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Numerical estimate of the finite-size corrections to the free energy of the Sherrington-
Kirkpatrick model using Guerra-Toninelli interpolation
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I use an interpolation formula, introduced recently by Guerra and Toninelli, in order to prove the existence
of the free energy of the Sherrington-Kirkpatrick spin glass model in the infinite volume limit, to investigate
numerically the finite-size corrections to the free energy of this model. The results are compatible with a
(1/12N)In(N/N,) behavior at T,, as predicted by Parisi, Ritort, and Slanina, and a 1/N*? behavior below 7.
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Many years after their experimental discovery, spin
glasses remain a challenge for experimentalists, theoreti-
cians, and more recently computer scientists and mathemati-
cians. Numerical simulations have been used heavily in order
to investigate their physical properties. Numerical simula-
tions are obviously limited to finite systems. Simulations of
spin glasses are indeed limited to very small systems due to
the need to repeat the simulation for many disorder samples
(this is related, at least for mean field models, to the lack of
self-averaging), and to the bad behavior, as the system size
grows, of all known algorithms. A detailed understanding of
finite-size effects of spin glass models is accordingly highly
desirable. The problem is also interesting for its own sake.'™

Here I study the finite-size behavior of the Sherrington-
Kirkpatrick model* (SK model), a well known infinite con-
nectivity model, introduced originally in order to have a
solvable starting point for the study of “real” finite connec-
tivity spin glasses, and that turned out to have a complex
fascinating structure, to the point of becoming® “a challenge
for mathematicians.”

The partition function of the N sites Sherrington-
Kirkpatrick model is as follows:

Zy= exp(— NfNT(T)> = exp(% > Ji,jaicr')’

{0} VNT 1<i<j=n

where T is the temperature, the ¢;’s are Ising spins, and the
Ji;’s independent, identically distributed, Gaussian random
numbers with zero mean and unit square deviation. In the
paramagnetic phase, the finite-size behavior of the disorder-

averaged free energy fy(7) can be computed, using the rep-

lica method, as an expansion in powers of 1/N, as shown by
Parisi, Ritort, and Slanina.! One starts from the equation®
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where 7=(7?-1)/2, the field § is a real symmetric nXn
matrix, with g,,=0. The matrix g has been rescaled by a
factor 1/7? (namely §=g/T?), and the terms of order §° and
higher have been omitted from the effective Hamiltonian
H(Z)- In the paramagnetic phase, one can expand the inte-
grand around the saddle point g, ,=0. Keeping the quadratic
term only in H, one obtains

M:-lnz—%—iln(zﬂﬂ). (3)
T AT- 4N

Treating perturbatively the interaction terms in H one
builds' a loop expansion for the finite-size corrections to the
free energy. The k loops term scales likes 1/N¥, with the
most  diverging  contribution as T—1 [namely
«1/(N*7%1)] coming from the order §° term in the Hamil-
tonian. Summing up these contributions, one obtains' at the
critical temperature

=1 _ I N fiy
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The computation1 of the constant f_;) requires a nonper-
turbative extrapolation. The various prescriptions tried for
this extrapolation unfortunately gave quite different values
for f(_y), in the approximate range [-0.2,+0.2].

It is not known how to extend the above analysis to the
spin-glass phase below T.. Numerical works indicate that the
ground state energy (or zero temperatures internal energy)
scales like’!"! ey—e,x N3 (this result is exact for the
spherical SK model'?), like the internal energy at T..!

In this Brief Report, I show a numerical method to com-
pute the finite-size corrections to the free energy of the
Sherrington-Kirkpatrick model based on the Guerra-
Toninelli interpolation method.!? Guerra and Toninelli intro-
duced the partition function
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that involves a parameter ¢ that interpolates between the SK
model with N sites (r=1) and a system of two uncoupled SK
models with N, and N,=N-N, sites (#=0). In what follows
N;=N,=N/2. The Js, J's, and J"s are independent identi-
cally distributed Gaussian random numbers. It is easy to
show that

f f 1
St=s dz (q1)* - —<q<”>2 (q%)ﬁ
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= —2f drD(t), D) <0, (6)
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The right-hand side of Eq. (6) can be evaluated with a
Monte Carlo simulation. I use the parallel tempering algo-
rithm, with T € [0.4,1.3] and uniform AT=0.025. A total of
2 10° sweeps of the algorithm was used for every disorder
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FIG. 1. (Color online) Minus D(z) as a function of the interpo-
lation parameter ¢ (both in logarithmic scale) for N=1024 and tem-
peratures 0.4,0.6,...,1.2
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FIG. 2. (Color online) D(r)/D(t=0) as a function of tN*? (both
in logarithmic scale) for 7=0.6. The orange line (solid line) shows
the 1/x behavior; the blue line (dotted line) shows the 1/x*? be-
havior Clearly D(¢) grows faster than 1/x for large x. The precise
behavior of D(r) is not essential for my argument as soon as it
decays faster than 1/x.

sample. The quenched couplings have a binary distribution
in order to speed up the computer program (as shown in Ref.
1, the leading finite-size correction is the same for the binary
and Gaussian couplings). Systems of sizes N from 128 to
1024 have been simulated with 128 disorder samples for
each system size (but for N=1024, where 1 used 196
samples). The integration over ¢ was done with the trapezoi-
dal rule, with 39 nonuniformly spaced points. Integrating
only half of the points makes a very small effect on the
integrand (smaller than the estimated statistical error).

Figure 1 shows the integrand D(¢) as a function of 7 for
the largest system and several temperatures. The integrand is
concentrated around #=0, and I have chosen the discretiza-
tion of ¢ accordingly. One notices that D(r=0) is more and
more negative as T decreases, as predicted by the formula
D(t=0)=—{(g,)?), and that D(t=1) is weakly dependent on
T, as expected from the identity D(t=1)=1/(N-1)({(g1,)?)
—1), which is weakly dependent on T (for not too small 77s)
since {(g,,)*) is small compared to one.
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FIG. 3. (Color online) D(r)/D(t=0) as a function of tN'? (both
in logarithmic scale) for T=T.. The orange line (straight line) shows
the expected 1/x behavior in order to guide the eyes.
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FIG. 4. (Color online) Numerical data for (fy—fyn)/T as a
function of 1/N?3, together with a numerical fit to the data of the
form (fy—fyn)! T=—A/N?? with A=0.82+0.02 (blue dotted line).
Here 7=0.4, N=128, 256, 512, and 1024.

In the low T phase, a remarkable scaling is observed if
one plots the ratio D(f)/D(t=0) as a function of tN*?3, as
shown in Fig. 2. It means that, to a good approximation, one
has D(t)/D(0)=F(tN*3), with F(x) decaying faster than 1/x
for large x, making the integral in Eq. (6) converge. One has,
accordingly, in the low T phase fy—f.*1/N*3 A
temperature-independent exponent 2/3 for the free energy is
in contradiction with the claims of Ref. 14 that the internal
energy scales like ey—e., 1/N*D, with an exponent x(T)
that is compatible with 2/3 for both 7=0 and T but reaches
a minimum =0.54 between. The results of Ref. 14 are based,
however, on Monte Carlo simulations of relatively small sys-
tems with N up to 196. Analyzing the data for the internal
energy produced during the simulation of Ref. 15, which
include systems with up to 4096 spins, one finds'® an expo-
nent that is much closer to 2/3, with deviations that are
presumably explained by the proximity of the critical point
and by the very slow convergence of the expansion of ey
—e,, in inverse powers of 1/N (at T,, the expansion param-
eter is' 1/N'?).

The situation is different at 7., as shown in Fig. 3; the
ratio D(¢)/D(t=0) scales with a different exponent, such as
F(tN'3), with a large x behavior compatible with F(x)
o 1/x (although much larger system sizes would be needed
in order to be sure that the system really approaches this
asymptotic behavior). This is in agreement with formula (4)
(in this model one has B/v=2). The data presented at T,
(Figs. 3 and 5) include the results of an additional simulation
of a system with N=2043 sites, limited to the (inexpensive to
simulate) paramagnetic phase, with Te[1.0,1.3], AT
=0.025, with 128 disorder samples, and a 15 point discreti-
zation of .

Figure 4 shows, as a function of 1/N?? my estimates,
after integrating numerically Eq. (6), of (fy—fnn)/T at T
=0.4, compared to the result of a linear fit (fy—fn)/T
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FIG. 5. (Color online) Numerical data for (fy—fy)/T as a
function of 1/N, together with the behavior implied by the equa-
tion: fy/T=f./T+1/(12N)InN/N,. The orange line (solid line) is
drawn with the value Ny=1. The blue line (dotted line) is drawn
with the value 1/7.8 from a fit to the data. Here 7T=1, N
=128,256,...,2048.

=—A/N"?3, with A=0.82+0.02 and x*>=4.9. The agreement
is good within estimated statistical errors. A similar agree-
ment is obtained for other values of 7 in the spin glass phase
(e.g., A=0.39+0.01 with x*>=3.6 for T=0.6, and A
=0.18+0.01 with xy*=33—a large value presumably related
to the proximity of the critical point—for 7=0.8). Figure 5
shows my estimates for (fy—fy;)/T at T, as a function of
1/N, together with the prediction of Eq. (4). A good agree-
ment (with x>=4.3 if one excludes the N=128 data from the
fit) is obtained using the value 1/Ny=7.8+0.2, namely f_,,
=In(7.8)/12=0.17..., within the range of results presented
by Parisi, Ritort, and Slanina.'

In conclusion, I have shown that the Guerra-Toninelli in-
terpolation provides an efficient method to evaluate numeri-
cally the finite-size corrections to the free energy of the
Sherrington-Kirkpatrick model. The integrand D(r) exhibits
a remarkable scaling as a function of the interpolation pa-
rameter ¢ and system size N. At the critical temperature, the
results for the free energy are in agreement with the pre-
dicted (1/12N)In(N/N,) leading behavior of the finite-size
corrections, and give the estimate Ny=1/7.8. In the low
temperature phase, the results indicate that the leading cor-
rections behave like N2 for both the internal energy and
the free energy of the model.
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