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We present an ab initio study of the phase transition cubic diamond→�-tin in Si and Ge under hydrostatic
and nonhydrostatic pressure. For this purpose we have developed a method to calculate the influence of
nonhydrostatic pressure components not only on the transition pressure but also on the enthalpy barriers
between the phases. The calculations were performed using the plane-wave pseudopotential approach to the
density-functional theory within the local-density and the generalized-gradient approximation implemented in
VASP. We find good agreement with available experimental and other theoretical data.

DOI: 10.1103/PhysRevB.73.134101 PACS number�s�: 64.70.Kb, 71.15.Nc, 81.40.Vw

I. INTRODUCTION

The phase transitions in silicon �Si� and germanium �Ge�
from the cubic-diamond �cd� phase �cubic-diamond struc-
ture� to the �-tin phase �body-centered tetragonal �bct� struc-
ture� are two of the most studied solid-solid phase transitions
in condensed matter physics, both experimentally1–23and
theoretically.23–49In the experiment, the phase transition in Si
occurs at around 110 kbar and in Ge at around 105 kbar,
where also lower values of the transition pressure are ob-
tained. These lower values are often attributed to nonhydro-
static conditions, which are able to reduce the transition
pressure.13

In fact, the pressure in the anvil cell is not exactly hydro-
static. Usually at pressures up to 100 kbar, the pressure-
transmitting medium yields nearly hydrostatic conditions.50

Above 150 kbar, a nonhydrostatic pressure profile is visible,
and at very high pressures, the pressure-transmitting medium
solidifies resulting in strong nonhydrostatic effects. Even in
the hydrostatic pressure regime there is a small pressure
gradient.51 Nonhydrostatic pressure profiles can also be an
effect of the geometry of the cell.52 Because of relaxation
phenomena that happen in the pressure-transmitting medium
and/or in the crystal, the time for compressing and decom-
pressing has an influence on the measurement.

In theoretical investigations, generally hydrostatic condi-
tions are assumed. Within calculations using the local-
density approximation �LDA�, the calculated transition pres-
sures vary between 70 and 99 kbar for Si and between 73
and 98 kbar for Ge. Usually, the transition pressure is
strongly underestimated by LDA calculations, whereas cal-
culations using the generalized-gradient approximation
�GGA� match the experimental value better �102–164 kbar
for Si and 96–118 kbar for Ge�. In any case, the discrepancy
between experimental and theoretical results can also be due
to nonhydrostatic pressure conditions in the experiment. Ab
initio calculations considering nonhydrostatic pressure are
rare53,54 and deal just with the transition pressure. The influ-
ence of nonhydrostatic conditions on the enthalpy barrier
between the two phases is not studied within an ab initio

calculation until now. Therefore, we developed a method for
the extraction of the enthalpy from an energy surface to cal-
culate the transition pressure as well as the enthalpy barriers
also for nonhydrostatic conditions. In a first step, we obtain
the transition pressure and the enthalpy barrier between both
phases as a function of pressure starting from a numerical
multiphase equation of state for hydrostatic conditions. Here
a multiphase equation of state means a continuous, multival-
ued function V�p�, where V is the volume and p the pressure,
similar to the one of the textbook example of the van der
Waals gas. In a second step, this procedure is extended to
nonhydrostatic conditions. All isotherms in this work are at
0 K.

This contribution is organized as follows: To begin with,
we introduce the theoretical background of the method used
here, namely, the multiphase equation of state �Sec. II�. Then
we apply this method to real systems, the cd→�-tin phase
transition in Si and Ge. After mentioning the technical details
of the total-energy calculation, we explain the procedure of
calculating a multiphase equation of state from a given en-
ergy surface in case of hydrostatic and nonhydrostatic con-
ditions �Sec. III�. Finally, after a discussion of the results and
comparison to available theoretical data �Sec. IV�, we de-
scribe possible extensions of our procedure and summarize
�Sec. V�.

II. THEORY OF THE MULTIPHASE EQUATION OF
STATE

In this section, we describe the theoretical background on
which our method is based. Especially, we figure out the
differences between hydrostatic and nonhydrostatic condi-
tions.

A. Multiphase equation of state for hydrostatic conditions

Neglecting temperature and zero-point motion effects, the
phase with the lowest enthalpy H=E+ pV is the stable one.
Therefore, the transition pressure pt for a first-order pressure-
induced phase transition from the cd phase to the �-tin phase
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can be determined from the crossing of the corresponding
enthalpy curves Hcd�p� and H�-tin�p� with Hcd�pt�=H�-tin�pt�.
First-order phase transitions are accompanied by a disconti-
nuity �V in the volume and an overcoming of an enthalpy
barrier, which is located between the phases and has a height
of �H.

Under hydrostatic conditions the pressure is defined as
p=−�E /�V. It can also be determined from the stress tensor
�.55,56 Since the structures here are orthogonal, the off-
diagonal components of � vanish, and � has the form

� = ��11

�22

�33
� = �− px

− py

− pz
� . �1�

We are using a tetragonal cell, and thus px= py. Under hydro-
static conditions all three components are equal and corre-
spond to the external pressure p,

px = py = pz = p . �2�

B. Multiphase equation of state for nonhydrostatic
conditions

Under nonhydrostatic conditions, also the strain has to be
taken into account. Similar to the stress tensor of Eq. �1�, the
strain tensor � can be reduced to a diagonal form for or-
thogonal systems55–57

� = ��11

�22

�33
� = ��x

�y

�z
� �3�

where �x, �y, and �z are along the Cartesian crystal axes. For
small stress and homogeneous strain, the components of �
can be derived as55,57

� j j =
xj� − xj

xj
, �4�

where xj is the lattice parameter in the j direction. Here xj
corresponds to the unstrained and xj� to the strained crystal.

Including stress and strain, the enthalpy density H̃=H /V0
can be written as57

H̃ = Ẽ − �
j=1

3

� j j� j j , �5�

where Ẽ=E /V0 is the density of the total energy, and V0 is
the equilibrium volume. With respect to the common formula
for hydrostatic conditions H=E+ pV=E+ p�V−V0�+ pV0, the
last term +pV0 is missing here.

Under nonhydrostatic conditions, we define the average
pressure as

p0 = 1
3 �px + py + pz� = − 1

3 tr� , �6�

which is again equal to the external pressure in the case of
hydrostatic conditions.

The calculation of the enthalpy at nonhydrostatic stress is
based on Eq. �5�. The numerical realization is described in
the Appendix.

III. METHOD FOR DETERMINING A MULTIPHASE
EQUATION OF STATE

In this section, we elucidate how a numerical multiphase
equation of state can be obtained from an energy surface.
First, we describe the computational details for calculating
the energy surface in the case of the cd→�-tin transitions
�Sec. III A�. After this, we extract a numerical multiphase
equation of state from the energy surface in the case of hy-
drostatic conditions in order to explain first results and to
show the reliability of the enthalpy extraction method �Sec.
III B�. Last, we extend our method in order to derive nonhy-
drostatic conditions �Sec. III C�.

A. Technical details

We have carried out our calculations with the Vienna ab
initio simulation package �VASP�.58–61 It is based on a plane-
wave pseudopotential approach to the density-functional
theory �DFT�.62,63 We have used ultrasoft Vanderbilt-type
pseudopotentials64 as supplied by Kresse and Hafner.65 The
exchange-correlation potential has been calculated within the
GGA due to Perdew et al.66 for Si and Ge and the LDA67,68

for Si only. The forces on the atoms are derived from a
generalized form60,69 of the Hellmann-Feynman theorem,70

including Pulay forces.71 For the ultrasoft pseudopotentials, a
kinetic-energy cutoff of 270 eV �410 eV� for Si �Ge� has
been sufficient for convergence of the total energy and pro-
vides an error smaller than 0.5 kbar �0.2 kbar� for Si �Ge� to
the pressure according to the Pulay stress.71 The special-
point summation required a 18�18�18 �24�24�24�
mesh of Monkhorst-Pack points,72 which amounts to 864
�1962� k points in the irreducible wedge of the Brillouin
zone for Si �Ge�. Since the �-tin phase is metallic, we have
used a Methfessel-Paxton smearing73 with a width of 0.2 eV
and have also used it for the cd phase, since it is not a priori
clear whether a given set of volume V and ratio c /a of lattice
constants yields a metallic or a semiconducting phase.

In order to minimize an energy offset between the struc-
tures, it is important to describe the structures of both phases
within the same bct cell �lattice constants a=b�c� with two
atoms in the basis at �0,0 ,0� and �0,0.5a ,0.25c�. The sym-
metry of the cd phase requires c /a=�2, whereas c /a can
vary for the �-tin phase. Using the bct cell, the structure of
the cd phase with respect to the conventional face-centered-
cubic cell is rotated by 45� around the c axis. In the follow-
ing, CD and BCT denote the structure of the cd- and the
�-tin phase using the bct cell.

B. Applications to hydrostatic conditions

We have calculated the total energy as a function of V and
c /a. The corresponding energy surface E�V ,c /a� is shown in
Fig. 1 for Si using the GGA �similar results are obtained for
Ge within GGA and for Si within LDA�. The two local en-
ergy minima, related to the two phase equilibria, with a
saddle in between, are visible. The pressure p0�V ,c /a� as
obtained from Eqs. �1� and �6� is included in the figure.
Except along the �dotted� hydrostatic line with px= pz, the
pressure is nonhydrostatic. The local minima are at the cross-
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ing of the p0=0 and the hydrostatic px= pz lines, which de-
fines the equilibrium position. A similar graph can also be
drawn for the enthalpy.46

Along the hydrostatic px= pz line, the structures are in a
local equilibrium, meaning that the sum of internal and ex-
ternal forces caused by the pressure is zero. Hence, this con-
dition can be used to extract the total energy E, the external
pressure p0= p, and the volume V from Fig. 1 in order to
derive a multiphase equation of state V�p�. These curves are
shown in Fig. 2. Here, H�p� for the cd-and the �-tin phase
�solid and dashed lines in Fig. 2� and, furthermore, the values
along the line across the saddle �dotted line in Fig. 2� are
accessible. The ideal cd structure �c /a=�2� has been reached

only within an error of 1% for the lattice-parameter ratio. In
order to discriminate the enthalpy curves against each other
and to enhance the visibility we have subtracted a linear
baseline �reduced enthalpy�. The local stability is in accor-
dance with the fact that the V�p� curves are monotonically
decreasing and the H�p� curves are convex. This is in con-
trast to the textbook example, the van der Waals gas, where
the line corresponding to the dotted line of H�p� is concave
and signals local instability.

The transition pressure pt obtained from the crossing of
the enthalpy curves are listed in Table I. The corresponding
change �V in the volume at the phase transition can be read
from the upper panel of Fig. 2 as the difference between
Vcd�pt� �solid line� and V�−tin�pt� �dashed line�. Analogously,
the enthalpy barrier �H can be determined from the figures.
In order to check the reliability of this method, we compare
the results to our previous ones46 based on the same total-
energy calculations but obtained with a different method to
evaluate the transitions pressures and enthalpy barriers. The
agreement is very good, and the small differences are due to
numerical errors. Thus, we can trust in the enthalpy extrac-
tion method developed here.

Since we have determined a multiphase equation of state,
we can calculate also the enthalpy barrier as a function of
pressure. We have to distinguish between the barrier for the
cd→�-tin transition, approaching from the cd phase, and the
one for the �-tin→cd transition, approaching from the �-tin
phase. In general, the enthalpy barrier �H has its origin in
the energy saddle between the two phases. It can be calcu-
lated as the difference of the enthalpy of the phases and the
one from the saddle. The corresponding curves are shown in
the middle panel of Fig. 2. In particular, for the cd→�-tin
transition the enthalpy barrier is the difference between the
enthalpy of the cd phase �solid line� and the one of the saddle
�dotted line�. Likewise, for the �-tin→cd transition it is the
difference between the enthalpy of the �-tin phase �dashed
line� and the saddle �dotted line�. The resulting enthalpy bar-
riers approaching from the cd- and the �-tin phase are shown
in the lower panel of Fig. 2. At the transition pressure pt, the
enthalpy barriers from both phases have the same height. The
determination of the enthalpy barrier as a function of pres-
sure is important to estimate the barrier in the case of over-
or underpressurizing the medium. Hence, the phase transi-
tions will happen at a pressure different from pt, which re-
sults in a different height of the barrier. As expected, the
enthalpy barrier from the cd phase is decreasing with in-
creasing pressure, whereas the one from the �-tin phase de-
creases with decreasing pressure. At zero pressure, there is

FIG. 1. Contour plot of the total energy E�V ,c /a� �solid lines�
and of the average pressure p0�V ,c /a� �dashed lines, see Eq. �6��
for Si with GGA. The bold-dashed line corresponds to the value
p0=0. The interval of the contour lines is 50 meV for the energy
and 20 kbar for the pressure surfaces. The black dots mark the
equilibrium positions of the cd �c /a=�2� and the �-tin phase
�c /a=0.55�. The dotted line marks the parameters under hydrostatic
condition.

FIG. 2. Volume V, reduced enthalpy �see text�, and enthalpy
barrier �H as a function of the hydrostatic pressure for Si within
GGA. The crossing of the solid and dashed lines determines the
transition pressure.

TABLE I. Transition pressures pt, volume changes �V, and en-
thalpy barriers �H derived from the multiphase equation of state in
comparison to our previous results obtained with an alternative
method �in parenthesis�.46

Ge-GGA Si-GGA Si-LDA

pt �kbar� 96 �96� 122 �121� 80 �79�
�V�Å3� 7.5 �7.5� 8.3 �8.3� 8.5 �8.5�
�H �meV� 421 �423� 510 �515� 502 �508�
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still an enthalpy barrier left for the �-tin→cd transition. This
points to the fact that there is no spontaneous transition �-tin
→cd. In the experiment, the phase transition cd→�-tin is
irreversible.

C. Applications to nonhydrostatic conditions

The procedure for determining transition pressures and
enthalpy barriers described in Sec. III B can be extended to
the case of nonhydrostatic pressure. Besides the hydrostatic
condition pz− px=0, the values for nonhydrostatic pressure
components pz− px=d�0 �with a fixed value of d� can be
extracted from the energy surface E�V ,c /a� along the corre-
sponding lines of Fig. 3. A first naive trial considering just
the total energy Enh under nonhydrostatic conditions and the
corresponding values p0

nh for the average pressure and Vnh for
the volume gives wrong results, e.g., an increase of the tran-
sition pressure for pz� px and pz� px. This is in contrast to
the experimental observations. Thus, it is necessary to in-
clude nonisotropic strain in the calculation.

In the following, “the strain-only contribution” will be
referred to as the difference between the enthalpy calculated
with Eq. �5� and the enthalpy obtained by Hnh=Enh+ p0

nhVnh.
From our numerical results it turns out that the strain-only
contribution to the enthalpy is negligibly small for the cd
phase; it is linear in the pressure for the �-tin phase, and it is
nonlinear for the contribution along the line across the
saddle. This effect is apparent in Fig. 4, where the enthalpy
including strain is presented. Since the strain-only contribu-
tion to the enthalpy of the cd phase is nearly two orders of
magnitude smaller than the one of the �-tin phase, the
change of the transition pressure with respect to nonhydro-
static conditions is mainly due to the strain-only contribution
to the �-tin phase. From Fig. 4 we can find the transition
pressures for fixed nonhydrostatic conditions in the same
manner as mentioned in Sec. III B.

In addition to the average transition pressure p0
t , their

components px
t and pz

t in the x and z directions are also
shown, as well as the enthalpy barrier at the phase transition

as a function of pz− px in Fig. 5. For the transition pressure,
one has the relation p0

t = �2px
t + pz

t� /3. The boundary for the
lowest pressure is fixed by the condition that the components
of p0 are not negative, since we exclude stretching the crys-
tal. We find a strong lowering of the transition pressure if the
pressure in the z direction is larger than in the x and y direc-
tions. Thus, the crystal is more stable against compression
along the x- and y axes in the case of a strong nonhydrostatic
component in these directions, which causes an increase of
the transition pressure. The corresponding enthalpy barriers
are lowering in any case, but their value remains still larger
than the thermal energy at room temperature �RT�.

Besides the nonhydrostatic effects, we can also finally
consider the case of over- and underpressurization of the
crystal. To this end, calculations of the enthalpy barriers as a
function of the average pressure and nonhydrostatic condi-
tions have been carried out �Fig. 6�. At very high pressures
and very large nonhydrostatic components, the enthalpy bar-

FIG. 3. Contour plot of the total energy E�V ,c /a� �solid lines�
for Ge �GGA� with an interval of 0.2 eV between contour lines.
Besides the hydrostatic condition �bold solid line� nonhydrostatic
conditions �pz− px=−15,−10, . . . ,20� are shown.

FIG. 4. Equation of state H�p0� for nonhydrostatic conditions as
a function of the average pressure p0. The difference pz− px of two
neighboring lines is 5 kbar. The black dots mark the transition pres-
sures p0

t .

FIG. 5. Enthalpy barriers at the average transition pressures p0
t

and transition pressures �average transition pressure p0
t and the cor-

responding components px
t and pz

t� as a function of pz− px. The
dashed line marks the boundary px=0 and pz=0.
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rier for the cd→�-tin transition is smaller than the thermal
energy at RT, but these conditions do not appear by chance in
the experiment; instead, they have to be applied by intention.
In contrast, the enthalpy barrier is never smaller than
25 meV for the �-tin→cd transition even at the largest non-
hydrostatic components with px, py, and pz not negative �no
stretching�.

IV. DISCUSSION OF THE RESULTS

In the past, nonhydrostatic conditions have been investi-
gated for different reasons.53,54,74–78 Wang et al.75,76 have
worked on integrals exploring the work of pressure on a
system, but their main goal was the investigation of stability
criteria by examining the stiffness tensor. Libotte and
Gaspard77 already have included nonhydrostatic pressure in
their work by a parameter within the work integral. Unfortu-
nately, in their calculation using a semi-empirical tight-
binding model they considered just the phase transition from
the �-tin to the Imma phase, which appears by pressing the
�-tin phase. Durandurdu78 has considered the cd→�-tin tran-
sition under nonhydrostatic pressure in his molecular-
dynamics study, but in fact, he assumed the pressure along
just one direction with the other pressure components set to
zero. However, this condition is not given in a diamond-anvil
cell, which was the motivation of our work. Even if similar
results are easily accessible from our data in order to com-
pare to his, such a study is beyond our scope. Hence, directly
comparable to our results are just the ones from Lee et al.74

and Cheng et al.53 Cheng.54 Besides the transition pressures,
the function pz

t�px
t �=apx

t +b is also given in these contribu-
tions. This function can be obtained from our results by a
linear fit of the values for the transition pressure in Fig. 5.
The additive constant corresponds to the lowest possible
transition pressure. The results are summarized in Table II
together with those of the references mentioned above.

Already Lee et al.74 found a linear relation between pz
t and

px
t . But their results obtained by a molecular-dynamics �MD�

investigation differ from those of Cheng et al.53 and Cheng54

which have also been obtained with VASP using GGA. Al-

though our results have also been performed with VASP,
their results for the transition pressure are slightly different
from ours. This can be due to the fact that they have used
different cells for the phases and also different pseudopoten-
tials and convergence parameters. The choice of different
unit cells can lead to an energy offset between the energy
curves to which the transition pressure is very sensitive in
the present case. Nevertheless, our results for the linear func-
tions agree very well with those of Refs. 53 and 54. The
difference of the additive constants rely on the different val-
ues of the transition pressures in the hydrostatic case. Since
Cheng et al.53 and Cheng54 restricted themselves to the en-
thalpy difference between the phases using path integrals, the
enthalpy barrier was not accessible to them.

The experimental values for the transition pressures vary
between 103 and 133 kbar for Si1–7 and between 103 and
110 kbar for Ge5–11 where the generally accepted values are
at around 110 kbar and 105 kbar, respectively. In both cases,
our results obtained with GGA agree perfectly, whereas the
LDA result underestimates the experimental value, which is
a well-known problem.

The good agreement of our results with the ones of Cheng
et al.53 and Cheng54 confirm the reliability of our method,
which provides a larger field of application. In addition, our
method can be extended to, e.g., the �-tin→Imma→sh tran-
sitions in Si and Ge. After the extraction of a two-
dimensional energy surface from a three-dimensional one us-
ing the values along the lines where two components of the
stress tensor are equal �as in our previous work,46,79� the
method mentioned here can be applied to this extracted sur-
face. By the choice of two equal components, the main pres-
sure direction is chosen. Further extensions even to non-
orthorhombic structures are also possible.

V. SUMMARY

We have developed a method to investigate first-order
high-pressure phase transitions. This method is based on the
numerical determination of a multiphase equation of state,
where the corresponding values are extracted from the total
energy as a function of the volume and the ratio of the lattice
constant with respect to pressure conditions. Besides the
transition pressure and the volume change, which are also
available with the common-tangent construction, the en-

FIG. 6. Enthalpy barriers, as in Fig. 2, for fixed nonhydrostatic
conditions pz− px=−20,−15, . . ., 35 kbar. The solid horizontal line
at 25 meV marks the thermal excitation energy at RT.

TABLE II. Transition pressures pt and linear relations of their
components pz

t =apx
t +b.

Method pt �kbar� pz
t =apx

t +b �kbar� Reference

Si LDA 79.6 pz
t =0.619px

t +29.8 This work

Si GGA 122.1 pz
t =0.606px

t +47.3 This work

Si GGA 114 pz
t =0.658px

t +39 Cheng et al.53

Cheng54

Si MD 127 pz
t = px

t +90 Lee et al.74

Ge GGA 95.9 pz
t =0.651px

t +35.1 This work

Ge GGA 95 pz
t =0.737px

t +25 Cheng et al.,53

Cheng54
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thalpy barrier between the phases can be obtained with our
method. A comparison to results for Si and Ge from common
methods shows the reliability of the enthalpy extraction
method. Furthermore, the enthalpy barrier can be determined
as a function of the external pressure, which makes effects
from over- and underpressurizing accessible. An extension of
this method also allows us to investigate high-pressure phase
transitions under nonhydrostatic conditions, in particular, the
transition pressure and the enthalpy barrier, which are both
decreasing if the pressure component along the c axis is
larger than the other ones. Our results show an excellent
agreement with available experimental and theoretical data.
This enthalpy extraction method can also be extended to
other phase transitions and to ones including orthorhombic
structures, for example, the transitions �-tin→Imma→sh.
Thus, we have developed a powerful tool for investigating
phase transitions under hydrostatic and nonhydrostatic con-
ditions.
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APPENDIX: CALCULATION OF THE ENTHALPY
INCLUDING STRESS

Here we give a short description of the formulas used for
the calculation of the enthalpy, including stress and strain
effects considering Eq. �5�. In particular, we derive a formula
to integrate

dH = dE − V0 �
j=x,y,z

� jd� j . �A1�

Under hydrostatic conditions the enthalpy is

H = E + pV = E + V0p
V − V0

V0
+ pV0. �A2�

The second term corresponds to the stress-strain term of Eq.
�5� multiplied by V0. Thus, considering Eqs. �4� and �5�, the
enthalpy can be written as

H = E + V0 �
j=x,y,z

pj

xj� − xj

xj
+ p0V0 = E − V0 �

j=x,y,z
� j� j + p0V0.

�A3�

Here the average pressure p0 is used because the pressure p
is not well defined in the nonhydrostatic case. Since Eq. �4�
holds just for small stress, the integration is performed using
the recursively defined equation

Hi = Hi−1 + �Enh
i − Enh

i−1� + Vi−1 �
j=x,y,z

xj
i − xj

i−1

xj
i−1 pj

i

+ Vi−1�p0
i − p0

i−1� �A4�

where xj are the lattice constants along the three Cartesian
directions x, y, and z, and the difference from the previous
step �i−1� is calculated along a line px− pz=d for fixed non-
hydrostatic conditions �see Fig. 3�, starting from the equilib-
rium structure of the cd phase. Enh is here the total energy
along a line px− pz=d. The last term corresponds to the p0V0
term in Eq. �A3� including a correction because of double
counting. The enthalpy H�p0� under nonhydrostatic condi-
tions with p0= p0�px , py , pz� corresponds to the calculated
points Hi. By symmetrizing this equation numerical errors
have been reduced.
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