
Theoretical model of intrinsic hardness

Faming Gao*
Department of Chemical Engineering, Yanshan University, Qinhuangdao 066004, China

�Received 1 July 2005; published 26 April 2006�

Intense theoretical and experimental interest has been focused on the possibility of new materials with
hardness exceeding that of diamond. However, building the link between the information that first-principles
calculations can produce and the hardness of materials remains one of the challenges of computational mate-
rials science. In this paper, a calculated method of hardness based on the Mulliken overlap population analysis
in first principles has been presented. In particular, the effects of stress strain on intrinsic hardness were
studied, and a formula of hardness under stress is established. It can be employed to explain the hardening
phenomenon resulting from the stress of film and grain boundary and nanoeffects. The theoretical results
revealed that nanodiamond films obtained by careful experiments can be harder than bulk single-crystal
diamonds.
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The search for new materials in hardness comparable to
that of diamond is of great interest in modern science and
technology.1–8 Over the past two decades, the quest for hard
materials has had to be simplified to a search for materials
with a large bulk modulus or shear modulus, which can be
evaluated directly by first principles. In fact, there is no one-
to-one correspondence between hardness and other proper-
ties. Hardness is different from the bulk modulus or shear
modulus.4 Superhard materials can be divided into the in-
trinsic superhard materials, in which hardness is mainly
defined by the bonding and the extrinsic superhard materials,
in which hardness is mainly determined by their
microstructure.9 It is accepted generally that the hardness of
a perfect crystal is intrinsic and that of nanocrystalline and
polycrystalline is extrisic. The recent works hunting new su-
perhard materials indicate that the synthesis of materials with
intrinsic hardness exceeding that of diamond is unsuccessful.
But the materials with extrinsic hardness exceeding that of
diamond were reported frequently.8–10 Since the nonequilib-
rium systems such as thin films with high stress and nano-
composites could be a more fruitful route in the hunting for
new superhard materials,8–10 it is of ultraimportance to elu-
cidate the correlation between the stress strain and hardness.
Anyway, the first key step of designing intrinsic or extrinsic
ultrahard materials is to understand deeply the origin of in-
trinsic hardness on the atomistic level and to calculate accu-
rately the values of intrinsic hardness. Although Ref. 11
sheds more light on the origin of the hardness of covalent
crystals, a calculated method based on first principles is de-
sirable. According to Ref. 11, the hardness of a covalent
material is determined by two factors: the number of bonds
per unit area and the strength of bonding. Ultimately, the key
issue is how to characterize the strength of bonds. Ding
et al.,12 Wu et al.,13 and Y. Zhang et al.14 tried to characterize
the strength of bonds using surface energy, elastic modulus,
and tensile strength, respectively. However, since atomic
bonds are broken in the process of indentation, it certainly
cannot be fully characterized with elastic parameters alone.
And the tensile stress on the bonding is not the compres-
sional stress, it far deviate from the indentation reality for the
hardness measurement. It is also difficult to determine ex-
actly the distribution of electron density in various bonds in

crystals by using the empirical method. The current standard
model is based on an ab initio approach requiring no experi-
mental input. In this paper, our aim is establishing a method
calculating hardness from the information of first-principles
calculations and the correlation between stress strain and
hardness.

A technique for the projection of plane-wave states onto a
localized basis set is used to calculate atomic charges and
bond populations by means of a Mulliken analysis.15,16 The
integration of the electron probability distribution function
��r� leads to
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TABLE I. The hardness and the Mulliken bond overlap popula-
tion P of crystals with a zinc blende structure, where Hvcalc and
Hvexp are the calculated hardness and the experimental Vickers
hardness, respectively. The experimental Knoop hardness is dis-
played as a comparison.

vb �Å3� P Hvcalc Hvexp �GPa�

Diamond 2.836 0.75 97.7 100.6a, 96±5b, 60–150c, 90d

Si 10.010 0.74 11.8 12e, 14d, 11.3f

Ge 11.318 0.54 7.0 7.2a, 8.8d, 11.3f

Sn 17.084 0.67 4.4 4.5d

SiC, 5.138 0.69 33.1 26–37c, 28±3b, 24.8d

BN 2.953 0.65 79.1 95–100a, 46–80c, 63±5b

BP 5.841 0.75 29.3 33c, 33±3b, 32d

BAs 6.813 0.73 22.1 19f

AlP 10.124 0.63 9.8 9.4d

AlAs 11.346 0.62 8.0 5.0d

AlSb 14.435 0.65 5.6 4.0d

GaP 10.120 0.63 9.8 9.5d

GaSb 14.154 0.55 4.9 4.4d

InP 12.633 0.57 6.2 5.4d

InAs 13.898 0.51 4.7 3.8d

InSb 16.997 0.57 3.7 2.2d

aReference 19.
bReference 2.
cReference 4.

dKnoop hardness from Ref. 20.
eReference 21.
fKnoop hardness from Ref. 22.
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TABLE II. A hardness and a Mulliken bond overlap population P� of typical hard crystals, where Hvcalc
� and Hvexp are the calculated

hardness and the experimental Vickers hardness, respectively. The experimental shear modulus G and bulk modulus B have been displayed
as a comparison.

d� �Å� vb
� �Å3� P� Hv

� Hvcalc Hvexp�GPa� G�GPa� B�GPa�

Diamond 1.544 2.836 0.75 97.7 100.6a, 96±5b 535b 443b

Londsdaleite 1.546 2.843 0.43 66.4 66.4 60–70c 382c

�Hexagonal C� 1.546 2.843 0.85 131.2
C60�3D�d 1.613 5.749 0.64 34.4 34.4 30d

Beta-C3N4
c 1.456 3.602 0.69 60.4 60.4 320b 437b

1.448 3.543 0.69 62.1
1.447 3.537 0.82 74.0

Cubic-C3N4
e 1.461 3.276 0.85 87.1 87.1 332b 496b

Beta-BC2Nf 1.564 2.940 0.60 73.6 73.6 76±4g 445b 408b

1.562 2.672 0.61 75.3
1.573 2.929 0.71 84.7
1.515 2.991 0.83 119.4

Cubic BN 1.568 2.953 0.65 79.1 46–80c 409c 368–401c

Wurtzite BN 1.575 3.008 0.35 49.6 49.6 50–60c 330c 390c

1.555 2.895 0.74 111.2
BP 1.966 5.841 0.75 29.3 33c, 33±3b 174c 169c

B13C2
h 1.798 2.913 0.47 58.6 58.6 56–58a, 57c 203c

B4Ci 1.784 2.841 0.39 50.7 50.7 49.5a, 42–49c 201c 200c

B6Oj 1.834 3.056 0.38 43.7 43.7 45k, 35±5a,b 204c 200c

�-Boronl 1.811 2.237 0.15 29.0 30–34c 170c

B12N2Bem 1.780 2.716 0.44 61.6 61.6
1.800 2.809 0.54 71.5
1.768 2.662 0.56 81.1
1.724 2.468 1.08 177.5
1.723 2.463 0.64 105.5
1.547 1.783 0.57 160.9
1.518 1.685 0.79 245.2

WC 2.197 3.457 0.38 35.6 35.6 32c,30±3b 269c 421c

Alpha-SiC 1.900 5.281 0.43 26.2 26.2 21–29c 200c 221c

1.885 5.155 0.77 48.7
Beta-SiC 1.887 5.138 0.69 33.1 26–37b, 28±3c 173c 210c

Gamma-Si3N4
n 1.889 3.856 0.48 37.5 37.5 30–43o

1.823 3.468 0.73 68.0
Beta-Si3N4 1.752 6.270 0.58 20.2 20.2 21±3c,b 123c 249c

1.705 5.780 0.60 23.9
1.739 6.132 0.71 25.5

Al2O3 1.969 3.847 0.28 22.0 22.0 22±2b, 20–27c 160c 246c

1.856 3.226 0.35 36.8
SiO2�Stishovite� 1.809 4.043 0.35 25.3 25.3 33±2c,b 187c 305c

1.757 3.706 0.42 34.7
Alpha-SiO2 1.615 9.528 0.51 8.8 8.8 11.3a,8.2�K�p

1.60 9.267 0.55 10.0
RuO2 1.989 4.780 0.36 19.7 20�K�q 150q 400q

BeO 1.675 3.560 0.17 15.2 15.2 10–15c 159c 250c

1.64 3.341 0.51 50.2
alpha-AlN 1.886 5.125 0.24 11.7 11.7 12±1b 128b 203b

1.870 4.997 0.59 29.8
alpha-GaN 1.961 5.709 0.29 11.8 11.8 12±2b 120b 210b

1.921 5.366 0.62 27.9
TiO2 1.980 5.325 0.26 11.9 11.9 12r

1.948 5.073 0.39 19.1
SnO2 2.056 5.961 0.32 12.1 12.1 11.1a

2.052 5.957 0.38 14.2
m-ZrO2 2.285 5.917 0.25 9.6 13rp, 11.6�K�
Y2O3 2.344 6.705 0.23 7.1 7.1 7.5�K�s
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where P�� is elements of the density matrix, �� is basis
functions, and S�� is the overlap matrix. The sum of nondi-
agonal components of Eq. �1� is referred to as overlap popu-
lation P. The Mulliken population analysis can help us allo-
cate the electrons in some fractional manner among the
various parts of bonds. Segall et al.16 found correlations of
the overlap population with covalency of bonding and bond
strength. Reference 17 indicated that the overlap population
is a convenient way to quantify the strength of bonding in
first principles.

In our opinion, the strength of the bond can be character-
ized by using average overlap populations per the unit vol-
ume of bond. Based on this idea, the hardness of crystals is
express as follow:

Hv = ANa�� ��r�d�/� d�� �2�

or simplified as

Hv = ANa�P/vb� , �3�

where Na is the covalent bond number per unit area, A is a
proportional coefficient, P is the Mulliken overlap popula-
tion, and vb is the bond volume. For the crystals with dia-
mond structure, there are 16 bonds in a cell with the cell
volume V, the bond volume can then be expressed as vb�
V /16. Na can be expressed as �16/V�2/3 or vb

−2/3. Thus, their
hardness should have the following form:

Hv�GPa� = APvb
−5/3 �4�

In order to calculate Mulliken population, we have carried
out electronic structure calculations using the CASTEP code in
the framework of density functional theory with the Material
Studio.18 The interactions between the ions and the electrons
are described by using ultrasoft Vanderbilt pseudopotentials
and the electron-electron interaction is treated within the lo-
cal density approximation by the Ceperley-Alder exchange
correlation potential. For the zinc blende structure, the cal-
culations were performed using an energy cutoff of 330 eV
for the plane-wave basis set and converged with respect to
the k-point integration. The Brillouin zone is sampled on a
�888� Monkhorst-Pack k-point mesh. The technique for the
projection of plane-wave states onto a linear combination of
an atomic orbitals basis set was used to perform Mulliken
population calculations. The calculated Mulliken’s bond

overlap populations of crystals with zinc blende structure
were listed in Table I. According to diamond, the value of the
proportional coefficient A in Eq. �4� is suggested as 740. The
hardnesses of other crystals were also calculated using Eq.
�3� and listed in Table I. For complex multibond compounds,
the hardness of the �-type bond can be calculated as follows:

Hv
��GPa� = AP��vb

��−5/3, vb
� = �d��3/�

�

��d��3Nb
�� , �5�

where P� is the Mulliken overlap population of the �-type
bond, vb

� is the volume of a bond of type �,23 d� is the
bondlength of type �, and Nb

� is the bond number of type �
per unit volume. The calculated hardness Hv

� of a �-type
bond of some crystals were listed in Table II, and since there
are many bonds for compounds such as m-ZrO2 in Table II,
their Hv

� have been displayed in Fig. 1. From Table II and
Fig. 1, it can be seen that the calculated value of hardness of
the weakest bond is more close to the measurement value.
We agree to the supposition that breaking the bonds will start
from softer ones when there are differences in the strength
among different types of bonds. In other words, the weakest
bond plays a determinative role in the hardness of materials.
Because the Mulliken population analysis in the first-
principles technique can describe exactly the distribution of
electron density in various bonds and a high overlap can also

TABLE II. �Continued.�

d� �Å� vb
� �Å3� P� Hv

� Hvcalc Hvexp�GPa� G�GPa� B�GPa�

c-Zr3N4
t 2.488 3.789 0.11 8.8 8.8

2.192 2.591 0.42 63.6
c-Hf3N4

t 2.474 3.725 0.12 9.9 9.9
2.179 2.544 0.58 90.6

aReference 19.
bReference 2.
cReference 4.
dOne of the three-dimensional-
polymerized fullerites from Ref.
24.

eReference 25.
fReference 11.
gReference 26.
hReference 27.
iReference 28.
jReference 29.

kReference 30.
lReference 31.
mReference 32.
nReference 6.
oReference 33.
pKnoophardness from Ref. 20.

qKnoop hardness from Ref. 3.
rReference 21.
sReference 34.
tKnoop hardness from Ref. 35.

FIG. 1. �Color online� Correlation between calculated hardness
Hv

� and a bondlength of a �-type bond of some crystals.
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indicate a low degree of ionicity in the bond, the present
method provides more excellent results for the compounds
listed in the table, especially �-SiO2 and compounds with
Wurtzite structure �such as hexagonal C, BN, SiC, AlN, and
GaN�, than that of calculating by the empirical method of
Ref. 11. Although the atomic coordination of compounds
with Wurtzite structure such as hexagonal C, BN, SiC, AlN,
and GaN are the same as that of cubic diamond, but their
four coordinations are not equivalence and a bond with a
smallest Mulliken population is remarkably weaker than the
other three bonds, which cannot be addressed by the empiri-
cal method presented in Ref. 11. From Table II, it can be
seen that their lower hardness rather than the cubic diamond
structure results just from the weakest bond with the smallest
overlap population. In particular, although the longest bond
1.456 Å/ in �-C3N4 is shorter than the C-C bond in cubic
diamond, its Mulliken population is obviously smaller than
that of diamond. Thus the predicted hardness of �-C3N4 is
even less than that of c-BN.

Now, we study the effect of hydrostatic stress on intrinsic
hardness. According Ref. 36, the volume after strain withap-
plied pressure 	 can be calculated using the following:
V�	�=V�0��1+ �B� /B�	�1/B�, where V�0� is equilibrium vol-
ume and B is the bulk moduli and B� is the first pressure
derivatives. Thus the hardness under hydrostatic pressure can
be expressed as

Hv�	� = 740PV�	�−5/3 = 740PV�0�−5/3�1 + �B�/B�	�−5/3B�.

�6�

The residual stress of films is a widespread phenomenon due
to the ion bombardment during the growth. The compressive
stress �even up to 30 GPa �Ref. 37�� can increase the hard-
ness of film. According to Eq. �6�, the hardness of single-

crystal films of diamonds can increases up to 14% as the
stress increases to 30 GPa. For polycrystalline materials, the
presence of grain boundaries �GBs� can produce short-range
stress fields around them. The GBs-induced stress affects the
intrinsic hardness of the crystalline inside the grains. Thus
according to Eq. �6�, it can be readily understood why the
polycrystalline diamond is usually harder than the single
crystal diamond. When the size of grains decrease to nano-
range, the grain boundaries would considerably increase, and
result in a larger GBs-induced stress field. Therefore, the
presence of nanoeffects can remarkably enhance the hard-
ness of materials. Of course, a number of dangling bonds in
the surface of nanograins might also result in the redistribut-
ing of the electron population, further resulting in the change
of hardness. For nanodiamond films, due to the common
existence of residual compressive stress and GBs-induced
stress and nanoeffects, it is not a surprise that nanodiamond
films possess the hardness remarkable higher than that of a
single-crystal diamond.10

In summary, based on the idea that the strength of the
bond can be characterized by using bond overlap population
per unit volume, the first-principles method of hardness was
proposed. It can bring obvious advantages to superhard ma-
terials research because no empirical input is needed. The
effect of pressure on the hardness of materials can be pre-
dicted by an established formula. The correlation between
the stress strain and hardness can provide an understanding
for the mechanical behavior. The approach presented here
would be a step towards a nonempirical basis for predicting
the materials with superhardness exceeding that of diamond.
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