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Disorder effects in fluctuating one-dimensional interacting systems
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The zero-temperature localization of interacting electrons coupled to a two-dimensional quenched random
potential, and constrained to move on a fluctuating one-dimensional string embedded in the disordered plane,
is studied using a perturbative renormalization group approach. In the reference frame of the electrons the
impurities are dynamical and their localizing effect is expected to decrease. We consider several models for the
string dynamics and find that while the extent of the delocalized regime indeed grows with the degree of string
fluctuations, the critical interaction strength, which determines the localization-delocalization transition for
infinitesimal disorder, does not change unless the fluctuations are softer than those of a simple elastic string.
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I. INTRODUCTION

Quenched disorder is a relevant perturbation in one- and
two-dimensional noninteracting fermionic systems.! In these
low dimensions the resulting fully localized state can be
averted at zero temperature only under the influence of inter-
actions. Such interaction-induced delocalization has been
demonstrated in one-dimensional systems with strong
attraction,?> and evidence for its potential existence in two
dimensions, even in the presence of repulsive forces, has also
been put forward.*% Most of our knowledge of the interplay
between disorder and interactions is for static disorder, and
much less is known about the interplay between interactions
and time-dependent disorder.”:®

Although for quantum systems time-independent disorder
is the standard case, one can encounter situations where the
motion of the electrons is constrained to fluctuating geom-
etries which are embedded in a static disordered space. In
such a case, to the electrons, the disorder appears to change
in time with temporal correlations which are inherited from
the dynamics of the fluctuating geometry. Relevant realiza-
tions of this scenario include excitations in the core of vortex
states” and the cuprate high-temperature superconductors, in
which the importance of self-organized, fluctuating quasi-
one-dimensional electronic structures within the (disordered)
copper-oxide planes has been pointed out.'” On the technical
side, introducing the time dependence of the scattering po-
tential in such a way has the advantage of enabling us to treat
the problem using standard methods of equilibrium quantum
statistical mechanics.

We therefore devote the present paper to the study of the
consequences of coupling interacting electrons, constrained
to move along a fluctuating string embedded in a plane, to
static disorder within the plane. We consider several string
Hamiltonians including that of a rigid string inside a har-
monic well, a stretchable elastic string, and a floppy string of
fixed length. These models form a hierarchy in terms of an
increasing degree of string fluctuations. Assuming weak dis-
order and long wave-length fluctuations we investigate the
relations between the electron-electron interactions, disorder,
and string dynamics using a renormalization group analysis.
Our one-loop treatment of the problem captures the mutual
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renormalization of these three elements. It ignores subtle in-
terference effects due to coherent scattering from many im-
purities, but in one dimension (unlike in two or more dimen-
sions) where the localization length is known to be of the
order of the mean free path, such effects are not expected to
play an essential role. As anticipated, we find that the extent
of the delocalized phase increases when the string fluctua-
tions become more pronounced, as is demonstrated, for ex-
ample, by Fig. 2. However, in the cases of the rigid and
elastic strings, the critical point that separates the localized
and delocalized phases for infinitesimal disorder remains at
the same critical interaction strength as for a static string.
Only when the softer fluctuations produced by the floppy
string dynamics are considered does one find that the critical
point shifts towards smaller values of interactions.

The main body of the paper is composed of three sections,
each dealing with one of the realizations of the string dynam-
ics as indicated above. Every one of these sections intro-
duces the model for the coupled electronic and string degrees
of freedom, in the presence of disorder. The renormalization
equations are then derived and the resulting zero-temperature
phase diagram discussed. The effects of the forward-
scattering part of the disorder on the charge-density-wave
(CDW) and spin-density-wave (SDW) correlations are also
given. Some of the details pertaining to the derivation of the
renormalization equations are relegated to the Appendixes.

II. RIGID STRING IN A PARABOLIC WELL
A. The model

We begin by considering interacting electrons which are
constrained to move on a straight rigid string of fixed length
L, embedded in a two-dimensional disordered plane. The
string is assumed to oscillate inside a parabolic potential, and
its state is characterized by its deviation u(7) from the clas-
sical equilibrium configuration at the bottom of the well
(which we define in the following as the x axis). The string
Lagrangian in imaginary time is therefore

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.73.134201

LONDON, GIAMARCHI, AND ORGAD

Mw(z)
2

L= %(mu)% u?, (1
where M is the mass of the string and w, its oscillation
frequency.

The low-energy physics of the one-dimensional electron
gas (IDEG) is captured by the Tomonaga-Luttinger model'!
in which the spectrum is linearized around the two Fermi
points at +ky and the electronic operator ¢ |y is decom-
posed in terms of slowly varying left- (v=-) and right- (v
=+) moving components: i,(x)=e " =y (x)+e* i, ,(x).
We follow the standard notation and parametrize the interac-
tions between the electrons according to

1
E E [g4pv,0'pv,o" + 82Pv,0P-v,0" _gl\laa',a"pv,a'p—v,a"

v,0,0"
-0’ lﬂv o¢_y o' % o’ lrb—v 0’]

where p, ;= tlfi’ozﬁw. The model can also be expressed in
terms of charge and spin bosonic fields ¢, and their
conjugated momenta J,6,, in terms of which the electronic
Lagrangian is given by (here and throughout A=1)

+81.6,

L
v, K,
L=| d —i0,¢p,0.0,+ ——%(3.0,)* + ——(3,,)*
e J;) xazzas[ l T¢C¥ xXYa 2 ( X tl) 2Ka( )C¢ll) :|
811 [rem
+ 2(ma)® cos(\8mg,), (2)

where a is a short-distance cutoff of the order of the lattice
constant and the velocities and Luttinger parameters are re-
lated to the Fermi velocity v and the interaction couplings
according to

1 [
v.=—\VQ2mvp+ 284)2 - (28, - 81\\)2’
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As can be seen from our analysis of the more general
problem of a fluctuating string, as presented in Sec. III, in the
present model (which is equivalent to a 1IDEG coupled to an
optical phonon in the transverse direction) the only coupling
between the electrons and string (in the absence of disorder)
is via a renormalization of the string mass, due to the fact
that the electrons are dragged with the string as it moves. We
assume that this renormalization M — M +mN,, where m is
the electronic mass and N, is the number of electrons on the
string, has been incorporated into the definition of the param-

eters which appear in the string Lagrangian, Eq. (1).
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The plane containing the string and electrons is taken to
include a weak random potential which couples to the elec-
trons, but not directly to the string. This choice is motivated
primarily by the situation in the cuprates where the “strings”
are actually defined as the loci of points occupied by holes in
the plane and, as such, couple to the disorder only indirectly
via the electronic degrees of freedom. The forward-scattering
k~ 0 and backward-scattering k ~ 2k components of the im-
purities potential are assumed to be uncorrelated Gaussian
random fields 7 and £ with 7(x,y)n(x",y")=Dsdx—x") &(y
—y') and & (x,y)éx',y")=D,0(x—x")8(y—y'), respectively.?
The coupling of the electrons to the impurities is given by

Lly=- E f dxrlx,u(n)]p, o(x,7)

J dx \f%x u(7)]9,p.(x,7) (4)

and
L
LZz’s =- E f dx §[X,M(T)]lﬂig(x, ), ,(x,7) + He.
o J0

L
d Py ~
=- J —xg[x,u(T)]e"°2"¢c‘("’7)cos[V’27T¢S(x, 7)]+H.c.
0 Ta

(5)

Here the constraint which confines the electrons to the string
manifests itself in the position at which the disorder potential
is evaluated. This, in turn, induces a coupling between the
electronic and string degrees of freedom, and leads, in the
reference frame of the electrons, to an effective time-
dependent disorder. This time dependence precludes the pos-
sibility of gauging out the forward-scattering disorder com-
ponent from the action by an appropriate shift of ¢,, as was
done in Ref. 3. Instead, both the forward-scattering and
backward-scattering components will be treated on equal
footing within a one-loop renormalization group analysis.

To this end, we use the replica trick and average the rep-
licated action over the random fields # and & We will obtain
the renormalization equations to first order in D, and D and
to second order in g; ,, which is also assumed small. To this
order, the replica indices play no role and consequently they
will be omitted in the following. The averaged action is
therefore

=fdﬂLs+Le]—22£fdeT'dxé[u(T)—u(T’)]

D
X E pV,o’(x,T)er’o.r(x,T,)—bedeT’dx

! !
vV ,0,0

X ou(r) —u(r)] X [ vl

o0’

X ol 7) + He . (6)

o DY o6 DY (2, 7)
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B. Renormalization and phase diagram

We derive the renormalization flow equations for the
model by requiring invariance of the long-wavelength low-
frequency behavior of the correlation functions under a
change of the cutoff.>!> We begin with the electronic corre-
lations and integrate out the string degrees of freedom in
order to obtain an effective electronic action. The result is an
action which is derived from Eq. (6) by replacing & u(7)
—u(7')] by its average over the string dynamics:

F(r=7')=(du(r) —u(7')])

_ b f ANl ]y
27 ) _.

- \,%Tqu(f) ()P, )

As we demonstrate below, it is this function which deter-
mines the modification in the renormalization flow of the
model as a result of the string fluctuations. In the present
model one finds

1 1

F(7) = P L (8)
where the length
N=— ©)
V2M w,

is a measure of the amplitude of the string fluctuations inside
the harmonic well.

Our renormalization procedure is akin to real-space renor-
malization in the sense that electronic degrees of freedom at
points (x,7) and (x,7') are identified inside the interval |7
—17'| <alv,. Upon such identification, the |7— 7’| <a/v, part
of the forward-scattering term in Eq. (6) is equivalent to g,
and g, interaction processes, while the corresponding part of
the backward-scattering term is equivalent to gy and g,
processes. As a result one can absorb the contributions of
these parts via a redefinition of the interaction parameters
according to

alvg
§2,4=82,4—20ff drtF(7),
0
alvg
§1||,1¢=81,1L—ZDbJ d7F(7). (10)
0

The effective electronic action then reads

— - D
SezdeLe— = drd7' dx F(1— 7). (x,7)
m |77 |>alv
/ Db / /
X p(x,7') — drd7 dx F(r—1')

(ﬂ-a)z |77 |>a/v5
X cos[ N2, (x, D ]cos[\ 2w, (x, 7')]

X cos[ N2, (x,7) — 2w, (x, )], (11)
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where L, has the same form as Eq. (2), but with modified
velocities and Luttinger parameters, which to first order in
the disorder strength are given by

alvg
(1 +K§)Db}f dtF(7),

_ 2K? 1
K.=K.+ Dy-
0

TV, 2.,

_ 1 alvg
K,=K, - (1+K%)D, f d7F(7),
27TUs : 0
2K, 1(1 alvs
Vo=0V,— Df+_ _KC Db dTF(T),
T 2w\ K, 0

1 1 a/vS
Es=vs——(——K5>DbJ d7F(7),

0

alvg
DbJ dtF(7), (12)

y=y+ - - K )-—
2’7TUS Ks TV 0

as a consequence of Egs. (3) and (10). Here and in the fol-

lowing we have defined the dimensionless spin-flipping

backward-scattering coupling

y=51 (13)
m)S

The derivation of the renormalization equations for the
parameters which appear in the effective electronic action,
Eq. (11), follows closely Ref. 3. We give some details con-
cerning the contribution of the forward-scattering disorder to
these equations in Appendix A, where the latter are also
listed. We then use them, together with Egs. (8) and (12), to
obtain the renormalization equations of the electronic and
disorder parameters in the original disordered averaged ac-

tion, Eq. (6). The result is

k. _ Lo Do [18 l(&)KC_Z(1+KZ)}
ae ZU‘Y\rm < 2\ ‘

D K1
+7”(ﬂ> 2-K.~K,-y)(1+K)
US

x{l +zln(1 + \Te‘“’)]

()

dv, 1v} D, { 1(vc)’(c-2<1 )}
. s — K,
dt 20,1 —¢™® 2\ vy K.

Db(vc>KC_l(2 K K )< 1 K)
+— = — — — —_—
4 v, c sTY KC c

x[1+31n(1+v1—e-“')]

w
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w

feoonn- 2 - )|
de—(Z—ZKS)y—Vl_e_m{l— o 1—4 KS-KJ
¥ &@)&{4(& ~K))
4 \v,
1
—y{l—Kf+(2—KL.)(Z—KJ>}}
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x[l +—In(1+11 —e_“’)},

W
Dr_p D (3-K.-K,—y)D (14)
de =& de = —Re=Bg=y)lp,

where the running cutoff is given by a=aye’ and where we
have defined the dimensionless quantities

Dya (v, \Xe D aw
DF%F) D= @
™2\ \v, I\ Us

(15)

Expressing the flow equations in terms of the original
velocities and Luttinger parameters has the advantage that
these, unlike the barred quantities of Eq. (12), are related
to the electronic interaction couplings in a familiar manner.
As aresult, it is straightforward to check that if the system is
initially at the noninteracting point K.=K,=1, v.=v,=vp,
and y=0; then, it stays there in the course of the renor-
malization—i.e., dK./d€=dK,/d{€=dy/d€¢=0. In other
words, a system of independent electrons remains so even in
the presence of (time-dependent) disorder. Second, the equa-
tions preserve spin-rotation symmetry. If one starts from a
spin-rotation-invariant Hamiltonian (g;;=g,,), it continues
giving respect to this symmetry during the renormalization
process. This fact can be easily checked for small g;, in
which case K;=~1+y/2. The flow maintains this relation'?
since it satisfies dK,/d€ =1/2(dy/d¥).

Note that the renormalization equations for the electronic
parameters do not include the impurity forward-scattering
amplitude D;. It does appear in the flow equations (A4) for
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FIG. 1. The function W(x,0) for the different models: a rigid
string in a parabolic well (solid line), an elastic string (long-dashed
line), and a floppy string (dashed line). Both axes are scaled by [,
=v./wy, (v./v,)a, and 47r(v./ Y)\, in the three cases, respectively.

the parameters in the effective action Ee, but cancels out for
the original parameters as a consequence of the relations
given in Eq. (12). This fact has been demonstrated in the
case of a static string,’> where it is possible to completely
absorb the forward scattering due to impurities by a redefi-
nition of the field ¢.. Here we show how it also arises when
one treats the scattering perturbatively and find that it ex-
tends also to cases where the string is dynamical.

The forward scattering does influence, however, various
correlation functions, most notably those of the charge-
density-wave Rcpw and spin-density-wave Rgpyw order pa-
rameters, which are both proportional to the function R,
defined in Appendix A. Consequently one finds
Repw.spw(x, 1) ce™ 7 with the exact result® for the static
string W(x, T)=2D}D (K,/v.)?|x| [here D}D measures the dis-
order correlations along one dimension and as such differs
by a factor of (2y7\)~! from D, which appears in our analy-
sis]. When fluctuations are included we are able to calculate,
using Eq. (A3), the asymptotic behavior of W to first order in
the disorder and obtain

37v.D 1)
?—C sz 1/ Lot +0(x?), wolx| <v,,
N2 U@ v

c

W(x,0) = ¥
X
WDfKCZ_ + O(ln|x ), Ll)0|x| > Ve,
a
(16)
and
v.D,
T fK?\ wo|7 + O(P), wo|T <1,
wo,7=y
v.Dy ,
In4—K> In(wy|7) + O(1), o7 >1.
(17)

The full behavior of W(x,0) is presented in Fig. 1. The
exponential suppression, at large distances, of the charge-
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and spin-density-wave correlations due to forward scattering
is similar to that in the case of a static string. Note that the
static limit result is obtained by taking w;— % in order to
keep the string in its ground state, at least as far as the low-
energy electronic physics is concerned. Since Dy N7l the
latter limit implies the need to scale Dy with A in order to
remain in the perturbative regime, where our results are
valid. In contrast to the case of the static string the fluctua-
tions also increase the algebraic decay of Rcpw and Rgpyw in
the time domain and lead to a decrease in the conductivity
and pairing correlations. We will present results pertaining to
this latter issue elsewhere.

In order to derive the flow equations of the string param-
eters we first average the action, Eq. (6), over the electronic
degrees of freedom. In accordance with the procedure we
have utilized previously, here, too, we distinguish between
electronic degrees of freedom only as long as their time sepa-
ration is larger than a/v,. Consequently, for shorter separa-
tions the electronic operators which appear in the forward-
and backward-scattering parts of the action, Eq. (6), become
(&xd)c)z and [(axgc)z_(axd)c)z"' (&xas)z_(&x¢.f)2]/477+ 1/
(27a?)cos(V8e,), respectively. The averages of these op-
erators diverge quadratically and need to be regularized us-
ing an appropriate cutoff (except for the cosine operator
which vanishes whenever the system is in a spin-gapless
phase). To do so, we note that in the course of the renormal-
ization procedure the short time piece of the integral is being
constructed by adding infinitesimal slices from the initial
cutoff a; to the running value a. We therefore evaluate the
electronic averages within each slice using the value of the
cutoff at the time the slice was added along the renormaliza-
tion process. The outcome is the following effective action
for the string degrees of freedom:

- DK. D, 1(1 )
S.= | drS,—- Ly — +—%| 5| — =K.
s f s {2(771)6)24-8772[03 K ¢

c

SN , Au(r) —u(r)]
' g ( K, ) KY) :| }L/U;>|T—T'>a0/vx dmiT (71— T,)z

N

K

_ / _ / BL—‘
LJ*/'—7"|>(1/1)_Y drdr (ﬂ:u(T) u(T )]|: 2772 U?(T— 7_/)2

D, a KC( a )KS:|
+2(7T61)2(UC|T_ T’|> vs|7__ 7_,| . (18)

In Appendix B we use this action to derive the flow equa-
tions for w and A. Using the dimensionless string length

L=—, (19)

the result is
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dw 1 —cosh w
it Dhcm{[l —f(v,K)]m

@ 1 —cosh
foRC-KmKn) [ dnﬁ]’

d\ _ DyLX {[1 —f(v,K)]l

— cosh @ + @ sinh @
m(l _ e—w)3/2

7h 5 - f(v.K)

1 —coshn+ nsinhy
Fa-en? |

X(z_Kc_Ks_y)Je dn

dLr

o, 20
10 (20)

where we have introduced the compact notation

_ )5 (u)( L 1
o= 32 (&) (-5 )+ -k e

Equations (14) and (20) describe the interplay between
the electronic interactions, disorder, and string dynamics. In
the present model the critical point which separates the re-
gimes of relevant and irrelevant disorder, in the limit of ex-
tremely weak bare impurity potential D, — 0, is insensitive
to the string fluctuations and is given by the condition

3-K.-K,=0, (22)

where K;k is the renormalized value of K, due to the coupled
flow with y. However, for finite disorder, fluctuation-induced
delocalizing effects are present and are manifested in two
ways. First, since D,*\~! [see Eq. (15)], large-amplitude
oscillations tend to decrease the initial value of the effective
disorder strength. Second, the oscillations frequency defines
a crossover scale w ~ 1, below which the disorder is more
effective in renormalizing the interactions towards more re-
pulsive values, as can be seen from the flow equation for K.
Since strong attractive interactions are necessary to drive the
system into a delocalized phase, decreasing the oscillation
frequency makes this eventuality less likely to occur. The
combined outcome of these two mechanisms is an increase
in the extent of the delocalized region as one increases the
oscillation amplitude and frequency. The effect of varying
the latter is presented in Fig. 2 where we plot the separatrix
between the regimes of relevant and irrelevant disorder for
several oscillation frequencies while keeping A\ fixed.

The analysis of the various flow regimes, as determined
by the renormalization equations, is similar to the one pre-
sented in Ref. 3, and we comment on it briefly. When both
D, and y flow to zero the system approaches a fixed line
parametrized by KﬁBZ (in the spin rotationally invariant
case). This line corresponds to a delocalized phase with
dominant triplet pairing correlations. When y is initially
small or negative it flows to large negative values and pins
the spin field ¢,. At the same time D, may still be irrelevant
provided its bare value is small and K, is large. For infini-
tesimal disorder the latter requirement becomes K.>3, im-
plying that the resulting delocalized phase is dominated by
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FIG. 2. The separatrix between the localized and delocalized
phases in the K.-D, plane for different values of the string fluc-
tuation frequency: w=1 (solid line), w=0.1 (long-dashed line),
and w=0.01 (dashed line). Here v.=vp=1, y=0.1, K;
= \s"(l +y/2)/(1-y/2), v,= \,'/1 —(y/2)?, and £=10. For infinitesimal
disorder the critical point separating the localized and delocalized
regimes is identical to the static one. However, for finite disorder
the size of the delocalized region is increased by the string
fluctuations.

singlet pairing fluctuations. In both cases the string param-
eters wy and N\ decrease but attain finite fixed values corre-
sponding to a still fluctuating string.

When D, scales to infinity the perturbative renormaliza-
tion equations can no longer be trusted. This strong-coupling
regime contains the noninteracting system, which in the
static case is known to be localized, based on exact calcula-
tions. As long as one assumes that there is no additional fixed
point at intermediate coupling this fact implies that the entire
strong-coupling phase is localized. For the fluctuating string
no such exact solutions are available. However, the noninter-
acting problem is equivalent to that of a particle (with aniso-
tropic mass) moving inside a two-dimensional disordered po-
tential and a harmonic well in the y direction. Its wave
function W(x,u) is believed to be localized for any strength
of the disorder, implying localization of the electrons and
pinning of the string. The latter effect is also reflected in the
renormalization equations for the string parameters, which in
the case of relevant backward electronic scattering, flow to-
wards wy— 0 and N\ —0. The nature of the localized state
depends on the sign of the renormalized coupling g?. The
system is expected? to consist of localized pairs of spins for
gT <0 and of isolated spins interacting via antiferromagnetic
superexchange when gT >0.

III. ELASTIC STRING
A. The model

Here we consider an elastic string whose projection on the
x axis is of fixed length L, and which obeys periodic bound-
ary conditions in this direction. We consider the limit of a
stiff and massive string such that we can ignore overhangs
and describe its state by the deviation u(x,7) from the clas-
sical equilibrium configuration. The string dynamics is gov-
erned by the Lagrangian
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LX
L= fo dx{%(am% g(axu)z}, (23)

in which it is characterized by its linear mass density p and
tension o. Alternatively, the string can be described by the
velocity of the elastic waves which it carries,

» \ﬁ 4
p

Uy

and by the length

A= (25)

27o’
The latter is related to the average slope of the string, relative
to its equilibrium configuration, according to

V{(Au)%)y = Na. (26)

The condition of a stiff and massive string implies \ <a.

In a previous publication, Ref. 14, one of us has demon-
strated that the constraint which forces the particles to re-
main on the string induces a nontrivial metric for the elec-
trons and couples them to effective gauge potentials, which
are functions of the string degrees of freedom. In the absence
of external electromagnetic fields the metric and gauge po-
tentials are given by

gx,7) =1+ (du)?,

m imc
Aplx,7) =~ Z(w)z, Aix, 1) =~ Tﬂxuw- (27)

Assuming a fixed number of electrons, N,, on the string we
require that their projected density n,=N,/L, or, equiva-
lently, their projected Fermi wave-vector kp.=mn./2 obey
krpa=1, such that the 2k, components of the gauge poten-
tials and the metric may be neglected. We also assume that
the energy associated with the short-wavelength string waves
obeys v,/ a<EFx=k12pX/ 2m=vypkpr,/2. Consequently, we dis-
regard backward scattering due to string fluctuations. Under
these conditions the electronic Lagrangian is

. o
X K
L,= f dxy 2 | —id,.0.6,+ v“z 2(6,0,)*

0 a=c,s

176! _ —
+ 2 (9, | + 87128 cos(V8Teh,)

., 2(ma)?
-1 | 2 2
- eAO -8 EFx - 8 (é)Ag) n,+ _&x(ﬁc
32m T
~ 2e ~ e
-0.K, \/:—Alaxec +0 K. —5A7 (. (28)
TC e

Here 0, and Ea are derived from the previously defined
quantities in Eq. (3) via the replacements vy— g~'vp, and
gu124— & "*g12.4 [this is a result of assuming short-range
interactions of the form V(s—s')« 8(s—s'), where s is the
arclength parameter along the string].
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The terms involving n, in Eq. (28) induce a renormaliza-
tion of the bare string parameters at the tree level. The first of
them is identically mn,[§dx(du)?/2 and expresses the fact
the electrons are dragged with the string as it moves, thereby
increasing its effective mass density

p— p+mn,. (29)

When expanded to second order in derivatives of u, the sec-
ond term reads Epn,—2Epmn,[§dx(du)?/2. It encodes the
fact that when the number of electrons is fixed, their total
kinetic energy is lowered as the string fluctuates and be-
comes longer on the average. This gain in kinetic energy
favors a more flexible string through the renormalization of
its tension according to

o— o—2Epn,. (30)

In the following we assume that these effects are small and
have already been incorporated into the definitions of the
string parameters which appear in Eq. (23).

B. Renormalization and phase diagram

In order to derive the renormalization equations for the
electronic parameters we integrate over the string configura-
tions. Using a cumulant expansion to average the electronic
part of the action, Eq. (28), we find that to second order in
N a, the result is of the ordinary Luttinger type, Eq. (2). In
the averaged action the velocities v, are related to the values
V.. they would have in a static straight string of length L,
with Fermi velocity v, and the same interactions, according

to
)\ 2 U Uf l
v | =) | =+ —+K, ||, (I
Uag=Ugx (a> l 2 4 (KD[/‘ 0@-)1 ( )

while the Luttinger parameters and g;, are renormalized
from their values in the straight system as

2
Ka:Kax_ (£> %(1 _Kix)’

al Ugx

1\
810=81x= 5| 7 ) &1L (32)
a

This renormalization is geometric in origin, as explained in
Ref. 14, and is absent (apart from a residual correction to the
velocities) when one keeps the electronic density along the
string, rather than the number of electrons, fixed. We will
therefore not discuss it further. Higher-order terms in the
small parameter A/a, which are generated in the averaging
process, are typically nonlocal and can be shown to be irrel-
evant in the renormalization group sense.

Since in the present model ([u(x,7)-u(x,7)]?)
=2N\?In(1+v,| 7—7'|/a), the function
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1n-1/2(1 i ) (33)

a

1
F(T)z //—
PAE PN

which appears in the averaged disorder part of the action,
Egs. (10) and (11), lacks a cutoff-independent length scale;
nor is it a power law. Consequently, an attempt to carry out a
renormalization procedure for dS-correlated Gaussian disor-
der, as was done for the rigid string, runs into the problem of
not yielding a simple multiplicative renormalization. Stated
differently, we are unable to assign a single scaling dimen-
sion to the disorder operator. In order to overcome this dif-
ficulty we consider instead the more general case of corre-
lated impurity potentials

(n(x,y)n(x",y")) = lx = x")Dy(y = y')

=8(x—x") f dkD (k)e* "),

(€ ())&, y")) = 8x=x")Dy(y = ")
=8x—-x") J deb(k)e”‘(y‘y’), (34)
and employ functional renormalization to study the flow of

D, {y=y"). As a result of the different disorder correlations
one should replace

Dy F(7) — j kD (k) o~ K2)([u(0.7) - u(0,0)F)

N2
=fdeb,f(k)<v”H) , (35)

a

in Egs. (11) and (12). Note that the last equality holds ap-
proximately for v,|7|/a>1 and is therefore appropriate for
use in the effective action, Eq. (11). For a consistent treat-
ment we have to use the same form in the relations, Egs.
(12), where in order to assure convergence of the 7 integral
we need to assume D, (k)=0 for |k| >\"". Since at the bare
level our stiff string satisfies A <a and, as we shall demon-
strate, N tends to decrease in the course of the renormaliza-
tion, this requirement is not stringent. The fact that the tem-
poral correlations introduced by each disorder Fourier
component are algebraic makes it possible to follow the
same renormalization scheme we have used in the case of the
rigid string. Finally, we comment that because both the elec-
tronic and disorder parts of the action contain the string co-
ordinates, averaging over the latter introduces cross-terms
between the two parts. These terms, however, are higher de-
rivative terms compared to those originating from the aver-
aged disorder part and are therefore less relevant. We will
therefore neglect them in the following.
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Introducing the dimensionless disorder components

2,2
2Db(k)a<vs)Kﬂ< vu>')‘ k
D, (k) = e
»(0) m}f)\ U, Uy
2DAK)a( v, \ N
D222 (56)

we obtain the following renormalization equations

dKk. 1v, , v \f?2
=——— | din| K2 = =<
¢~ 2uv, 2\ v,

3_KC_K¥_y_)\2k2
X 272
1-N\%k

)(1 +K§)}Db(k),

d 107 AR
o, __1v¢ dkx{,( ) (v)
de 2v 2\ v,

3—Kc—Ks—y—)\2k2><1 )}
X — —K.| |DyK),
( 1—)\2k2 Kc c b()

dK; 1 1 v\
3=——2K2——Kzfdk)\D k —(—‘)
ac =20 TN b0+
(3-K.—K,—y -\ (1 +K2) +4K2y
f dk\ T 2D,(k),
3-K.—K,—y—-\%*
=—— di\| K, — 55
1-N\%

X (Z ) Dy(k),

d o) X(L )]
a¢ = 272Ky - { (v) {1_4 kK
% J dk)\Db(k)+‘1—‘(%)KC

X{4(KY_KC)_))|:1 _K3+(2_Kc)

x(KL—KSﬂ}fdk)\ Db(iz,

dD,(k)
S = (1D,
P k- kmy-ODW. (7

de

The flow equations for the string parameters may be derived
along the lines indicated in Appendix B with the result
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% —_ i%)\{[l — f(v.K)] f AN KD, (k) — f(0,K) (2 - K,
—K,—y) J ik kz)\z[l—e‘“‘kz}‘z)‘f]l?b(k) :

dv, lvu 3,2

i [1 fW.K)] | dkNk*Dy(k) - f(0,K)(2 - K,

[1-e—~—wm<k>},

(38)

~K,~) f N5 k2>\2

where f(v,K) is given by Eq. (21).

It is evident from the flow equation for the disorder that
high-wave-vector components in the correlation function of
the scattering potential are less relevant. Consequently, the
boundary separating the regions of relevant and irrelevant
disorder is determined by the lowest-wave-vector compo-
nents that are present in the correlation function. For a very
weak bare disorder which is & correlated in real space, this
would mean that while it acquires, in the course of the renor-
malization, correlations over longer length scales, the critical
point is still given by the condition 3—-K, K =0, as in the
cases of the static and rigidly oscillating strings. The k de-
pendence of the disorder scaling dimension also implies that
the flow of the electronic parameters in Eq. (37) is dominated
by the k~0 components, for which it coincides with that of
a static string. Therefore, the effects of string fluctuations
enter predominantly via the dependence of the dimensionless
disorder strength, Eq. (36), on Nl As fluctuations increase,
and with them A, the initial conditions of the flow, for a
given scattering potential, shift towards lower values of D,
As a result the extent of the region in which the disorder is
irrelevant increases as well. Contrary to the case of the rigid
oscillating string there is no available solution which de-
scribes the present system in the region of relevant disorder.
We are therefore unable to positively identify the nature of
the strongly disordered phase. It seems likely, however, that
it is localized with magnetic properties which depend on the
flow of y in the manner discussed at the end of the previous
section.

Considering the impurity forward-scattering contribution
to the suppression of the CDW and SDW correlations we
obtain, after taking D{k)=D//2, the following results for
the function W(x, 7) defined previously:

p
3 Dsza U,X v
==+ 0, x| < ~<a,
\’/;T vy A vea ( ) | | Uy
DK*
W0y ={ Dk
N U, A
{1 -172 + O(ln_3/2|x|)} |x| > &a,
\ v(‘a u
(39)
and
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p
1 DK*a v,
LK Jold, o) uid<a
N Uy A a
2
W07 =] e o | 2
T U,
+O<ln_”2 ";T ) v,|7>a.
\

(40)

Comparing these results with the corresponding behavior in
the case of a rigid string, Egs. (16) and (17) and Fig. 1, one
finds that the more pronounced fluctuations of the elastic
string reduce the effects of the forward-scattering part of the
disorder, thus leading to a slower decay of the CDW and
SDW correlations.

IV. FLOPPY STRING
A. The model

An obvious way to increase the degree of string fluctua-
tions in the model is to replace the elastic energy term in the
string Lagrangian, Eq. (23), by a new term involving higher
spatial derivatives of the displacement function u. Such a
simple modification, however, is insufficient, since, as we
have demonstrated in the discussion preceding Eq. (30), the
dependence of the electronic kinetic energy on the string
length will induce such an elastic term even if it is absent
from the bare string dynamics.'3 In order to avoid this effect
we need to consider a string of fixed length L and average
electronic density n. We assume that the string is held fixed
at one of its end points (which we take as the origin) and that
its motion is constrained to be periodic in the y direction—
i.e., that both ends are always at y=0. Since one end is free
to slide along the x direction, we are unable to characterize
the configuration of the string by a single displacement func-
tion u(x, 7). Instead we use the arclength s € [0, L] to param-

etrize the string position Is(S,T)Z[X(S,T),Y (s,7)] in the
plane. Taking the bending energy of the string to depend on
its curvature \/ (PX19s?)?+ (Y1 ds)? one obtains

L 5\ 2 5\ 2
o[ (5] ]
0 2\dr 2\ ds

together with the constraint

(07 +(9,Y)* =1, (42)

reflecting our choice of parametrization.

To make progress we need to assume that the string is
massive and possesses a large bending modulus 7, such that
its fluctuations about the x axis take place over large length
scales. Specifically we require that

1
=—=<I. (43)
aNpy

N =

Q>

As we now demonstrate, under this condition the constraint,
Eq. (42), may be solved approximately d,X=1 —%(&SY)Z, to
imply, given the specified boundary conditions, that
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X(s,7) =5+ AX(s,7)=5— %f‘ ds'[0,Y(s", D> (44)
0

Using this result in the string Lagrangian, Eq. (41), one in-
deed finds,'® to lowest order in A,

(@) =55. 4s)

in agreement with the assumption which led to the expan-
sion, Eq. (44).

As long as the system maintains, in addition to condition
(43), that its typical string wave velocity (given in this model
by ) is such that y/a<vpkp, we may neglect backward
scattering by string fluctuations and describe the low-energy
electronic dynamics by the Lagrangian

L v K
Le=f ds E |:—i(?7¢a(950a+%((950a)2

0 a=c,s

- 2(ma)?

- 6“4() n+ _ﬁ.v(ﬁc
T

2e &2
-v.K, \/j—AlaﬁC +v K. —5A7 1, (46)
acC e

o (a@a)z] + S cos({8m)

where, provided the electrons interact through contact inter-
actions V(s—s')oc 8(s—s’), the velocities and Luttinger pa-
rameters are given by Eq. (3). While in the arclength param-
etrization the metric remains trivial, the electrons are still
coupled to gauge potentials, which to second order in deriva-
tives of Y read

A5, 7) = - ;"—e(aﬁ)z = T (07)2,

A(s,) == 4R - . R=—"(5,Y3,Y + 3,AX).
e e

(47)

Note that the term proportional to n in Eq. (46) leads to the
renormalization of the string mass density according to p
— p+mn. However, as expected, the coupling between the
string and electrons does not modify the form of the string
elastic energy term.

For a §-correlated random potential the averaged disorder
part of the action contains the factor

Do X(s,7) = X(s', 7))o Y (s,7) = Y(s',7')]
=Dy, 0(s—s")Y(s,7) = Y(s,7')]

X{l + %[asy(s, T)]Z}, (48)

in which, to lowest order in Df,,,); we may replace the curly
brackets by 1.
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B. Renormalization and phase diagram

Integrating out the string degrees of freedom from the
electronic Lagrangian, Eq. (46), yields at the level of the first
cumulant (quadratic in derivatives of Y), a simple Luttinger
liquid action, Eq. (2). The contribution from the second cu-
mulant (fourth order in derivatives of Y) modifies the values
of v., K., and the coefficient of the simplectic term in the

action by a small amount of order (mv\)*\"2(y/v)K,. In
addition, however, it also introduces the terms

@(mvc)\Kc)z l E

372 '
— 0.(k,w)0.(k",—
s 12, 2 e ke -0

kk'#0,0

w? [1 t <2|w|)]
+ —_—— —
o PR+ T 2 T e
X 0.(k,)6,(-—k,— w) ¢, (49)

of which the first originates from the breaking of translation
invariance along the x direction due to the boundary condi-
tions on the string. These terms are relevant in the long-
wavelength limit and dominate over the quadratic terms
in the Luttinger action for k—0 and
< (K /4m)*(mv ) * (v /Ny)=v,/a, with the effect of sup-
pressing slow fluctuations of 6, (effectively increasing the
value of K, at long time scales). Based on the flow equations
we have derived before we expect that this fact would lead to
a reduction in the scaling dimension of the backward-
scattering disorder at scales larger than a. In the following
we will ignore the contribution, Eq. (49) (and possibly other
relevant terms which emerge at higher orders in the cumulant
expansion), thereby limiting our renormalization treatment to
the range a <a. In that sense our results should be viewed as
an upper limit on the domain of relevant disorder.

Finally, averaging the disorder part of the action over the
string dynamics one obtains an expression similar to that of

Eq. (11) with
1 A 1/4
F(7)= X<47T)/| 7'|> ’ (50)

which can be treated according to the lines indicated in the
Appendixes to yield the following renormalization equations
for the electronic and string parameters:

dK, 106[ 2 2(116)19—2
—_ —_— K — —=

d¢ — 2v, ¢ 3\,

11
><<;—Kc—l<s—y)<1+K§)}Db,

dv, 1 vf 2<vc>Kf~‘_2
—fo_ | K-S
d¢ 2 v, 3\vg

(oo -a))
4 c s—Y KC c b>
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dK, 1 /v, \%| (11
S=__y2K§+_<&) |:<__K0_Ks_y>(1+K§)

d¢ 2 3\ vy 4
3(v,\Ke
—E<U—> Kf+4K§y]Dh,

dy _ TEAK (ﬁﬂ
de—(Z—ZKS)y+3<vS> {3{1— . +4(K,-K,)

RPN I

N _ 172 1 1
—=—>\—(;> Z—f(v,K)[Z+(2—KC—Ks—y)

s

X (1 _ e—€/4):| }XS/ZDb,

d')’ 1 2 U Ke 11 1
— === K-7| =) | = -K. K=y || = =K,| | YD,
ae- 2 3\v,/ \ 4 K

(51)

where f(v,K) is given in Eq. (21) and where the dimension-
less disorder amplitudes for this model are defined according

to
D - \’ED;,(2>3/4(§>”4(§>KC
b_ﬂjMUf A b% v.)

—~
hD 3/4 1/4

fz\_i a Us ) (52)

) 77,5/405 N y

The enhanced fluctuations of the floppy string do result in
a shift of the critical point which demarcates the border be-
tween regions of relevant and irrelevant flow for weak initial
disorder potential. The position of this point is given by the
condition 11/ 4—KC—K:=0, which for a spin rotationally in-
variant system and in the case where y flows to zero implies
that the system is delocalized for K,>7/4 [we note once
again that due to our inability to treat terms such as Eq. (49),
this should be viewed as a lower limit on the extent of the
delocalized region]. This is to be contrasted with the previ-
ously studied models for which delocalization occurs under
similar conditions for K.>2. For a generalized model of a
stiff and massive fixed-length string with elastic energy that
is proportional to (#'R/ds")* one finds (ignoring potentially
relevant terms which may arise in the course of the renor-
malization) a delocalized phase for K, > (3n+1)/2n. In close
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analogy to the situation in the other models we have consid-
ered in this study the fact that D,oc N\=3/4y~14=p38 18 jm_
plies that enhancing the string fluctuations by making p and
v smaller has the effect of shifting the initial conditions of
the flow towards smaller values of D,, thereby increasing the
extent of the region in parameter space in which the disorder
is irrelevant.

Owing to the enhanced string fluctuations one also finds
that the forward-scattering-induced decay of the CDW and
SDW correlations is diminished (see Fig. 1) and is given by

T L v\ I 3/4
W(x,0) = ———F—=K D/ — —
6cos(77/8) Uy a

~
/> N4 (o |\
27 Kﬁ:/)f<&> ( |7 (59)
U a

Wi, 7= 6 cos(7/8)

at least for |x|,vs|7| <&@ such that we may neglect the
higher-order corrections to the electronic effective action,
Eq. (49).

V. CONCLUSION AND DISCUSSION

In this paper we have set out to explore the way in which
geometrical fluctuations of a one-dimensional interacting
system affect its renormalization flow in the presence of a
random scattering potential. We have found that by inducing
temporal variations in the disorder, as seen in the reference
frame of the electrons, the geometrical fluctuations increase
the region in parameter space where the disorder is an irrel-
evant perturbation. This is a result of processes in which
potential wells diminish in time, thereby releasing electrons
that were trapped inside them. Other effects, such as deco-
herence of interference patterns which lead to localization,
also exist but are not captured by our treatment. We expect,
however, that the latter are less important in one dimension.
Notwithstanding, unless the fluctuations are strong enough,
the general features of the phase diagram are unchanged and
the localization-delocalization transition for weak bare disor-
der remains at K.=2, in the case of a gapless spin-invariant
system. In the hierarchy of models studied by us only in the
floppy string model has the critical point shifted towards
weaker values of attractive interactions.

Our results thus demonstrate the relative robustness of
disorder-induced localization effects in strictly one-dimen-
sional systems. In order to suppress such localization effects
it thus seems necessary to introduce some degree of two
dimensionality into the system. This can be achieved by al-
lowing the electrons to hop from one one-dimensional chain
to the other. A simple realization is provided by ladders. For
example, in the maximally gapped phase of a two-leg
ladder'” small disorder is an irrelevant perturbation when the
Luttinger parameter K., associated with the gapless total
charge mode, is greater than 3/2, thus smaller than for a
single chain. In a two-leg bosonic ladder'® or in the spin-
gapped phase of a four-leg ladder'® disorder is irrelevant for
K.,>3/4. The results of introducing geometrical fluctua-
tions to such ladder systems are yet to be studied. Under-
standing such effects would be very interesting, since, de-
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spite the fact that the disorder is an irrelevant perturbation, a
finite amount of disorder is still quite efficient in destroying
the superconducting phase.!” As we have seen for the case of
a single chain, string fluctuations are quite efficient in dimin-
ishing the size of the localized region even when they are not
able to change the critical point. One could thus expect par-
ticularly interesting effects of such fluctuations in the case of
ladders.
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APPENDIX A: THE IMPURITY FORWARD-SCATTERING
CONTRIBUTION TO THE FLOW EQUATIONS

Here we briefly demonstrate how the forward-scattering
component of the disorder influences the renormalization of
the electronic parameters of the rigid string effective action,
Eq. (11). To this end, we consider the correlation function
R.(x, =Xy, 71— T5) =(T e\ 27¢1:7)p=1\27¢ (2,1} T first order
in the disorder strength one finds

R.(x) =X, 7 = 7))

. K\ [M
= e Flii7) 1—2Df<—‘) o0 f dx
\2m 2m

1
XJ deT’ —,
|77 |>alv 1- e“"O‘T_T |

x |: X=X X=Xy :|
— - -
(X—Xl)z"'vc(T— 71)2 (X—X2)2+Uc(7'— 7'2)2

% X=X X=Xy
(=P 027 =7 )+ (7 - 1)

+ backward - scattering contribution ¢, (A1)
with
) Kl <x2+5§72) 7 027 (A2)
F)=—1In + ,
=g Ta )HaEe

where initially J_‘C: 0. After carrying out the integration over x
and the center-of-mass coordinate (7+7')/2 in Eq. (A1), one
obtains
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R.(x; = x5, 7 = T)

T (w0l
4 ln>alw, & N1 —e (wv/a)| 7|

(x; = x2)* + U+ 7y — 7)?
[ =]
Z(Xl—xz)z ]

—
(x —X2)2+ v+ T - 7'2)2

+ backward - scattering contribution (A3)

The flow equations are derived by requiring that the long-
range behavior of R, remains invariant under a change in the
cutoff a=—a+da=a(1+d{). In order to maintain such in-
variance the missing contribution from the integration over
(a+da)/vy>|n| >alv, should be compensated by an appro-
priate change in K. and £, (the latter is related® to a change in
v,). The invariance of the remaining integral over || > (a
+da)/v determines the flow of D, and . The equations for
K, v, and y can be derived in a similar manner by consid-
ering the correlation  function R (x;—x,,7— 7))
=(T,¢"279sx1m)g=1\27é5(2 7)) They, however, do not contain
the forward-scattering amplitude. Including the contribution

stemming from the backward-scattering piece, as described
in Ref. 3, one arrives at

“d
R (AR =Nl | D1 K) f e
aO a

Al g 1 Keksl (1
Arldy a
b f a (1 e—m’ 7]/a)3/2 ( ) |: (

a 7

A dn 1 a 1
- Df‘CKC ; (1 e ™ n/a) 3/2

a9
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— == —+D
dt U\l —e™ 2 !
dK, 1_,—, DK

dft - 2y s 2\/] —e @

1-e
dy _ b
—=(2-2K,))y - s
20 5y N
4D, =3-K,—K,—y)D
d€ -y bs
dD; dw
—=D, —= oD A4
20 (Y w +O(D) (A4)

These results are readily extended to the cases of the elastic
and floppy strings by replacing the expression for F(7) in
Egs. (Al) and (A3) with its appropriate form for these mod-
els, Egs. (35) and (50).

APPENDIX B: THE FLOW EQUATIONS FOR THE
STRING PARAMETERS

To obtain the flow equation for the rigid string parame-
ters we consider the correlation function R, (7—7)
=(Tu(m)u(r,)), where the average is with respect to the
effective action, Eq. (18). To first order in the disorder
strength one finds

e ) 1
+ |<1—cosh—>+—smh_}

|
-] pau

o d7] 1 K +K
-Vﬁfmz(l_ef—m)w{%(‘) ”’f"( H

X {(l + M)e—mmﬂm_i_ e—m‘r]/a|:M
w a a

a

7
m|Ar| (l 7_7>

w a

(B1)

where Ar=v,(7,—7,) is assumed larger than a and f(v,k) is given in Eq. (21).
The last two integrals in Eq. (B1) are invariant under a change in the cutoff a — a+da provided one uses the previously
derived renormalization equations for the electronic and disorder parameters, Eqgs. (14), and assumes dw/d{ =w+O(D). The

remaining terms may be brought to the form )\Zﬂe‘wefflA’V“ with
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dny 1
—‘GJ"I]/E) 3/2

eff—m+Dh£|:f(U K)J

cosh(m nla) [ a

(5]
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flArl dn 1 - cosh(wpla) (g)"f”(s
. a (1 _ e—m’n/a)3/2 7 ’

)\2 a d 1
b Y
INEPRE lf(U,K)J o

0

— cosh(w 7/a) + (wxla) sinh(w yla) (g)z
7

(l—e

—ﬁn]/a) 3/2

A dn1 - cosh(wyla) + (wyla) sinh(wyla) [ a \KtEs
+ — o) 2 77 .

. a (1-e

The renormalization equations for the string parameters, Eq.
(20), then follow from the requirement that R, remain invari-
ant under a change of the cutoff—i.e., d(w./a)/d€ =0 and
AN/ d€ =0.

In the case of the Gaussian string we find

<TTM(X1’7'1)M(X2’72)>

=F(r,—r)) 1 - 5 J dkNKK Dy(k)
[

s

2,2
“d Nk
Xf 77<77)
a\a
ag

ay A2
—2”—” f dk)\3k2Db(k)[ f(v.K) f —77(17)
v @ @ \a
* d (2-K,~K,~\?k?)
[ () ’
. al\a

where f(v,K) is given by Eq. (21) and

(B3)

\a 1 - C\2 ey 11/4
(Tu(sy, m)ulsy, 7)) = — f dq—e’qm MalAdig®s | _ ’Dbf(u,[()( Us _) f _77<£)
4y ag 4\

(B2)
I
- - 2y (27 2, 2 2
F(ri=r)==\"1In L_V(xl = X))+ v, (71— )
2 2
vu(Tl - 7-2)
- £ , (B4)
(x, —x2)2 + 03(7'1 - 7'2)2

with the bare value f,=0. The term containing D(k) in Eq.
(B3) is invariant under a — a+da provided we use the flow
equation for Dy(k), as given in Eq. (37), and assume
d\/d€=0(D), dv,/d€ =0O(D), which is consistent with the
final result. The renormalization equation for the length \ is
derived from the invariance requirement of the remaining
logarithmic terms in Eq. (B3) and using the flow equation for
D,(k). In order to obtain the renormalization of the string
wave velocity we first note that d(f,\?)/d€=d\*/d{. Sec-
ond, a renormalization v,—v,+dv, in the logarithmic part
of F, is equivalent to a renormalization of f,\*according to
d(f\»)/d€=(\*/v,)dv,/df. Combining the two we find
that, to first order in D,

dv, _
de

2o, dh

N 20 (B5)

which results in the renormalization equations (38).
For the floppy string one obtains
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where As=s,-s, and Ar=7—7,. The ¢ integrals in the
above are dominated by the small-g region, therefore allow-
ing us to expand the hyperbolic functions in the integrands.
Using the flow equations for the electronic and disorder pa-
rameters, Egs. (51), and assuming d\/d€=—\+O(D) and
d(ylv,)/d€ =0, the scale invariance of the last two 7 inte-
grals in Eq. (B6) is then readily verified. The remaining two
terms may be expressed as

)\efta f dq qus—yxef[aAqu’
4 q

where

PHYSICAL REVIEW B 73, 134201 (2006)
- - VW'D, 7\3/2D dny
Negr=N— )f
4\ MU
J‘vsAﬂ dﬂ( a )KC+KS—5/4:|
+ —| = .
a a\m

(B7)

The requirement that d(A.a)/d€=0 results in the

renormalization equations for the string parameters in Egs.
(31).
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