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We study the zero-temperature physics of coupled bilayer Josephson junction arrays in the self-dual approxi-
mation in the presence of external offset charges and magnetic fluxes. Using a Landau-Ginzburg formulation
we describe the effect of the electric and magnetic topological excitations on the quantum phase structure of
the self-dual model. Through the condensation of boson fields made up of a whole number of topological
excitations, this approach captures with ease various phases of Josephson junction arrays including the super-
conducting phase and the insulating phase, in addition to quantum Hall phases.
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Two-dimensional arrays of Josephson junctions �JJA� ex-
hibit rich quantum dynamics as a result of the competition
between two characteristic energy scales: the Josephson en-
ergy EJ, associated with the tunneling of Cooper pairs be-
tween neighboring islands, and the charging energy Ec,
which is the energy needed to add an extra charge to a neu-
tral island.1 Furthermore, many interesting quantum phases
emerge in these systems as one introduces the frustration due
to applied magnetic fields and to external offset charges.
Among some possible phases discussed in the literature of
JJA systems are incompressible quantum fluid states corre-
sponding to quantum Hall states for either charges or
vortices.2–6 These proposals are of paramount interest since
they imply the realization of a quantum Hall effect in
bosonic systems, which opens different fundamental theoret-
ical understandings.

In the limit Ec�EJ, Ref. 5 suggests that a dilute Cooper
pair fluid in a magnetic field forms Laughlin-type incom-
pressible states. These states give rise to the quantization of
the Hall conductance, �xy =4e2� /h, where the filling factor �
is the ratio between the charge density q and the magnetic
frustration f . In the opposite limit EJ�Ec, vortices
condense2–4 to form a quantum Hall fluid and the Hall con-
ductivity is also quantized �xy =2m4e2 /h. These studies ex-
ploit the dual role played by vortices and charges and make
use of analogies with the fractional quantum Hall effect in
semiconductor heterojunctions. In the analysis of the latter
systems, quantum or topological order has been extensively
used leading to an elegant explanation of their robust ground
state degeneracy and showing the intimate connection be-
tween the ground state degeneracy and the anomalous statis-
tics of quasiparticles.7

In the context of one-layer JJA networks, the gauge theory
formulation of these systems was developed in Ref. 6 and
was crucial in showing that these systems support naturally
topological ordered states—that Abelian gauge theory gives
rise in the self-dual approximation to a periodic mixed
Chern-Simons term describing/the charge-vortex coupling.
In this frame-work the authors of Ref. 6 also discussed the
Hall phases for charges and vortices in the presence of ex-
ternal offset charges and magnetic fluxes showing how the
periodicity of the charge-vortex coupling can lead to transi-
tions to anyone superconductivity phase.

In Ref. 8 I re-examined the self-dual approximation of

JJA systems in the framework of a new Landau-Ginzburg
theory. I showed that quantum disordering9 of the topological
electric and magnetic excitations in the model describes very
effectively various phases of this system. One major result of
that work is that the quantum Hall phase results from the
condensation of composite boson fields made up of a whole
number of electric and magnetic topological excitations.
Contrary to previous studies,2–5 the approach in Ref. 8 did
not rely on the addition of any Chern-Simons term.

In this paper I extend the same analysis done in Ref. 8 to
bilayer Josephson Junction arrays with the aim of describing
quantum Hall phases and coherent states. An appealing fea-
ture of the coupling two layers of Josephson junction arrays
is that the layer index adds a new degree of freedom which
leads to a rich phase space and the possibility to tune inde-
pendently the interlayer capacitance and thereby to control
the interaction between vortices and charges. Similar capaci-
tively coupled JJA systems have been investigated in Refs.
10 and 11 with the aim of showing the existence of a duality
between charges and vortices. The focus in Ref. 10 was on
the situation where one array is in the quasiclassical �vortex�
regime while the other is in the quantum �charge� regime.
The resulting effective action describes dual charges in one
array and vortices in the other, and in contrast to the one-
layer problem, these are dynamic degrees of freedom. In Ref.
12, I have investigated these bilayer JJA in the regime when
the Josephson coupling is larger than the charging energy.
The vortex dynamics was shown to resemble that of massive
charged particles interacting with gauge fields, and an analy-
sis of the vortices conductance showed on the one hand the
quantization of the Hall conductance in each layer and the
Hall drag conductance. On the other hand, the longitudinal
vortex conductivity exhibited an enhanced drag effect, result-
ing into two mirror currents involving pairs of vortices and
antivortices bound by the electrostatic energy coupling ca-
pacitance CI.

Contrary to previous studies, here the coupling between
the two layers is introduced by imposing from the outset a
self-duality between the charges and vortices. The resulting
charge-charge correlations comprise intralayer and interlayer
interactions that are similar to those introduced in Refs.
10–12, as well as intralayer and interlayer vortex-vortex in-
teractions that emerge from the high degree of symmetry in
the model. The resulting dynamics is rich and leads to a large
class of possible states.
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I consider a bilayer JJA system in the limit where the
nearest-neighbors capacitance C dominates the self-charging
capacitance C0. I include an external magnetic field Bext to
induce vortices in the system, and I allow for offset charges
on the superconducting grains Qx=2en̄x. I model this system,
in the self-dual approximation, with an effective Abelian
gauge theory describing the fluctuations of charges and vor-
tices. Similar to the one-layer JJA system,6 the self-dual ap-
proximation consists of enlarging the near-duality between
the charge and vortex degrees of freedom by adding a bare
kinetic term for the vortices. Together with the already exist-
ing kinetic term for the charges, these two kinetic terms con-
tribute to form two standard Maxwell terms for the two ef-
fective gauge fields embodying the original degrees of
freedom. Assuming self-duality between charges and vorti-
ces from the start might be seen as a strong statement and
warrants some justifications. First one remarks that a kinetic
term for the vortices is inevitably induced in the effective
action of the system once one integrates out the charge de-
grees of freedom. Furthermore, one would expect such an
approximation to be valid at low energies compared to the
two relevant energy scales in the model �E�EC ,EJ� given
that the duality-breaking terms are suppressed in that energy
regime. Alternatively, one might adopt a drastic viewpoint:
imposing self-duality allows a suitable gauge theory repre-
sentation of the model of interacting charges and vortices,
and generates especially in the bilayer JJA system the most
general interactions between the charges and the vortices.
Moreover, in the absence of small parameters to help with
the analysis of strong correlations in quantum Josephson ar-
rays, the exploitation of self-dual symmetry and the associ-
ated simplification related to the low-energy limit turn out to
be very useful theoretical tools for analyzing these systems.

For the bilayer JJA system, the continuum model is for-
mulated in terms of four gauge fields a�

��� and b�
���, �

=0,1 ,2 is the gauge field component index, and �=1,2 is
the layer index. These fields describe the conserved currents
of charges � 1

2��	��
��b

���, and the the conserved currents of

vortices � 1
2��	��
��a


���.12 As stated above the coupling be-
tween various degrees is imposed by the self-dual symmetry.
Here, we generalize the procedure adopted in Ref. 6 for the
one-layer JJA to the case of a bilayer JJA. The resulting
dynamics is governed by the imaginary-time Lagrangian

L =
�1

2
�f i

����2 +
�2

2
�Fi

����2 + i���b�
��� + b̄�

����	��
���a

��

+ ā

��� + ia�

���Q�
��� + ib�

���M�
���, �1�

where f i
���=	ij�� jbo

���−�obj
����, Fi

���=	ij�� jao
���−�oaj

����, and

the background gauge potentials ā��� and b̄��� account for the
frustration due to an external magnetic field Bext and to offset

charges n̄q, and are defined by ā0
���=0, �oāj

���=0, b̄0
���=0,

�ob̄j
���=0, �� Ù ā�1�=�� Ù ā�2�=−2eBext, and �� Ù b̄���=2�n̄q

���.
The coupling constants �1 and �2 are related to the Joseph-
son energy and to the charging energy �1=1/ �4�2EJ�, �2

=1/ �8Ec�, and �� in the mixed Chern-Simons term is a
symmetric matrix that we define below.

The Lagrangian in Eq. �1� displays a high degree of sym-

metry between the charges and the vortices in both layers.
The intralayer and interlayer charge-charge and vortex-
vortex interactions can be made more explicit after integrat-
ing over the temporal components ao

��� and bo
���. In the Cou-

lomb gauge such an integration gives

Lcharge-charge =
�2e�2

2
�n��� + n̄q

�����C−1���n�� + n̄q
��� , �2�

Lvortex-vortex = 2�2EJC����� + �̄��C−1������ + �̄� , �3�

where 2�n���=�� Ùb�� is the charge density, 2�����=�� Ùa��.

In momentum space, the inverse matrix Ĉ−1 is related to the

matrix �̂ appearing in Eq. �1� as Ĉ−1=4�2 / �q2C��̂2 and is
given by

Ĉ−1 =
1

�CI + Cq2�2 − CI
2�CI + Cq2 CI

CI CI + Cq2 � , �4�

here C is the capacitance of the junction assumed to be the
same in each array, and CI is the interlayer capacitance be-
tween each island in one array coupled parallel to one island
�straight coupling� in the other array. Note that the interlayer
capacitance CI not only couples the layers, but also intro-
duces a self-capacitance of each island to the ground.

The mixed Chern-Simons term encodes the interaction
between the charges and the vortices. It describes both the
Lorentz force exerted by the vortices on the charges and the
magnus force exerted by the charges on the vortices. The
variables Q�

��� and M�
��� represent the topological electric and

magnetic excitations in the model. In the case of one-layer
JJA, these degrees were introduced in the lattice model6 to
guarantee that the currents of charges and the current of vor-
tices are integers. Equation �1� shows that the moving par-
ticles associated with the current Mi

��� see a “magnetic field”

��	ij�i�b̄j
��+bj

��� equal to the sum of the density of bosons
and a fluctuating field. Similarly, the moving particles asso-
ciated with the current Qi

��� see a “magnetic field”
��	ij�i�āj +aj

� equal to the sum of the density of fluxes and
a fluctuating field. In the rest of the paper we shall investi-
gate the role of these topological excitations and their effect
on the phase structure of this model.

Next using standard U�1� particle-vortex duality,8,13 we
introduce four complex scalar fields �C

��� and �M
��� to create

and annihilate the topological excitations Q�
��� and M�

��� by
elaborating the description in �1� to a Landau Ginzburg
theory
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�� + i
e

�
b�

���	��
��A
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The potential V��C,M
��� � can be expanded as V���=r���2

+u���4+¯, and describes the short distance physics con-
tained in the original theory �1� defined on the lattice. As
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usual these scalar fields are minimally coupled to the fluctu-
ating gauge fields a�

��� and b�
���, and also to background fields

ā� and b̄�
��� that account for the frustrations in the system.

The last term in Eq. �5� couples the current charges with an
external probing electromagnetic field A�

���.
This dual Landau-Ginzburg representation is convenient

to study bilayer JJA systems since its phase structure can be
analyzed by considering the condensation of various fields.
For example, we can consider a phase in which the topologi-
cal charge excitations are absent in the ground state, which
corresponds to taking r large and positive in the above
Landau-Ginzburg description, or a phase in which these de-
grees created by �C proliferate and condense: ��C	�0.
More generally, one can consider a situation in which the
lowest energy excitation is a composite consisting of n���

excitations in �C
��� and m��� excitations in �M

���, �
n,m�

��C
n�1�

�C
n�2�

�M
m�1�

�M
m�2�

, where n��� and m��� are integers. In this
case we write an effective action as
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To analyze this effective action, we find it convenient to
diagonalize the gauge part of the Lagrangian by using the
linear transformation a�

���= �X�
���+Y�

�����1 /�2, b�
���= �X�

���

−Y�
�����2 /�1 and by working with the symmetric and anti-

symmetric combinations X�
± = �X�

�1�±X�
�2�� /2, Y�

±

= �Y�
�1�±Y�

�2�� /2. In terms of the new gauge fields the qua-
dratic gauge part of the Lagrangian becomes in the long
wavelength
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1

2��J
��iX0

+ − �0Xi
+�2 +

i

2�
X�

+	��
��X

+

+
1

2��J
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where �J=8ECEJ is the Josephson plasma frequency. Note
that the symmetric fields X�

+ and Y�
+ have Chern-Simons

terms with opposite coefficients and describe modes with
mass equal to the Josephson plasma frequency.

When there is no condensate, ��
n,m�	=0, for all n��� and
m��� we may drop the topological part of the action and
integrate out the remaining quadratic terms in X�

± and Y�
± to

achieve an effective action describing the dynamics of the
probing electromagnetic field. Varying with respect to A�

±, we
obtain the response functions

�xy
± = 0, �xx

+ = 0, �xx
− = 4e2EJ

i

�
. �8�

So in this model a phase with zero condensates corresponds
to an insulator state with interlayer coherence as evident
from the zero frequency singularity.

On the other hand, when the scalar fields condense, one
can explore a large number of possible states. Here we focus
on the special case when there is a condensation of compos-
ite fields formed by n modes in the symmetric charge and m
modes in the symmetric vortex part. We further require that
the resulting composite fields see a zero background field

nāi
++mb̄i

+=0, which in terms of the total density of offset
charges n̄q= n̄q

�1�+ n̄q
�2� and external flux quanta n̄�, translates

into a filling factor �= n̄q / n̄�=2n /m. As a result of the con-
densation, the Anderson-Higgs effect takes place and the
gauge field na�

+ +mb�
+ acquires a mass justifying a mean-field

Landau-Ginzburg analysis. After integrating out all fluctuat-
ing gauge fields, we obtain an effective action of the electro-
magnetic field A


± from which we derive the response func-
tions of the resulting phase

�xy
+ =

e2n

�m
, �xx

+ = �2�n�1

m
�2

i� → 0, �xx
− = 4e2EJ

i

�
.

�9�

These equations show that the conductivity of bilayer JJA
has the properties of the conductivity matrix of a quantum
Hall effect �QHE� system, namely, a zero longitudinal con-
ductivity and a quantized Hall conductivity. Furthermore, the
zero frequency singularity in �xx

− indicates that the bilayer
JJA system is coherent.

In summary, I have used the charge-vortex duality to ex-
tend a Landau-Ginzburg theory for bilayer Josephson junc-
tion arrays to discuss quantum Hall states and the interlayer
coherence. This approach has the advantage of analyzing a
large class of possible states. Some results obtained here con-
firm recent ones derived using a completely different
approach.12 I now comment briefly on the difference between
both approaches. First, in Ref. 12 the bilayer Josephson junc-
tion array system was considered in the regime EJ�EC and
the quantum Hall effect was argued from the dynamics of
vortices only. Second, that analysis relied on the introduction
of a Chern-Simons term that attaches an even number of
fictitious cooper pairs to each vortex. The mean-field state
achieved consisted of transformed bosons �composites of
vortices and effective flux tubes� in zero magnetic fields due
to the cancellation between the effective magnetic field asso-
ciated with offset charges and the Chern-Simons magnetic
field average.

The approach here is more general, it treats both types of
excitations �electric and magnetic� on an equal footing by
considering composite fields that describe both type of exci-
tations. The filling factor conditions �=2n /m emerge in a
natural way by requiring that the background field seen by
the composite fields to be zero; this is to be contrasted with
the Gauss law constraint resulting in a theory with a Chern-
Simons gauge field added. Here no Chern-Simons term is
added; I simply exploit the condensation of composite
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bosons of electric and magnetic topological excitations to
capture with ease various phases of the model. In this paper
effects of irregularities and randomness in the JJA system
were not included. These may suppress the quantum Hall
phase found here just as disorder extinguishes the FQHE in
two-dimensional electron systems. This will be the subject of
a future investigation. Finally, up to now there is no experi-
mental evidence for the quantum Hall effect in Josephson
arrays. Still the measurements of Ref. 14 indicate that the
Hall effect in these systems is more complicated but exhibits
some interesting characteristics such as a periodic Hall resis-
tance with respect to the applied magnetic field and a larger

Hall angle consistent with the expectation that the offset
charges are responsible for the Hall effect. Notwithstanding
experimental challenges, the observation of a Hall voltage in
Josephson junction arrays requires very low temperature and
the parameters of the array should be such that a balance is
achieved between the charging energy and the Josephson en-
ergy EC�EJ. This is crucial since in a strongly supercon-
ducting array �EJ�EC� any Hall probes would be shorted
leading to a zero Hall voltage. Whereas in an array with a
strong Coulomb blockade �EC�EJ�, the whole array is insu-
lating and therefore the Hall probes are effectively discon-
nected, and no Hall voltage can be measured.
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