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Controlling the properties of self-assembled nanostructures requires controlling their shape. Size-dependent
shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. To
rigorously test such theories against experiment, quantitative atomistic calculations of edge energies are essen-
tial, yet none exist. I describe a fundamental ambiguity in the atomistic definition of edge energies, propose a
definition based on equimolar dividing surfaces, and present an atomistic calculation of edge energies for Pd
clusters.
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I. INTRODUCTION

A major goal of nanoscience is to control the properties of
functional nanostructures, including, for example, catalyst
particles, quantum dots on surfaces, and inclusions in alloys.
Synthesis at the nanoscale is most commonly achieved by
controlled self-assembly; understanding the energetic factors
governing self-assembly is a critical goal. At the nanoscale,
edge energy is commonly invoked as an important driver for
self-assembly. For example, edge energies are included in
theories for the shapes of snow crystals,1 discussions of sur-
face faceting,2 theories for the shapes of strained Ge pyra-
mids grown on a surface,3 and discussions of Pb inclusions
in bulk Al.4 Generally edge energies are discussed as an im-
portant contributor to the total energy at the nanoscale, yet
there appear to be no first-principles or semiempirical calcu-
lations of edge energies.2 There are two papers which discuss
edge energies in terms of broken bond models.5,6 Other pa-
pers treat edge energies as an independent variable, and dis-
cuss nanoshapes as a function of the edge energy.3,7

Experiments often show changes in the shape of nanoob-
jects as a function of their size. This has been an area of
considerable recent interest resulting in a number of
experimental8,9 and theoretical investigations.10–12 Shape
transitions are commonly attributed to edge energy effects.
Testing these theories requires calculation of quantitative
edge energies from an atomistic model to serve as an input
for continuum calculations of shape transitions. While one
might suppose that atomistic calculation of edge energies
would be routine, I show that there is an ambiguity in the
atomistic definition of edge energies, and discuss a resolution
of this ambiguity.

The problem in defining edge energies is related to the
problem of defining the exact position of an atomic surface
in the direction normal to the surface. This problem is ad-
dressed by the well-known concept of the Gibbs dividing
surface. As Gibbs points out, “It will be observed that the
position of this surface is as yet to a certain extent
arbitrary.”13 Depending on the exact position choosen for the
Gibbs dividing surface, the surface contribution to extensive
properties of the solid will vary. For a single component
system, a common choice of dividing surface is the equimo-
lar surface.14 The equimolar surface is defined so that the
surface contribution to the molar amount of the solid is zero.

Finally, we note that Gibbs has mentioned the possibility of
calculating line properties such as tension at the linear inter-
section between two or more dividing surfaces. To quote
Gibbs, “We may here remark that a nearer approximation in
the theory of equilibrium and stability might be attained by
taking special account, . . ., of the lines in which surfaces of
discontinuity meet. . . . We might recognize linear densities of
energy, of entropy, and of the several substances which occur
about the line.”15 In this paper I describe the application of
such an approach to determine the linear density of energy at
an edge formed by the intersection of two dividing surfaces.

In this paper we will assume that the clusters we are deal-
ing with can be represented by flat surfaces �facets� that in-
tersect forming straight edges. Given this assumption, the
total energy of a polyhedral cluster, with the shape indepen-
dent of edge length, can be written in the form

Etotal = As3 + Bs2 + Cs + D , �1�

where s is the edge length and A, B, C, and D are coefficients
related to the bulk, surface, edge, and vertex energy, respec-
tively. Theories for equilibrium shape, including the Wulff
construction, are based on this assumption of flat facets with
an orientation dependent surface energy.

II. MOTIVATION: MAGNITUDE OF POSSIBLE ERRORS

The purpose of this section is to demonstrate the ex-
tremely large uncertainties that can result from the failure to
rigorously define edge length. We include this section be-
cause implicit assumptions are often made in the definition
of edge energies. Hopefully the reader will be convinced that
this is more than a minor semantic problem, and will be
inoculated against erroneous assumptions which may occur
in more abstract discussions of the subject. The reader may
chose to read this section quickly, continue to Sec. III which
proposes a precise definition of edge length based on
equimolar dividing surfaces, and return to this section as
desired.

We illustrate the problem by considering quantitative cal-
culations for a cuboctahedral cluster. Consider such a cluster
having n atoms along each edge as shown in Fig. 1. First we
calculate the total energy, Etotal�n�, of the cluster using an
embedded atom method �EAM� calculation. Table I gives
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Etotal�n� and the total number of atoms, N, for Pd clusters
with 5�n�9. The next step is to expand the total energy in
powers of the edge length, s, as in Eq. �1� above. From the
coefficients A, B, C, and D, the bulk, surface, edge, and
vertex energies, respectively, can be calculated. The problem
is that to determine these coefficients, a precise definition for
the edge length, s, measured in Å, as a function of n is
essential. The correct way to do this is not obvious, although
it seems reasonable that the correct value would lie some-
where in the range

�n − 1�d � s � nd , �2�

where a is the fcc lattice constant and d=a /�2 is the nearest-
neighbor distance. In order to see how critically important
this is, we will consider three possible choices for s, namely,
s= �n−1�d, s��n−1/2�d, and s=nd. �The exact definition of

the intermediate choice will be given by Eq. �5� appearing
later in this paper�. Figure 2�a� shows a plot of Etotal�s� for
these three definitions of s. For all three definitions least
square fitting gives the same bulk energy coefficient, A=
−0.626 21 eV/Å3. The total interface energy is calculated as

Einterface = Bs2 + Cs + D = Etotal − As3. �3�

FIG. 1. �Color online� A cuboctahedral cluster of Pd atoms hav-
ing n=7 atoms along each edge is shown on the left. A geometrical
cuboctahedron having edge lengths, s, is shown on the right. Theo-
ries such as the Wulff construction, which predict shapes as a func-
tion of surface and edge energies, implicitly assume that the sur-
faces are flat, and that the edges are straight intersections of these
surfaces. The major point of this paper is that defining and calcu-
lating edge energies require a precise definition of s as a function of
n. In Sec. III this function is derived based on the choice of the
geometrical surfaces as equimolar Gibbs dividing surfaces.

TABLE I. Results of embedded atom method calculation of en-
ergies of Pd cuboctahedral clusters. The number n is the number of
atoms on the edge of the cuboctahedral cluster �see Fig. 1�. The
number N is the total number of atoms in the cluster. Etotal is the
total energy of the Pd cluster from an EAM calculation. Since the
atomic positions were relaxed in the total energy calculation,
changes of the total energy due to relaxation of surface and edge
atom positions are included in the total energy. The last column
shows the total energy after subtracting the bulk energy, NEcoh.

n
number of
atoms
on edge

N
total number

of atoms Etotal �eV�
Etotal-NEcoh

�eV�

5 309 −1086.234 121.956

6 561 −2012.793 180.717

7 923 −3357.798 251.132

8 1415 −5199.442 333.208

9 2057 −7615.919 426.951

FIG. 2. �Color online� This figure shows the importance of a
precise definition of the edge length, s= f�n�, as a function of the
number of atoms, n, along an edge. The first graph �a� plots the
calculated total energy as a function of the edge length for three
different definitions of s. The curves labeled “s= �n−1�d” and “s
=nd” represent the limiting definitions �d is the nearest neighbor
distance, see Eq. �2� of the text�. The curve labeled “s��n−0.5�d”
is actually plotted using Eq. �5� of the text to define edge length.
Least squares fitting to a cubic polynomial �Eq. �1�� gives a term
As3, the bulk contribution to the total energy. The second graph �b�
plots the interface energy, defined as Etotal−As3, for the three defi-
nitions of s. We will show in Sec. IV that the value of the interface
energy is reasonable for “s��n−0.5�d”. The other definitions give
interface energies which are much too large and/or incorrect in sign.
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Figure 2�b� shows a plot of Einterface�s� for the three dif-
ferent definitions of s. Only one of these curves gives a sur-
face energy anywhere near the correct value. As we shall
latter verify, the correct value is given by the curve labeled
s��n−1/2�d. The curve for s=nd gives surface energies
that are approximately four times the correct value! The
curve for s= �n−1�d gives surface energies that are approxi-
mately two times the correct value and have the wrong sign!
This shows that the problem of defining the edge length will
be crucial to the definition and calculation of edge energies.

An alternate approach is to begin by subtracting the total
bulk cohesive energy, NEcoh, from Etotal to isolate the inter-
face terms. Here N is the total number of atoms in the cluster
and Ecoh is the bulk cohesive energy per atom. This approach
is standard in slab calculations for surface energies. We show
here that it does not solve the problem of defining the edge
length or allowing calculation of edge energies.

We start with the calculation of Etotal using the embedded
atom method and subtract the bulk energy, NEcoh, from the
total energy. Table I gives numerical values for Etotal-NEcoh
for cuboctahedral clusters having 5–9 atoms on an edge.
Since Etotal-NEcoh is the sum of the surface, edge, and vertex
energies, it can be written as a quadratic polynomial of the
edge length, s,

Etotal-NEcoh = Bs2 + Cs + D . �4�

As before, we must define s before we can fit a polynomial.
We consider the same definitions of s used previously,
s= �n−1�d, s��n−1/2�d, and s=nd. Figure 3�a� shows a
plot of Etotal-NEcoh plotted using these three definitions for s.
These functions are fit by a quadratic polynomial as in Eq.
�4�. For these three definitions of s, the fitting coefficient B is
equal to 0.770 61. From the cubic fit we can also plot the
sum of the edge and vertex, Eedge+Evertex=Cs+D, as shown
in Fig. 3�b�. The edge energy would be �=C /24 and would
be proportional to the slope seen in the plot. Since the slope
of the three lines is very different depending on the definition
of s, the edge energy cannot be calculated without a precise
definition for the edge length.

III. DEFINITION OF EDGE LENGTHS BASED
ON EQUIMOLAR SURFACES

The problem of defining edge lengths is related to the
problem of defining the exact position of the surface of a
solid. The well known concept of the Gibbs dividing surface
is a rigorous solution to the problem. We can place the Gibbs
dividing surface where we like �within reason�, but the value
of surface excess quantities will depend on the position of
the dividing surface. In order to define the edge lengths, we
consider a faceted cluster as being built from intersecting
dividing surfaces, one surface for each facet. The edges are
formed by the intersection of two dividing surfaces and the
vertices are formed by the intersection of three dividing sur-
faces. For the case of a cuboctahedron, Fig. 1 shows the
atomic cluster on the left and the geometrical shape formed
from the assemblage of dividing surfaces on the right. De-
fining the edge length, s, is thus seen to be a problem in
choosing the position of the dividing surfaces.

While the position of a dividing surface is generally arbi-
trary, we will find that the problems described in the previous
section are resolved in a consistent manner by defining the
edge length using equimolar dividing surfaces. To see this,
we refer to Eq. �1�. We know that the total bulk energy, As3,
should equal NEcoh, where Ecoh is the bulk cohesive energy
per atom and N is the total number of atoms. For a cubocta-
hedron formed by dividing surfaces, the definition of a di-
viding surface implies that the total bulk energy is equal to
the constant energy density of bulk palladium, �=4Ecoh/a3,
integrated over the volume of the cuboctahedron formed by
the dividing surfaces, V= �5�2/3�s3. The bulk energy of the

FIG. 3. �Color online� �a� plots the quantity, Etotal-NEcoh, for
three plausible definitions of the edge length, s, defined in the text
and in the caption for Fig. 2. Least squares fitting to a quadratic
polynomial �Eq. �4�� gives a term Bs2, the surface contribution to
the total energy. The second graph �b� plots the sum of the edge and
vertex energy, defined as Etotal-NEcoh-Bs2, for the three definitions
of s. The calculated edge energy would be proportional to the slope
of the lines. The three different definitions of s give vastly different
results for the edge energy. This demonstrates again that a rigorous
and precise definition of the edge length, s, is essential in order to
define and/or calculate the edge energy.
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cuboctahedron formed by the dividing surfaces is V�.
The total number of atoms in a cuboctahedral cluster is
N= �10n3 /3�−5n2+ �11n /3�−1. Substituting these equations
for N, V, and � in the equation NEcoh=V� and solving for s
we find

s = ��3 n3 −
3n2

2
+

11n

10
−

3

10
�	 a

�2

 . �5�

This gives us a precise definition of s, as needed to separate
bulk, surface, edge, and vertex energies. It is will also be
convenient to have a series expansion for s. Expanding Eq.
�5� in a Taylor series gives

s = �n −
1

2
+

7

60n
+ O� 1

n2��	 a
�2


 . �6�

Since we are ultimately interested in calculating energies,
this derivation was based on energy density. A derivation
using number density would be nearly identical, and the final
definition of s would be the same. This means that the divid-
ing surfaces we will use to define s are equimolar surfaces.

IV. CALCULATION OF EDGE AND VERTEX ENERGIES
FOR A CUBOCTAHEDRON

With this definition for s, we can return to the problem of
calculating surface, edge, and vertex energies for the cuboc-
tahedron. We plot Etotal�s� with s defined by Eq. �5�. This is
the curve labeled “s��n−1/2�d” in Fig. 2.

From a cubic fit �Eq. �1�� we get the coefficients A, B, C,
and D which relate directly to the bulk �cohesive� energy, the
surface energy, the edge energy, and the vertex energy. The
log-log plot shown in Fig. 4, plots −As3, Bs2, Cs, and D. We
will now consider each term in order to verify that the bulk
and surface energies agree with standard EAM calculations,
and to obtain numerical values for the edge and vertex ener-
gies.

We consider first the bulk energy term. The cluster least
square fit gives A=−0.626 21 eV/Å3. The volume of the
cuboctahedron is V= �5�2/3�s3 and the energy density of
bulk Pd is �=4Ecoh/a3. The EAM functions used were fitted
to give Ecoh=3.91 eV and a=3.89 Å. Thus the predicted
value of A is −�V� /s3�=−0.626 26 eV/Å3 in good agreement
with the EAM cluster least squares fit.

Next we consider the surface energy term. The least
squares fit gives B=0.768 18 eV/Å2. The �111� surface area
of the cuboctahedron is A111= �2�3�s2 and the �100� surface
area of the cuboctahedron is A100=6s2. The EAM functions
used here give surface energies of �111=75.82 meV/Å2

and �100=85.15 meV/Å2 from bulk slab calculations.
Thus the predicted value of B is �A100�100+A111�111� /s2

=0.7735 eV/Å2 in good agreement with the EAM cluster
least squares fit.

Finally we are ready to calculate the edge energy of a
cuboctahedron. Because all of the edges are formed by the
intersection of a �111� surface and a �100� surface, we will
use the notation, �111-100 to denote the edge energy. The clus-
ter least squares fit gives C=0.207 06 eV/Å. The total edge

length of the cuboctahedron is 24s. Consequently we calcu-
late �111-100=C /24=8.63 meV/Å. This calculated value for
the edge energy is included in Table II.

The last step is to calculate the vertex energy of the cub-
octahedron. The cuboctahedron has 12 vertices at which two
�111� facets meet two �100� facets. The cluster least squares
fit gives D=0.244 41 eV. Dividing by 12 we get the vertex
energy, �cuboct=20.3 meV.

V. CALCULATION OF EDGE AND VERTEX ENERGIES
FOR AN OCTAHEDRON

The definition of edge length, s, for an octahedron follows
the procedure described for a cuboctahedron in Sec. III. Here
it will suffice to give the equations which define the edge
length based on equimolar dividing surfaces. We find

s = ��3 n3 +
n

2
� a

�2
�7�

and

FIG. 4. �Color online� This figure shows the values of the bulk,
surface, edge, and vertex energies from EAM calculations for Pd
cuboctahedral clusters having 5�n�9 atoms on an edge. The edge
length, s, was defined by the equimolar surfaces �see Eq. �5� of the
text�. The total energy was fit by a cubic polynomial �see Eq. �1� of
the text�. The bulk, surface, edge, and vertex contributions are plot-
ted here as −As3, Bs2, Cs, and D respectively. The negative of the
bulk energy is plotted so that all four energies can be compared on
a single log-log plot.

TABLE II. This table gives the edge energies calculated from
EAM calculations and from a bond-breaking model described in the
Appendix.

�111-111 �111-100

EAM 4.6 meV/Å 8.6 meV/Å

Bond breaking 0.0 meV/Å 0.0 meV/Å
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s = �n +
1

6n
+ O� 1

n3�� a
�2

. �8�

For an octahedron the edge length defined by Eq. �7� is ap-
proximately nd, whereas for a cuboctahedron the edge length
defined by Eq. �5� is approximately �n−1/2�d. The fact that
the definition of s is so different for these two cases empha-
sizes the importance of a rigorous and precise definition. The
process for fitting the total energy of the octahedron with a
bulk, surface, edge, and vertex term is done much as for the
cuboctahedron. The bulk and surface energies from the series
expansion for the total energy of the octahedron are in good
agreement with values from conventional EAM calculations.
The edges of the octahedron are formed at the intersection of
two �111� facets. Thus we will use the notation �111-111 for
the edge energy. We calculate �111-111=4.60 meV/Å and
�oct=127 meV. Table II of this paper summarizes the values
of the edge energies found from these EAM calculations and
gives the values of the edge energies from a bond-breaking
model described in the Appendix.

VI. EFFECT OF EDGE ENERGIES ON CLUSTER SHAPE

One of the major motivations for calculating edge ener-
gies �see Sec. I� was to examine the possible role of edge

energies in causing shape transitions for nanoparticles. For
larger clusters the equilibrium shape of a particle is governed
primarily by the surface energies and the lowest energy
shape is determined by the Wulff construction. As an ex-
ample, consider a truncated octahedral particle. We will as-
sume here that the surface energy of surfaces other than
�100� and �111� are sufficiently large, and thus that they are
not part of the equilibrium shape. The Wulff shape is deter-
mined by minimizing the interface energy, Einterface
=6A111�111+8A100�100, subject to the constraint of constant
volume. Here A111 is the area of a �111� facet and A100 is the
area of a �100� facet. We will use the notation L111-111 for the
edge length at the intersection of two �111� facets and
L111-100 for the edge length at the intersection of a �100� and
a �111� facet. Figure 5 shows these two edge lengths as a
function of the cube root of the particle volume, and is a
convenient measure of particle size.

By adding edge energies to the interface energy we can
determine their effect on cluster shape. The interface energy
becomes

Einterface = 6A111�111 + 8A100�100 + 12L111-111�111-111

+ 24L111-100�111-100. �9�

By minimizing the interface energy subject to the constraint
of constant volume the edge lengths can be determined.
Since �111-111 is smaller than �111-100 the effect of the edge
energies will be to lengthen L111-111 and shorten L111-100,
while keeping the total volume constant. Figure 5 shows the
changes in the edge lengths which result from including edge
energies. L111-111 is increased by about 0.5 Å and L111-100 is
decreased by about 0.25 Å over the whole range of cluster
size. Since these changes are much less than the nearest-
neighbor distance, the actual cluster shape will rarely be
changed by the edge energies for any cluster size.

The basic result of this paper is that edge energies cannot
be defined or calculated without careful and precise defini-
tions for edge lengths and facet areas. A precise definition is
suggested based on the concept of intersecting equimolar
surfaces. Using this definition, the edge and vertex energies
have been calculated for Pd clusters. Finally, I show that the
calculated edge energies will have essentially no effect on
the equilibrium crystal shape for Pd nanoclusters. The issues
raised here will be crucial for future work on the role of edge
energy in the self-assembly of nanostructures. They also
demonstrate the challenges to be encountered in applying
continuum concepts at the nanoscale.
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FIG. 5. �Color online� This plot shows the results of a Wulff
construction �minimizing the surface energy of an atomic cluster,
subject to the constraint of constant volume�. The values for surface
energy are taken from the calculations in the text. The left vertical
axis shows the edge lengths predicted by the Wulff construction as
a function of the cube root of the cluster volume. The plot also
shows the changes in the edge lengths predicted by including the
edge energies given in Table II to the total energy �see Eq. �9� of the
text�. Since the changes in edge length are �0.6 Å for all cluster
sizes, and edge lengths are constrained by discrete atomic distances,
the edge energies will have essentially no effect on the shape of Pd
clusters at any length scale.
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APPENDIX: BOND-BREAKING MODEL
OF EDGE ENERGY

Previous discussions of edge-energies have commonly
used bond-breaking models.5,6 At the atomic level, every
atom can easily be classified as a bulk, surface, edge, or
vertex atom. Even though every atom can be classified, the
correct definition of edge length and surface area remains
ambiguous. From the atomic point of view, the ambiguity is
that “edge atoms” could equally well be considered as being
part of the areas of the two surfaces meeting to form the
edge.

In order to make contact with the previous work, it is
appropriate to revisit the bond-breaking model and to calcu-
late the edge and vertex energies for fcc clusters using the
definition of surface area and edge length based on intersect-
ing equimolar dividing surfaces. In this Appendix only, the
length unit used is the nearest neighbor distance and the
energy unit used is one-half of the energy required to break a
nearest neighbor bond. In these units, the bulk cohesive en-
ergy is 12, and the surface energies �for an infinite planar
surface� are �111=2�3 and �100=4. In order to distinguish
between the octahedron and the cuboctahedron, we will use
subscripts. For example, the number of atoms on an edge
will be written noct for the octahedron and ncuboct for the
cuboctahedron.

The calculation parallels the EAM calculations described
in the body of this paper. However, because we can readily
calculate the total interface energy by counting broken
bonds, there is no need to include bulk terms in the deriva-
tion. Thus the total interface energy is written in powers of
the edge length, as Einterface=Bs2+Cs+D.

In order to calculate the interface energy for an octahe-
dron, with noct atoms on an edge, it is necessary to count
the total number of broken bonds. For an octahedral cluster
there are 4�noct−3��noct−2� surface atoms each having three
broken bonds, 12�noct−2� edge atoms each having five
broken bonds, and six vertex atoms each having eight broken
bonds. Summing all these contributions, the total number of
broken bonds at the surface, edge and vertex atoms is
Einterface=12noct

2 .
At this point we equate the two expressions for the inter-

face energy and write

Bsoct
2 + Csoct + D = 12noct

2 . �A1�

Next we use the definition for the edge length, soct, given by
Eq. �8�. We substitute soct=noct+1/6noct in Eq. �A1�, collect

equal powers in noct, and discard all terms with negative
powers of noct. By equating coefficients of terms having the
same power in noct, we find B=12, C=0, and D=−4. Since
Bsoct

2 =Areaoct�111 and Areaoct=2�3soct
2 we find �111=2�3

from our cluster calculation in perfect agreement with the
infinite plane value.

Since C=12�111-111 we find that the edge energy, �111-111,
for the octahedron is identically zero in a broken bond
model. Since D=6�vertex, we find the vertex energy for the
octahedron to be �vertex=−2/3 for the octahedral cluster.

The calculation for a cuboctahedron is similar. For a
cuboctahedron there are 4�ncuboct−3��ncuboct−2� �111�
surface atoms each having three broken bonds, there are
6�ncuboct−2�2 �100� surface atoms each having four broken
bonds, there are 24�ncuboct−2� edge atoms each having
five broken bonds, and there are 12 vertex atoms each having
eight broken bonds. Summing all these contributions,
the total number of broken bonds for the cluster is Einterface
=36ncuboct

2 −36ncuboct+12.
As before, we equate the two expressions for the interface

energy and write

Bscuboct
2 + Cscuboct + D = 36ncuboct

2 − 36ncuboct + 12.

�A2�

We substitute the definition for scuboct given by Eq. �6� into
Eq. �A2�, collect equal powers of ncuboct, and discard all
terms with negative powers of ncuboct.

By equating coefficients to the same order in ncuboct, we
find B=36, C=0, and D=−5.4. The value for B corresponds
to exactly to the value expected based on the areas and sur-
face energies of the two types of facets. We also find
�111-100=0 and �vertex=−0.45.

The important conclusion from the bond-breaking model
is that if edge length and surface area of clusters are defined
using equimolar dividing surfaces, the calculated surface en-
ergies are equal to their value from infinite slab calculations
and the edge energies of the two types of edges are precisely
zero. In Ref. 6, using bond-counting methods, the authors
comment: “The main result of our calculations is the surpris-
ing agreement of the microscopic results . . . with the predic-
tions of the macroscopic Wulff’s rule, even for particles as
small as those with 2000 or 3000 atoms” �in spite of the fact
that �7% of atoms are edge or vertex atoms�. The calcula-
tions presented in this Appendix show that edge energies are
zero for a simple bond-breaking model, thus explaining the
previous “surprising” results of Ref. 6.
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