, produces formation of tubes �Figs. 2�g��.
The diversity of the telluria polymer structures comes

from two basic reasons—the variability of the coordination
number of the Te atoms and the rather particular shape of the
TeO4 polyhedron. The latter circumstance gives rise to the
existence of rather particular polymer molecules—spherelike
three-dimensional �3D� framework structures such as those
shown in Figs. 2�d�, 2�h�, and 2�f�.

C. Energies of the „SiO2…p and „TeO2…p polymers

To analyze the relative stability of various polymers, the
polymerization energies, defined by the relation

Ep =
1

p

E��XO2�p� − pE�XO2�� , �22�

were calculated for all the molecules under study. Figures
3�a� and 3�d� show unequivocally that the Ep values decrease
at increasing p. Their p→� limits can be estimated as lying
near −120 kcal/mol for �SiO2�p, and near −75 kcal/mol for
�TeO2�p. According to Eq. �13�, they can be considered as
the heat of sublimation of the XO2 molecules from the solid
phase. The relevant experimental data show 141 kcal/mol
for X=Si �Ref. 30� and 69 kcal/mol for X=Te.31 The good
agreement between theory and experiment counts in favor of
the adopted computational routine.

TABLE II. Calculated energies E and polymerization energies
Ep of the �SiO2�p molecules.

p Structure E �a.u.� Ep �kcal/mol�

1 Monomer −437.6699456 0

2 Dimer −875.5331947 −60.64718

3 Chain −1313.4099058 −83.67967

3 3 −1313.4099058 −78.08477

4 Chain −1751.2832817 −94.6727

4 4 −1751.2006107 −81.70348

4 3-2 −1751.2677067 −92.22933

5 Chain −2189.1560578 −101.19324

5 5 −2189.0077327 −82.57814

5 4-2 −2189.0872497 −92.55769

5 3-3 −2189.1240394 −97.1787

6 Chain −2627.0285724 −105.51292

6 6 −2626.8101738 −82.6717

6 �3�-2-2-2 −2627.0317486 −105.8451

6 4-3 −2626.9431579 −96.57984

6 �4�-2-2 −2626.9735322 −99.75654

6 �3�-3-2 −2627.007137 −103.2711

6 Octahedron −2625.9050953 −92.59907

7 Chain −3064.9012185 −108.61019

7 �3�-3-3 −3064.8630239 −105.18627

8 Chain −3502.7733535 −110.89306

8 �3�-3-3-2 −3502.7443355 −108.61692

8 3-3-3-3 −3502.8999506 −120.82318

8 �4�-3-3 −3502.6854074 −103.99468

8 �4�-2-2-2-2 −3502.7378083 −108.10494

8 Cube −3502.7400454 −108.28041

9 Chain −3940.6460100 −112.70463

9 �3�-3-3-3-3 −3940.59996086 −109.46972

TABLE III. Calculated energies E and polymerization energies
Ep of the �TeO2�p molecules.

p Type E �a.u.� Ep �kcal/mol�

1 Monomer −6735.4944 0

2 Dimer −13471.11126 −38.40989

3 Cycle −20206.70641 −46.67608

3 Chain −20206.71590 −48.66131

4 Cycle −26942.27312 −46.34858

4 Chain −26942.32435 −54.38485

4 Ring −26942.38114 −63.29365

4 3D −26942.38154 −63.3573

5 Chain −33677.93296 −57.83845

5 Ring −33678.01067 −67.59175

5 3D −33677.94257 −59.0445

5 3D −33677.98576 −64.46536

6 Cycle −40413.42351 −47.79453

6 Chain −40413.54096 −60.07795

6 Ring −40413.61769 −68.10272

6 3D −40413.40919 −46.29709

8 Chain −53884.7548 −62.70719

8 Ring −53884.80032 −66.27799

8 2�chain −53884.74449 −61.89806

8 3D −53884.80432 −66.59139

10 Chain −67355.97038 −64.39353

12 Chain −80827.18948 −65.70214

12 2�6 −80827.23397 −68.02887

12 3D −80827.39577 −76.48986
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D. Linear refractive indices

The polarizability tensors of the �SiO2�p and �TeO2�p mol-
ecules listed in Tables II and III were calculated. These val-
ues were used to evaluate �via Eqs. �4�, �11�, and �19�� the n0
indices of SiO2 and TeO2 glass by considering these mol-
ecules as basic structural units of those glasses. The n0 val-
ues thus obtained are presented in Figs. 3�b� and 3�e� in
dependence on the p value.

Figure 3�e� shows that the simulated n0�p� values for SiO2

glass show no systematic dependence on the p number: the
n0�p� values are scattered in the narrow interval between
1.40 and 1.46 �n0 for p=1 has no sense�, being close to the
experimental value n0=1.44.8

In contrast to this, the n0 indices evaluated from the po-
larizabilities of the �TeO2�p molecules increase with p. This
is most pronounced in the series of linear chain molecules,
the contributions of which are shown by crosses in Figs.
3�a�–3�c�. For these molecules the calculated n0�p� system-

atically increases with p, so that its limit at p→� practically
coincides with the experimental value 2.11.8 It shows that the
cluster approach can provide quite realistic results when
simulating glassy state properties. At the same time, estima-
tions made for the rest of the �TeO2�p clusters seem to have
no regular behavior and stay below 2.0.

E. Nonlinear susceptibility

The calculated third-order hyperpolarizabilities of the
�XO2�p molecules were used to simulate the ��3� values of the
glass under consideration �via Eq. �20��, and the resulting
��3��p� dependencies are shown in Figs. 3�c� and 3�f�.

It is seen that the ��3��p� values calculated for SiO2 glass
�Fig. 3�f�� show no definitive trend with increasing p and are
scattered in the interval between 0.05 and 0.20
�10−21 m2/V2� �the case p=1 has no sense�. Note that the

FIG. 1. Structures of polymer molecules �SiO2�p obtained by ab
initio calculations: �a� 3-3, p=5; �b� 4-2, p=5; �c� chain, p=6; �d�
3-3-3, p=7; �e� �4�-2-2-2, p=8; �f� 3-3-3-3, p=8; �g� cube, p=8; �h�
�3�-3-3-3, p=9.

FIG. 2. Structures of polymer molecules �TeO2�p obtained by ab
initio calculations: �a� cycle, p=6; �b� chain, p=6; �c� ring, p=6;
�d� octahedron, p=6; �e� crossing of two four-membered chains,
p=8; �f� 3D structure, p=8; �g� agglomeration of two six-
membered cycles, p=12; �h� 3D structure, p=12.
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two experimental estimations of the ��3� for SiO2 glass are
conflicting: 0.05 �Ref. 20� and 0.39 �10−21 m2/V2�.8

As to the ��3� values calculated for TeO2 glass �Fig. 3�c��,
it is remarkable that they show a peculiarity similar to that
observed in Fig. 3�e�. Actually, the ��3� values related to the
�TeO2�p chains show a regular and strongly pronounced in-
crease tending to 10�10−21 m2/V2 at p→�, which is in
dramatic contrast with the properties of the other �TeO2�p

structures presented in Fig. 2.

V. DISCUSSION AND HYPOTHESIS

A. „SiO2…p structures

The simulated structures of the �SiO2�p polymer mol-
ecules �see Fig. 1� allow the suggestion that the elementary
structural subunits of glassy SiO2 are rings formed by two,
three, four, etc., SiuOuSi bridges. Similar subunits have
been found in Refs. 32 and 33. Linkage of such rings leads to
formation of a 3D framework. This proceeds through asso-
ciation of two terminal SivO bonds in one Si� O

O
	Si double

bridge or by association of three terminal SivO bonds in a
three-membered SiuOuSi ring, etc. On the contrary, the
molecules in Fig. 1 can be considered as subunits coming
from breaking of SiuOuSi bridges in a SiO2 framework.
So the threefold-coordinated Si atoms with one terminal
SivO bond represent possible point defects of the SiO2

framework resulting from ablation of one link of a
SiuOuSi ring.

Let us discuss the correlations between calculated poly-
merization energies �collected in Table II� and molecular
structure.

First of all it can be noted that the lowest polymerization
energy is inherent to the structure with the least content of
terminal SivO bonds. This explains why at any p value the
planar cycle polymers �with p terminal bonds� have the high-
est energies and the chain polymers �with two terminal
bonds� have rather low energies.

Second, it is seen that the three-membered and four-
membered cycles are energetically more preferable than the
two-membered ones. This can be illustrated by comparing
the molecule 3-3 �Fig. 1�a�� with 4-2 �Fig. 1�b�� and the
molecule �4�-2-2-2-2 �Fig. 1�e�� with 3-3-3-3 �Fig. 1�f��. Fur-
thermore, this rule allows one to explain why the chain poly-
mers, even if they have only two terminal bonds, are not the
ground-state structures for p�6. Note that presence of the
two-membered cycles �or the double bridges Si� O

O
	Si� de-

notes corner sharing between two SiO4 or SiO3 units. The
calculated energies confirm that the corner sharing �i.e., for-
mation of the SiuOuSi single bridges� is preferable to
edge sharing.

The relatively high energy of terminal bonds fosters un-
derstanding of the high polymerization ability inherent to
condensed silica: two molecules with terminal bonds easily

FIG. 3. Energies of formation �a�,�d�, refractive indices �b�,�e�, and third-order susceptibilities �c�,�f� of TeO2 �left panels� and SiO2 �right
panels� glasses estimated from calculated characteristics of �TeO2�p and �SiO2�p molecules in dependence on the polymerization number p.
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link together by forming a Si� O
O

	Si double bridge. And the
relatively high energy of these double bridges favors further
polymerization: such a bridge coming together with a termi-
nal SivO bond results in formation of a three-membered
cycle.

To summarize, our results confirm the structural model of
vitreous silica as an ensemble of corner-sharing SiO4 tetra-
hedrons forming cycles with various numbers of SiuOuSi
bridges �p�2�. The Si� O

O
	Si double bridges and the SiO3

units with one terminal SivO bond can be considered as
possible defect structures.

Another possible type of point defect is represented by the
Si8O16 molecule shown in Fig. 1�g�. This molecular structure
involves four SiO3 pyramids with three bridging bonds and
four SiO4 tetrahedrons with one terminal bond. Similar sub-
units have been discussed as possible point defects in silicate
glasses.34 Calculated energies �see Table II� give evidence
that the stability of this molecule is the lowest one among
other �SiO2�8 polymers �e.g., those shown in Figs. 1�e� and
1�f��. Nevertheless, this structure provides us a good example
for discussing the formation of a condensed phase from mo-
lecular species. From the point of view of the “packing cri-
terion” the cluster shown in Fig 1�g� can be distinguished as
the most realistic structural fragment affording the formation
of the “ideal” SiO2 framework. Actually, an ensemble of
such clusters would always contain a number of terminal
SiuO bonds equal to the number of the SiO3 pyramids,
which is necessary for the polymerization of the clusters into
a 3D structure in which all oxygen atoms would be involved
in the SiuOuSi bridges, and consequently all silicon at-
oms would be centers of SiO4 tetrahedrons.

B. „TeO2…p structures

The calculations reveal a large variety of different types
of �TeO2�p clusters. They were classified in Sec. IV B and
are partially shown in Fig. 2. The calculated energies �see
Table III� allow us to estimate the relative stability of differ-
ent types of polymers. The same main tendencies �as those
discussed in the preceding section for �SiO2�p molecules� can
be noted for �TeO2�p molecules. TevO terminal bonds are
the least energetically favorable; TeuOuTe single bridges
are preferable to Te� O

O
	Te double bridges and TeO4 units to

TeO3 units. As a result, cycles �such as that shown in Fig.
2�a�� have the highest energies; rings �as shown in Fig. 2�c��
are preferable to chains �like that shown in Fig. 2�b��; struc-
tures including neither TevO terminal bonds, nor TeO3

units, nor the Te� O
O

	Te double bridges �Fig. 2�g�� have the
lowest polymerization energy. Hence, the calculations con-
firm that the most stable structure of telluria polymers should
be an ensemble of corner-sharing TeO4 units. Other struc-
tural units �such as TevO terminal bonds, TeO3 units, and
Te� O

O
	Te double bridges� can be considered as local defect

structures.
As in silica polymers, the presence of terminal bonds in a

�TeO2�p molecule augments its Ep energy significantly. Com-
parison of energies of ring structures �like that shown in Fig.
2�c�� and chain structures �such as shown in Fig. 2�b�� allows
us to estimate energy of formation of the Te� O

O
	Te double

bridge from two terminal TevO bonds at about 5 kcal/mol.
At the same time, in contrast to the silica polymers, the dif-
ference between Ep energies of the structures built up of
Te� O

O
	Te double bridges and TeuOuTe single bridges is

not too significant. This can be illustrated by comparing the
energies of two polymers at p=8: the ring structure and the
3D structure shown in Fig. 2�f�. All oxygen atoms in the
former structure belong to the Te� O

O
	Te double bridges,

whereas in the latter structure these contain only half of them
and the rest belong to the TeuOuTe single bridges. The
results presented in Table III show that the polymerization
energies of these structures differ only by 0.5%. Indeed, in
contrast to the silica, the Te� O

O
	Te double bridges have been

found experimentally in various tellurite crystals as well as
in the �-TeO2.35 This allows to suggest that the polymer
structures which contain the Te� O

O
	Te double bridges can

abundantly occur in the structure of glassy TeO2. In particu-
lar, this is valid for chain structures. It should be emphasized
that only this family of �TeO2�p polymers shows rather high
polarizability and hyperpolarizability values, which can pro-
vide a correspondence between calculated and measured di-
electric characteristics of TeO2 glass.

C. Linear susceptibility

It follows from Figs. 3�b� and 3�e� that the calculations
correctly reproduce experimental linear refractive indices
both for SiO2 and TeO2 glass �1.44 and 2.11, respectively�.
At the same time, Figs. 3�b� and 3�e� show that most of the
clusters manifest no noticeable variations of the calculated n0
values. Therefore it can be concluded that the specific linear
polarizability of these fragments is practically independent of
their form and size, which can indicate that its mechanism is
essentially localized. The only exception is the linear polar-
izability of the chainlike �TeO2�p molecules which slightly
but clearly increases at increasing p. This fact can be inter-
preted as a manifestation of nonlocal effects in the electron
distribution response in such structures.

D. Nonlinear susceptibility �„3…

First of all, note that for a given type of �XO2�p polymer,
the dependence of the relevant ��3� values on the number p is
determined by the behavior of the specific third-order hyper-
polarizability s only if the specific linear polarizability �s
does not show strong p dependence �see Eq. �20��.

Figure 3�f� shows that the specific third-order hyperpolar-
izability of the �SiO2�p molecules increases for p=1,2 ,3, but
from p=5 onward its average values are practically constant.
This fact evidences the nonlocal nature of the third-order
hyperpolarizability in the studied molecules, suggesting that
the domain of this nonlocality in the �SiO2�p polymers covers
3–4 SiO2 units.

A similar effect, but in a much more impressive form, can
clearly be seen in Fig. 3�c�. Actually, with increasing p, the
��3��p� values deduced for the model of TeO2 glass
“made” of the �TeO2�p chains manifest a huge increase from
1�10−21 up to 10�10−21 m2/V2, thus achieving the experi-
mental value of this coefficient. This fact stands out sharply
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against a much weaker and poorly understandable tendency
manifested by the ��3� coefficients related to the rest of
TeO2-based clusters having such characteristics hardly
achieving 1�10−21 m2/V2. Thus it can be repeatedly stated
that the experimental hypersusceptibility of glassy TeO2 can
be realistically reproduced by the properties inherent for
�TeO2�p chains only.

We would like to emphasize that the latter point argues in
favor of the two hypotheses that �1� TeO2 glass is mainly
made of �TeO2�p chains; and �2� the exceptional third-order
hypersusceptibility of this glass is determined by a strong
nonlocality of the electron distribution response within these
chains.

It follows from the first hypothesis that the formation of
the 3D framework from these chains would occur through
breaking of Te� O

O
	Te double bridges and creation of the in-

terchain TeuOuTe bridges, thus resulting in a structure in
which the main structural blocks are organized in the same
way as those in the -TeO2 lattice.36 This is supported by the
fact that the first phase appearing during the crystallization of
pure TeO2 glass is the -TeO2 lattice.

The second hypothesis can be discussed with more details
by using the ideas of the theory of nonlocal polarizability
�see Ref. 37 and references therein� which consider polariza-
tiom properties of an extended system in terms of the spatial
dipole moment distribution 
�x� and implies that the electric
field, being applied at point x, would induce a dipole moment
not only at the very point x but in the vicinity of this point.
Therefore, the distribution of the third-order dipole moment
induced by a electric field E�x� can be expressed as


�3��x� =
1

6
� g�x,x��E3�x��dx�, �23�

where g�x ,x�� is a nonlocal third-order polarizability func-
tion. Below we shall consider the case of homogeneous lin-
ear chain polymers formed from p identical links. The ho-
mogeneity of a chain implies that g�x ,x��=g�x−x��.37 In this
case, a uniform electric field E acting on the chain consisting
of p links would induce the dipole moment in which the
third-order part can be described by an expression


�3� =� 
�3��x�dx =
1

6
E3�

−p/2

p/2

dx�
−p/2

p/2

g�x − x��dx�,

�24�

where x values are implied to be given in units of the link
length. To rationalize the form of the g�x−x�� function, we
use a Gaussian shaped approximation:

g�x − x�� = G exp− � x − x�

�
�2� , �25�

in which the parameter � specifies a characteristic length
of the dielectric response. This means that the function
g�x−x�� rapidly vanishes if �x−x����.

Putting Eq. �25� in Eq. �24� and taking into account Eqs.
�13� and �21�, we can express the specific third-order hyper-
polarizability s of the chain as follows:

s�p� =
G

p
�

−p/2

p/2

dx�
−p/2

p/2

exp− � x − x�

�
�2�dx�. �26�

According to Eq. �20� this value would completely deter-
mine the variation of ��3� at increasing number p if the spe-
cific linear polarizability �s shows no p dependence. It can
be concluded from Fig. 3�b� that this condition is satisfied
with accuracy by 10% for �TeO2�p polymers. We find this
more than sufficient.

Consequently, the parameters G and � in Eq. �26� can be
varied to fit the relevant s�p� to the ��3��p� values marked
by crosses in Fig. 3�c�. The same operation can be done to
reproduce the position of the bars in Fig. 3�f�. The results of
such procedures are shown by dashed lines in both of these
figures. The � value thus found was �=10 for the �TeO2�p

polymers and �=5 for the �SiO2�p polymers. We interpret
this as an indication that the nonlinear dielectric response is
much more delocalized in the TeO2-based structures, being
extended up to ten linked polyhedrons.

E. Modifier effect on the NLO properties of tellurite glasses

To clarify why NLO coefficients of tellurite structures de-
crease as a rule, along with increasing quantity of a modifier,
the above model was used. First remember, that a “classic”
�ortho�tellurite is a compound which can be classified as a
salt of the tellurous acid H2TeO3,

nM + pH2TeO3 = pH2 + MnTepO3p, �27�

in which the complex anion is made of elementary bricks—
pyramidlike �TeO3�2− orthoanions. In practice, the tellurites
are synthesized during the reaction between TeO2 and a
modifier oxide

pTeO2 + nMkO j = MnkTepO2p+y , �28�

where y=nj. Normally, reaction �28� passes in a liquid phase
in which the telluria component is present in the form of
molecules TeO2, and the modifier one is dissociated into O2−

and M2j/k ions. If the number of oxygen O2− is sufficient to
transform all the TeO2 molecules into �TeO3�2− units �i.e.,
y= p�, the anionic system of the tellurite will consist of these
units only. If this is not the case, �i.e., y� p�, the complex
anion �TepO2p+y�2y− will be made of y pyramids TeO3 mixed
with p−y molecules TeO2. In crystalline structures, such an-
ions very frequently have chainlike structures. Thus, by vary-
ing the y value from 0 to p in Eq. �28�, all the TeO2-based
compounds between two limiting cases, pure TeO2 and
orthotellurite Mnk�TeO3�p, can be listed. Assuming that pure
TeO2 is made of �TeO2�p infinite chains �i.e., of
�TepO2p+y�2y− chains with y=0 and p→��, whereas the
Mnk�TeO3�p orthotellurite is made of TeO3 chains consisting
of one link only �y=1; p=1�, we may believe that all the
intermediate structures would contain complex anions in the
form of �TepO2p+y�2y− chains, the length of which �expressed
as the number p� would diminish from p=� to p=1 at an
increasing modifier quantity from n=0 to n= j / p. Strictly
speaking, no direct evidence indicates that this is the case for
tellurite glasses, but chainlike �TepO2p+y�2y− anions with
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p=2–4 and y=1–2 have been found as the typical structural
fragments of crystalline tellurites �see, e.g., Ref. 38�. It can
be thought that they can exist in the glass as well.

Below we restrict our consideration to the case y=1, i.e.,
the case of the cations M+ In this case the chemical formula
of the tellurite anions in Eq. �28� is expressed as
�TepO2p+1�2− and Eq. �28� can be rewritten as an equation of
reaction of x moles of the alkaline oxide M2O and 100−x
moles of telluria:

�100 − x�TeO2 + xM2O = xM2Te�100−x�/xO2�100−x�/x+1.

�29�

In comparing the right-hand sides of Eqs. �28� and �29�, the
number p �which determines the chain length� can be ex-
pressed as a function of the composition parameter x:

p�x� = �100 − x�/x . �30�

Therefore, according to this hypothesis, the compositions
�29� with x=33.3, 25, and 20 would contain chainlike tellu-
rite anions �TepO2p+1�2− with p=2,3 ,4, respectively. The ab
initio calculations confirm the stability of such anions. Their
structures optimized by the B3LYP DFT calculations are
shown in Fig. 4. They have a strong resemblance to anion
structures derived from the experimental data.38 It is hardly
reasonable to analyze the polarization properties of the iso-
lated anions because of the strong counterion effect,39 i.e.,
because of the strong dependence of the polarizability of the
anions on the atomic structural environment in the lattice
under study. However, it is worth noting that the calculated
values of polarizability and third-order hyperpolarizability
�see Table IV� show the same increase of the specific values
along with increasing chain length. Hence, it can be sug-
gested that the s�p� dependency for the �TepO2p+1�2− chain

anions can be approximated by the same Eq. �26� which was
established for the TepO2p chain molecules.

In Ref. 9, NLO susceptibilities ��3� were measured for
�100−x�TeO2+xM2O glass with x=7.5,20,25 for M =Li;
x=5,10,20 for M =Na; and x=7.5,15,20 for M =K. A dras-
tic decrease of ��3� at increasing modifier content was found
for all these compounds. First of all, it should be emphasized
that such a rapid decrease cannot be explained by the com-
position dependence hypothesis only. This hypothesis sug-
gests that NLO susceptibilities of modifier oxides are negli-
gible and the decrease of the ��3� values of composite
compound is due to lowering of content of the TeO2 con-
stituent. According to this assumption, dependence of ��3� on
x must be linear. This evidently contradicts experimental data
of Ref. 9, which show that linear approximation of the ��3�

��x� dependence would lead to a zero ��3� values at x equal
to 33%, 37% and 50% for M =Li,Na,K, respectively. Note
that the second factor which could affect the ��3� value, the
volume dilatation induced by increase of modifier content, is
of minor importance. According to experimental data of
Ref. 9, such a dilatation is negative for M =Li, negligible for
M =Na, and only amounts to 4% for M =K.

For each of these compounds, the number p can be evalu-
ated from Eq. �30�. In Fig. 5, the NLO susceptibilities ��3�

measured in Ref. 9 are presented against p numbers jointly
with theoretical s�p� specific hyperpolarizabilities fitted to
those ��3� values by varying the parameters G and � in Eq.
�26�.

TABLE IV. Specific isotrope polarizability and hyperpolariz-
ability of the �TepO2p+1�2− anions.

Anion �s �a.u.� s �a.u.�

�Te2O5�2− 40.0 2890

�Te3O7�2− 41.0 20401

�Te4O9�2− 41.5 26330

FIG. 4. Structure of the chain anions �Te2O5�2− �a�, �Te3O7�2−

�b�, and �Te4O9�2− �c� established by DFT energy optimization.

FIG. 5. NLO coefficients of tellurite glasses doped by Li2O,
Na2O, and K2O �experimental data from Ref. 9� as function of the
chain length p calculated by Eq. �30�. The lines show the s�p�
dependencies calculated by Eq. �26� for �=10 �solid line� and for 5
�dashed line�.
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Despite a limited number of available experimental data
on the ��3� values of the alkali-metal-doped tellurite glass,
they are sufficient to estimate the value of the � parameters
for each kind of glass. Therefore, it was found that the ex-
perimental composition dependencies of the ��3� values for
the sodium and potassium tellurite glasses can be satisfacto-
rily reproduced by the same s�p� function with �=5
�dashed line�, whereas the ��3� values for the Li2OuTeO2
glass obey the s�p� function with �=10 �solid line�.

In other words, the p→� limits of ��3� values for the
glasses doped by Na2O and K2O �near 10�10−21 m2/V2 as
it is seen in Fig. 5� are correctly simulated by the s�p�
function, and coincide very closely with the value simulated
by the s�p� found for pure TeO2 glass �Fig. 3�c��, although
the � parameter of the former function is two times smaller
than that of the latter. This calculation trick seems to be
bizarre as well as the fact that the experimental ��3� values
for the Li2O-doped glass have a p→� limit two times higher
than the one found for Na2O- and K2O-doped tellurite glass
�see Fig. 5�. Actually, such a limit has a well defined physical
sense and therefore must have the same value for all modi-
fiers. However, this does not hinder us from establishing that
the above consideration can explain why the third-order sus-
ceptibility of the tellurite glass shows a nonlinear decrease
with incresing quantity of modifier.

VI. CONCLUSIONS

The simulation of the extraordinary NLO susceptibility of
TeO2 glass using ab initio estimations of hyperpolarizabilties

of various types of �TeO2�p polymer molecule shows that
only one type of such molecules, namely, chainlike species,
seem to be capable of realistically reproducing the above
mentioned properties due to the drastic augmentation of their
specific �i.e., per one link� third-order hyperpolarizability
with increasing chain length.

This property cannot be attributed to a local electronic
response arising in the chain links under an applied electric
field. On the contrary, this argues for an exceptionally strong
nonlocality of the electronic polarization in these chains
which can be considered as a particular physical factor in-
herent for them and dictating this property.

In general, the above mentioned points support the early
hypothesis supposing that the chainlike �TeO2�p polymers
are similar to typical fragments of TeO2 glass.

This naturally implies that the complex anions in the tel-
lurite glass, originating from these fragments also have a
chainlike constitution and its length remains the factor gov-
erning its hyperpolarizability. The model calculations based
on this idea reproduce the experimental behaviors of the non-
linear susceptibilities in a series of tellurite glass with vary-
ing concentration of alkali-metal oxide modifier.
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