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Step-dynamics models are developed for mound shape evolution during multilayer homoepitaxial growth in
the presence of inhibited interlayer transport. Unconventionally, our models also incorporate downward fun-
neling �DF� of atoms deposited at step edges. The extent of DF can be reduced continuously to zero where one
recovers traditional step dynamics models. This allows direct comparison between the behavior of models with
and without DF. We show that DF greatly enhances growth of the height of valleys at the mound bases to an
extent compatible with slope selection. To elucidate the selected shapes of finite mounds, we consider a
suitably defined net flux of adatom attachment at steps summed over a mound side between valley and peak.
This quantity varies periodically but vanishes when further averaged over time, a condition which directly
constrains the selected mound shapes. We also characterize the dependence of these shapes on the prescription
of nucleation of new islands at the mound peak.
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I. INTRODUCTION

The morphological evolution of thin films during epitaxial
growth is a topic of fundamental and technological interest.
Even for homoepitaxial growth, the interplay between depo-
sition of atoms and various inhibited surface diffusion pro-
cesses gives rise to a rich variety of far-from-equilibrium
surface morphologies.1,2 In homoepitaxy, atoms are depos-
ited onto and diffuse across the surface, and then aggregate
into two-dimensional �2D� islands. For atoms subsequently
deposited on top of islands, there typically exists an addi-
tional Ehrlich-Schwoebel �ES� step edge barrier inhibiting
interlayer transport.3,4 The presence of such an ES barrier
leads to unstable film growth characterized by kinetic rough-
ening and the formation of three-dimensional �3D� mounds,
i.e., multilayer stacks of 2D islands.

This unstable growth mode was explained by Villain as
follows.5,6 The presence of an ES barrier implies that diffus-
ing atoms tend to be reflected from descending steps and
incorporated into ascending steps. This diffusion bias pro-
duces a destabilizing lateral mass current in the uphill direc-
tion. A number of homoepitaxial growth experiments have
revealed not only mounded morphologies, but also suggested
the development of a well-defined selected mound slope fol-
lowing a regime of steepening of mound sides.7–11 The latter
feature has been associated with the presence of nonthermal
dynamical processes related to the downward transport of
atoms deposited near step edges.12–15 One example of such a
process is “downward funneling” �DF�.16–18 Molecular dy-
namics simulations reveal that atoms deposited at step edges
or on the sides of multilayer nanoprotrusions in metal�100�
systems16,19–21 or metal�111� systems22 funnel down to
fourfold-hollow or threefold-hollow adsorption sites, respec-
tively, in lower layers. Unstable growth behavior has been
explored utilizing kinetic Monte Carlo simulation of both
generic and realistic atomistic lattice-gas models with con-
siderable emphasis on the slow coarsening of mound dimen-
sions following slope selection.11,14,15,23,24

Simulation of realistic atomistic models can provide a de-
tailed picture of the evolution of thin film morphologies, and
comparison with experiment facilitates determination of key
energetic parameters.11,13,15 However, this approach does not
necessarily provide a clear elucidation of the subtle coopera-
tive aspects of morphological evolution during film growth,
e.g., the dynamics of mound steepening or coarsening. In-
stead, an alternative and effective strategy to achieve this
goal is to analyze “step dynamics” models for film growth in
which steps between discrete layers are regarded as having
continuous lateral positions.25 One must specify the propaga-
tion velocities of the steps, where often these are determined
from a Burton-Cabrera-Frank �BCF� type26 analysis of depo-
sition, diffusion, and aggregation of atoms at step edges �al-
though one can and here we do consider behavior for a more
general class of models�. This approach has been applied for
simple cubic lattice geometries to address the classic prob-
lem of smoothing of rough films in the absence of
deposition.27,28 These constitute problems in nonequilibrium
thermodynamics with evolution during smoothing being
driven by minimization of the surface free energy. Of more
relevance here are previous applications of this approach to
study far-from-equilibrium film growth during deposition.
Film growth often includes effectively irreversible processes
�e.g., incorporation of diffusing adatoms at step edges�, and
thus evolution is determined by kinetic rather than thermo-
dynamic factors. However, to date this step dynamics formu-
lation has primarily been applied for the case of a simple
cubic-lattice geometry in the absence of nonthermal down-
ward transport near step edges.29–34 Such models do not in-
clude any mechanism for mound slope selection during
growth.

In this paper, we explore a class of step dynamics models
incorporating both inhibited interlayer transport and down-
ward funneling at step edges. These models, described in
Sec. II, were introduced in a recent Letter,35 and can be ap-
plied to describe the selection of mound slopes and shapes
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during unstable multilayer growth. Comprehensive analysis
of the evolution near the valley of a single semi-infinite
mound in Sec. III reveals the occurence of slope selection.
This behavior reflects the dynamics of step annihilation at
the valley between mounds, which is in turn strongly influ-
enced by DF. The variation of the selected slope with diffu-
sion bias is fully characterized from such studies.

Application of step dynamics formulations to describe the
evolution and shape selection of finite mounds in Sec. IV
reveals that another key factor is the specification of the
nucleation of islands �i.e., the creation of new steps� on the
top of mounds. An early mean-field deposition-diffusion
equation treatment of island nucleation on-top of other
islands36 identified the existence of a fairly well-defined criti-
cal radius for the supporting island Rtop so that nucleation
occurs on top when the growing island radius is close to this
value. Subsequently, it was found that this analysis had to be
corrected in the presence of a large ES barriers due to a
breakdown of the traditional mean-field formulation.37–39

The analysis was also refined to treat nucleation on top of a
stack of islands representing a growing mound.1 Nonethe-
less, the above picture of a fairly well-defined critical size
survives. The corresponding deterministic picture of top
layer nucleation was implemented to analyze the evolution
of the shape of individual wedding-cake-like mounds in the
presence of a large ES barrier.31,38 A deterministic formula-
tion of nucleation is also implemented in our analysis, but we
also briefly comment on a more realistic stochastic formula-
tion. Our simulations show how the prescription of nucle-
ation affects the selected mound shape, particularly near the
peak.

In Sec. V, further discussion of slope selection during
mound formation is presented, as well as a comparison with
the behavior predicted in phenomenological continuum treat-
ments. We present our conclusions in Sec. VI.

II. STEP DYNAMICS MODELS INCLUDING DF

A. Model specification

Figure 1 illustrates the basic ingredients of the class of
models which we consider for the step-flow dynamics of a
staircase representing the side of a �1+1�D mound. For con-
venience, below all lateral positions and distances are mea-
sured in dimensionless units of lateral surface lattice con-
stant. Also, in the following discussion, the mound valley is
at x=0 and the peak is at x=R, so the mound corresponds to
a staircase of steps increasing from left to right. The step n is
located at x=xn, where initially 1�n�n*, so 1 and n* label
the bottom and top step, respectively. The width of the ter-
race n between step n and step n+1 is Ln=xn+1−xn, for 1
�n�n*. The width of the bottom terrace is L0=x1, and the
width of the top terrace is Ln* =R−xn*. Finally, the interlayer
spacing is denoted by b, but we shall set b=1 in all numeri-
cal simulations.

We now fully specify the dynamics for these models. At-
oms are deposited at rate F �in monolayers per unit time�,
diffuse across the terraces and incorporate irreversibly at
steps subject to the influence of inhibited interlayer transport.
As noted above, in contrast to standard step dynamics analy-

ses, DF deposition dynamics is incorporated into these mod-
els. More specifically, atoms deposited in a “step edge re-
gion” within a distance c above each step are funneled
downward and incorporate at that step as illustrated in Fig. 1.
All atoms deposited on the bottom and top terrace aggregate
to step 1 and step n*, respectively. Atoms deposited on ter-
race n�1�n�n*� outside of the step edge region either ag-
gregate to the ascending step n+1 with probability P+�Ln�, or
to the descending step n with probability P−�Ln�. Here, in
general, these probabilities can depend on the terrace width
Ln, but they must satisfy the constraint P++ P−=1. The pres-
ence of inhibited interlayer transport implies an uphill diffu-
sion bias with strength P+− P−=��0. Below, t will denote
the deposition time, and thus �=Ft will denote the coverage
or film thickness in units of monolayers �ML�.

We should emphasize that these step dynamics models are
well defined and can be analyzed for a broad class of choices
of the dependence of P±�L� on terrace width L, subject to the
above constraints. However, the basic behavior of mound
slope and shape selection should be independent of the spe-
cific choice of this L dependence. One natural choice might
be guided by a BCF-type formulation where one solves the
continuum deposition-diffusion equation on each terrace for
irreversible incorporation at ascending steps with no barrier
and at descending steps with a finite ES barrier, �. This
analysis, which applies for L�1, suggests an L dependence
of the form1

P+�L� =
1/2 + LES/�L − c�
1 + LES/�L − c�

. �1�

Here LES=exp�� / �kBT��−1 is the ES length �assuming equal
prefactors for intralayer and interlayer hopping�, kB is Bolt-
zmann’s constant, and T is the surface temperature. How-
ever, given our view that basic model behavior should be
independent of the choice of L dependence, we primarily
consider the simplest case where the P± are set constant.

B. Evolution equations

The total flux of atoms reaching step n determines the
velocity Vn of that step. Accounting for the different behavior

FIG. 1. Schematic of step dynamics models showing deposition,
DF, and surface diffusion processes. x=0�R� corresponds to the
mound valley �peak�, xn the position of step n, and Ln the width of
terrace n. P+�P−� gives the probability of diffusing adatoms being
incorporated at ascending �descending� steps. “Step edge regions”
have width c.
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indicated above for the bottom step n=1, steps in the interior
of the staircase 1�n�n* and the top step n=n*, one obtains

dx1

dt
= V1 = − FL0 − F�L1 − c�P−�L1� − Fc , �2�

dxn

dt
= Vn = − F�Ln−1 − c�P+�Ln−1� − F�Ln − c�P−�Ln� − Fc ,

�3�

dxn*

dt
= Vn* = − F�Ln*−1 − c�P+�Ln*−1� − F�Ln* − c� − Fc .

�4�

On the right-hand side �RHS� of each equation, the first �sec-
ond� term corresponds to diffusive flux from the terrace to
the left �right� of that step, and the third term is the DF flux.
Note that setting c=0 recovers a step dynamics model with-
out DF.

One particularly significant observation regarding the
evolution equation for the widths Ln of interior terraces is
that all terms involving c �including DF terms� cancel out
exactly for constant P±. Partial cancellation persists for gen-
eral P±. Even so, DF will still dramatically influence mound
slope selection as shown later, noting that DF terms persist in
the evolution equations for the widths of the bottom and top
terraces.

Evolution of the steps and terraces in mound formation
can be analyzed by integrating the above equations with spe-
cial treatment of the bottom and top steps. During deposition,
the bottom steps will disappear or annihilate, and the top
steps will be created by nucleation of new top layer islands
as shown in Fig. 2. For the bottom step, Eq. �2� is only
integrated until a time t= t1, say, when x1 reaches zero. At
this time step 1 disappears, and step 2 becomes the bottom
step. Consequently, the equation for step 2 is updated from
type �3� to type �2�, then integrated until time t2 when x2
reaches zero, etc.

Previous studies of step dynamics models without DF
�c=0� described the treatment of steps at a mound valley,
primarily for the special case where P+=1 �no interlayer
transport�.29 Here, since dx1 /dt=−Fx1, it follows that the
bottom step never vanishes, so that the height of the valley is
stationary, and a deep groove develops near the valley. This
fixed valley height is an artifact of the continuum
decription29 which disappears in an atomistic treatment.
However, a deep groove persists in models without DF even
for P+�1. We will see that this type of behavior does not
occur with DF �c�0�.

At the mound peak, new top layers are created by island
nucleation. At a prescribed time of nucleation t= tn*+1

� , we
introduce a new step n*+1 with position xn*+1=R, and update
the equations appropriately.40 In our modeling, we invoke a
deterministic prescription of nucleation: a new top layer is-
land is created when the width of the top terrace reaches
some specified critical value Rtop. However, the basic results
remain unchanged if one implements a more realistic sto-
chastic prescription. See Appendix A.

C. Net step attachment flux

For elucidation of the behavior of these step dynamics
models, our initial study35 indicated the value of analyzing a
suitably defined net mass flux of adatoms attaching to steps,
summing contributions across the side of a mound between
its valley and peak. More precisely, to obtain this total net
flux which will be denoted below by Ktot, we sum over fluxes
accumulating at all steps from the left, and subtract the sum
over fluxes accumulating at all steps from the right. We
now identify the different contributions to this total flux.
The net diffusive flux across the terrace n for 1�n�n*,
Kn= +F�Ln−c��P+�Ln�− P−�Ln���0, is uphill. The flux
across the bottom terrace where all atoms reach step 1,
K0= +FL0�0, is also uphill. In contrast, the flux across the
top terrace, Kn* =−F�Ln* −c��0, is downhill. In addition,
there is a downhill current from DF of KDF=−Fc at each
step. All of these contributions must be added to obtain
Ktot=�0�n�n*Kn+n*KDF. For constant P±, after naturally res-
caling by the deposition flux and the mound radius, one ob-
tains the simplified formula

K̂tot = Ktot/�FR� = �P+ − P−� + 2P−�x1/R� − 2P+�Ln*/R�

− 2P+c�n* − 1�/R . �5�

The following key features should be noted.35 During the

“steady-state evolution” of selected mound shapes, K̂tot is
nonvanishing, varying periodically for deterministic nucle-
ation �with the period of 1 ML�. However, the mean value

�K̂tot�, of K̂tot time averaged over the period of 1 ML does
exactly vanish. This condition was shown to directly con-
strain the selected mound shapes35 See below.

FIG. 2. Schematic showing the disappearance of the bottom
steps at the mound valley, and the nucleation of new top layer
islands �i.e., islands at the mound peak�, during deposition. Consis-
tent with the more detailed Fig. 1, the dashed diagonal line at each
step indicated the “step edge region” in which DF occurs. For de-
terministic nucleation, xn* =R−Rtop in the bottom frame.
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III. EVOLUTION OF SEMI-INFINITE MOUNDS

In this section, we use the step dynamics model to inves-
tigate the evolution of semi-infinite mounds focusing on be-
havior near the valley between mounds. In such an analysis,
we eliminate the dependence of mound evolution on the pre-
scription of top layer nucleation. Thus, it is possible to
cleanly extract the influence of the prescription of behavior
at the mound valley �anticipating that the basic features may
persist in the more complicated case of finite mounds�. The
general step dynamic equations are the same as Eq. �3�, ex-
cept that now n*→	. For constant P±, the evolution equa-
tions for a semi-infinite mound can be written as

dx1

d�
= − L0 − L1P− − cP+, �6�

dxn

d�
= − Ln−1P+ − LnP−, for n � 1. �7�

Here, we use the natural coverage variable �=Ft. We note
the parameter c does not appear in Eq. �7�. Furthermore,
there exists a class of solutions to these equations having a
simple scaling behavior with respect to the parameter c. Spe-
cifically, if x̃n��� represents a set of solutions for c=1, then
xn���=cx̃n��� provides corresponding solutions for general c.

A. General and periodic solutions for a model with DF:
Numerical analysis

In our analysis of the above equations for a semi-infinite
mound, we set up an initial mound configuration where all
terraces have equal width, L	. Then, far from the mound
valley where n�1, one has that Ln−1�Ln=L	, and Eq. �7�
can be written as

dxn

d�
� − L	, �8�

so that xn�xn
0−L	�. Therefore, all such steps move with the

same constant velocity preserving the equal terrace width far
from the mound valley. However, distinct evolution and an-
nihilation of steps at the mound valley induces a disruption
of this equal step spacing, an effect which propagates away
from the mound valley.

In our numerical analysis, we integrate Eq. �6� and �7�
initially for 1�n�nc, where nc is some large cutoff and
where we set Lnc

=L	. When x1 becomes zero, and the bot-
tom step disappears, an additional step nc+1 at position
xnc+1

=xnc
+L	 is introduced, and we set Lnc+1

=L	. Now Lnc
is

determined from the evolution equations.
Figure 3 shows the evolution of a semi-infinite mound

with DF for the different choices of initial mound slope m	

=b /L	. Here, we set P+=0.52, b=1, and c=1/2. Choosing
an initially “steep” slope of the mound leads to flattening at
the base. Choosing an initially “shallow” slope leads to
steepening at the base. In general, a region with a unique
selected value of slope, ms

	, develops at the base of the
mound and spreads outward.

Next, we use the determined value of ms
	 as the initial

slope to provide a detailed characterization of the evolution

of semi-infinite mounds with selected slope. Figure 4 shows
the evolution of the widths of the lowest five terraces with
coverage for various P+. After a brief transient period lasting
only a couple of ML, the evolution of this semi-infinite
mound reaches a “steady-state” regime. More precisely, evo-
lution becomes periodic �in the reference frame moving up-
wards with the growing film� with a period of one ML. The
width of the lowest terrace varies dramatically with time,
noting that this terrace periodically disappears. The variation
of the width of the second lowest terrace is not as great, but
is still quite significant. The variation of the terrace width
fades away for terraces increasingly further from the mound
valley.

Finally, results for ms
	 versus � with c=1/2 are shown in

Fig. 5. Behavior for general c follows immediately using the
scaling relation described above.

B. Periodic solutions for a model with DF:
Approximate analytic treatment

Here, we discuss analytic treatment of the periodic solu-
tions for a semi-infinite mound. In principle, one could

FIG. 3. Evolution shapes of semi-infinite mounds with DF for
c=1/2, b=1, and P+=0.52. Behavior is shown for various choices
of the initial terrace width L	
6, 13, and 30. The selected terrace
width is Ls�13.

FIG. 4. Variation of width of the first five terraces with coverage
for evolution of a semi-infinite mound with DF which has initially
equal width terraces consistent with the selected slope. The magni-
tude of the variation in time decreases monotonically for steps
further from the base of the mound. Here, c=1/2 and b=1. �a�
P+=0.51, �b� P+=0.52, �c� P+=0.55.
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search for periodic solutions to the set of semi-infinite linear
equations �6� and �7�. This is likely only viable for constant
P± as one can perform a spectral analysis for the associated
infinite-dimensional linear evolution operator. Such an analy-
sis of the semi-infinite set of equations is provided in Appen-
dix B for the simple case where P+=1. However, with mini-
mal approximation, it is possible to reduce the semi-infinite
set of evolution equations to a finite linear set which can be
analyzed much more simply �for general P+�.

The most severe �but still reasonable� approximation ne-
glects the variation in time of the widths of terraces other
than the bottom two, L0 and L1. Specifically, we set

L2 = L3 = L4 = ¯ = L	�const� �9�

for the periodic evolution of the semi-infinite mound with
selected slope. Then, we must analyze just two equations for
the bottom step and the second step, which for constant P±
have the form

dx1

d�
= − P+x1 − P−x2 − P+c , �10�

dx2

d�
= − P+�x2 − x1� − P−L	 �11�

but subject to temporal boundary conditions corresponding
to a periodic solution. If one specifies that �=0 corresponds
to the time just after the bottom step disappears, and at this
time one specifies the position of the “new” bottom step as
x1��=0�=x*, then it follows that x2��=0�=x*+L	. After one
ML deposition, the positions of x1 and x2 must satisfy

x1�� = 1� = 0 and x2�� = 1� = x*. �12�

Equation �10� and �11� can be solved analytically subject
to the specified initial conditions. Satisfying the two con-
straints in Eq. �12� determines the two unknowns x* and
L	=b /ms

	. Corresponding results for the selected slope for
c=1/2 shown in Fig. 5 accurately describe the quasilinear
variation of ms

	 with weaker diffusion bias, �, but include a
small offset.

The small offset or error in the above approximation for
ms

	 derives from the feature that the neglected variation in L2
is significant. It is certainly much larger than that of L3,
L4 , . . . . Thus, we consider a much more accurate treatment
where we allow L2 and L3 to vary in addition to L0 and L1.41

Here, we retain four equations for x1, x2, x3, and x4, and
specify initial conditions x1�0�=x1

*, x2�0�=x2
*, x3�0�=x3

*, and
x4�0�=x3

*+L	. These equations are solved subject to the con-
straints for a periodic solution that x1�1�=0, x2�1�=x1

*,
x3�1�=x2

*, and x4�1�=x3
*. This yields four equations for four

unknowns including L	=b /ms
	. Results for c=1/2 shown in

Fig. 5 for ms
	 agree almost perfectly with the numerical re-

sults. More generally, this approximation accurately recovers
the full periodic evolution of the terrace widths close to the
mound base.

For the case with no interlayer transport, P+=�=1, the
periodic solution for a semi-infinite mound can be analyzed
exactly and completely �including the nontrivial behavior
near the base of the mound�. In particular, this analysis yields
ms

	=b / �2c�. See Appendix B.
It should be noted that both these approximations preserve

the exact scaling behavior ms
	�b /c for constant P±. A more

comprehensive analysis using the precise four-step approxi-
mation reveals a crossover from the quasilinear variation
ms

	��b /c�� for smaller �, to the limiting behavior ms
	

=b / �2c� for �=1. In the inset to Fig. 5, we present results
for c=1/2. Finally, we mention that Politi42 has determined
the exact behavior of ms

	 versus � for the step dynamics
model with DF. His result follows from the condition,

�K̂tot�=0, on the net step attachment flux mentioned in Sec.
II C after letting R→	.

C. Comparative analysis for a model without DF „c=0…

It is instructive to directly compare the evolution of semi-
infinite mounds with and without DF, choosing the initial
slope in both cases to match the selected slope ms

	 for the
model with DF. While the evolution of a mound with DF
quickly converges to a nearly linear shape, a deep groove
develops at the valley of the mound without DF. See Fig. 6.
The difference between these two cases can be attributed to
the very different rate of upward motion of the mound valley.
This rate is strongly influenced by the presence of DF which
facilitates annihilation of the bottom step �and corresponding
increase of this height by one layer�. The formation of a deep
groove for the case without DF �c=0� is the well understood
“Zeno effect,” and has been analyzed in detail.29,30 One can
show that the terrace width distribution as a function of film
height satisfies a simple diffusion equation,35 and is thus de-
scribed by the tail of an erf distribution in the vicinity of the
groove.29

FIG. 5. Variation of the selected slope with smaller � obtained
from simulations of step dynamics model �with b=1 and c=1/2�,
and from analytical calculations within the two- and four-step ap-
proximations. The inset shows the precise full � dependence.
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IV. EVOLUTION OF MOUNDS WITH FINITE SIZE

In this section, we use our step dynamics model to ana-
lyze the evolution of a mound with finite size. A determinis-
tic prescription for nucleation is implemented: a new top
layer island is created when the width of the top terrace
reaches a prescribed critical value Rtop.

A. Mound evolution for a model with DF

Our main focus in this work is on selected mound shapes
and slopes. However, our step dynamics model can also be
used to assess evolution of mound shapes prior to shape
selection. Such transient evolution is generally significant for
large ES barriers, where the selected slope is large and where
initial evolution is not greatly impacted by slope selection.
Indeed, in metal�111� homoepitaxial systems, the presence of
large ES barriers and low terrace diffusion barriers produces
mounds with large bases for which there is a prolonged re-
gime of mound steepening.38 The transient evolution of the
wedding-cake-like mounds in such systems has been suc-
cessfully described using a step dynamics model without DF,
and for which there is no steady-state selected shape.31,32,38

However, ultimately real growth systems must display a
crossover to “steady-state” behavior reflecting a selected
slope. �It is less well appreciated that extended regimes of
mound steepening can also occur in metal�100� homoepitaxy
with low ES barriers.11�

To explore this issue, we monitored the evolution of a
mound with DF for c=1/2 with P+=1 �no diffusive inter-
layer transport�. Figure 7 shows the mound shapes at differ-
ent times for a mound with R=100 and Rtop=5. Indeed, after
an initial transient regime of few thousand ML with progres-
sive steepening of the mound, there is a crossover to a rather
distinct selected shape.

B. Mound shape selection for a model with DF

Next, we focus on characterization of selected mound
shapes in the general case of inhibited interlayer transport.
Figure 8 shows the selected mound shapes after a long-time
evolution obtained from the analysis of the step dynamics
model based on Eq. �2�–�4� with P+=0.55 and c=1/2 for the
various choices of Rtop. Clearly, mound shapes are strongly
influenced by the prescription of nucleation: facile nucleation
�corresponding to small Rtop /R� produces narrow terraces
and pointed mound peaks; inhibited mound nucleation �cor-
responding to large Rtop /R� produces a significantly flattened
mound peaks.

FIG. 6. Comparison of the evolution shape of a semi-infinte
mound with DF �c=1/2� and without DF �c=0� at different cover-
ages: �a� 10, �b� 100, and �c� 500 ML. Here, we set P+=0.55, and
b=1.

FIG. 7. Transient evolution and asymptotic selection of mound
shapes for P+=1 and c=1/2. Here, we set R=100, Rtop=5, and
b=1. The number on the right side indicates the corresponding
coverage for each mound shape.

FIG. 8. Selected mound shapes for a model with DF �c=1/2�
and various choices of Rtop. Here P+=0.55, R=300, and b=1.
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For smaller Rtop /R, a region with well-defined selected
slope, ms, emerges at least near the mound base. Further-
more, this slope corresponds to the value of ms

	 obtained in
the above analysis of semi-infinite mounds. For larger
Rtop /R, the shape of the entire mound is impacted by top-
layer nucleation, and no well-defined selected slope appears
�although the details of the shape are still strongly influenced
by DF�.

The above discussion considers only a deterministic pre-
scription of nucleation. Thus, it is appropriate to ask what
features are preserved for a more realistic stochastic prescrip-
tion of nucleation as described in Appendix A. With stochas-
tic nucleation, evolution is no longer periodic. However, if
one averages over many ML of deposition, one expects to
find a well-defined mound shape with a smooth peak. Our
analysis shows that using stochastic rather than deterministic
nucleation produces at most a slight change in mound shape
near the peak.

C. Net step attachment flux across the mound side

To further elucidate the selection of mound shapes, it is
instructive to analyze the behavior of the net step attachment

flux, K̂tot, defined in Sec. II B. The long-time solution to Eqs.
�2�, �3�, �4� for selected mound shapes in the model with DF
is not time invariant. Rather, it is periodic in the reference

frame of the growing film with period of 1 ML. Thus, K̂tot
also varies periodically as shown in Fig. 9. Just after nucle-
ation of a top layer island, downhill contribution from the top
terrace is almost zero as the width of this terrace is negli-

gible. Thus, K̂tot as determined from Eq. �5� with Ln* =0 is
expected to be positive, since also the net uphill flux on other
terraces should dominate the DF flux. As the top terrace
grows, the downhill flux across it also grows and subse-
quently dominates the uphill contributions. Thus, at some

point K̂tot becomes negative. In particular, K̂tot as determined
from Eq. �5� with Ln* =Rtop is negative just before a new

layer is created. After the new top layer is created, it jumps
by an amount �1+���Rtop /R� to recover its initial positive
value decribed above.

There is also a jump within each period �in between top
layer creation� which corresponds to the disappearance of the
bottom step. Just after the disappearance of this step, a broad
bottom terrace is created upon which all depositing atoms are
incorporated at the step to the right and create a significant

uphill flux. Thus, K̂tot jumps to a more positive value at this
point.

Our key finding is that the mean value of K̂tot averaged
over 1 ML always vanishes �when c�0� for deterministic
nucleation. The impact of this condition on selected shape
can be seen most clearly using Eq. �5�. We consider only the
typical case of mounds containing many steps where the
maximum width of the bottom terrace is far smaller than the
mound radius, so x1 /R�1. Also, for selected shapes, the
mound height �h�bn* or b�n*−1� �from valley to peak� is
roughly constant. Then, setting =Ln* /Rtop, the condition

�K̂tot�=0 implies that

�P+ − P−� − 2P+�Rtop/R��� − 2P+�c/b���h/R� = 0, �13�

where ���1/2 denotes the time average of . Eq. �13�
reflects a balance between the three main contributions to the
total step attachment flux from the net uphill flux due to
diffusion bias, and from the downhill fluxes due to diffusion
across the top terrace and due to DF. It is immediately clear
that, e.g., inhibited nucleation �i.e., larger Rtop /R� implies
less high mounds. This condition has been successfully ap-
plied to provide a boundary condition for continuum evolu-
tion equations derived from coarse-graining of the step dy-
namics equations.35

As an aside, a detailed analytic investigation of K̂tot is
presented in Appendix C for the extreme case where Rtop is
sufficiently large that there are at most two steps during pe-
riodic mound evolution. Finally, for stochastic nucleation, if
one averages over many ML of deposition, one expects that

the averaged K̂tot again effectively vanishes. In this respect,
the constraint on the net step attachment flux is preserved.

D. Evolution of a finite mound without DF

Step dynamics models without DF have been applied pre-
viously to analyze mound evolution, both the steepening of
individual wedding-cake-like mounds with no interlayer
transport,31,32 and the evolution of quasiperiodic arrays of
mounds with a finite ES barrier.30 For the latter, mound
steepening with the development of deep grooves at mound
valleys was observed for larger wavelengths. However, a
transition to “steady-state” evolution was observed with de-
creasing wavelength.30

Motivated by the latter, we consider the evolution of a
single half-mound �representing a half period in a periodic
array of mounds�. Our analysis without DF implements de-
terministic nucleation and considers behavior for fixed
mound radius R but various choices of Rtop �rather than
changing the period of 2R�. For sufficiently small Rtop /R, we
find that a deep groove develops at the mound valley, analo-

FIG. 9. Periodic variation of the net step attachment flux K̂tot,
with coverage increment �� in the “steady-state” of model with DF
�c=1/2�. Behavior is shown for different Rtop. Rtop/R 
 0.01 �a�,
0.05 �b�, 0.10 �c�, and 0.15 �d�, respectively. Here P+=0.52 and
R=1000.
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gous to behavior found in Ref. 30 for large wavelengths.
However, if Rtop /R is larger than a well-defined critical value
rc then the mound evolves to a “stationary” shape. This
behavior is analogous to that found in Ref. 30 for short
wavelengths. Note that rc increases with increasing diffusion
bias �.

Here, we provide further insight into this transition by
again considering the behavior of the net step attachment

flux across the mound side K̂tot. For Rtop /R below the critical
value rc corresponding to persistent roughening of the

mound, we find that the mean value �K̂tot�, averaged over a
period of 1 ML is strictly positive. �This value depends
somewhat on the time when the averaging is performed as

the mound is continually steepening.� In contrast, �K̂tot� van-
ishes for steady-state evolution when Rtop /R exceeds rc. See
Fig. 10. Of course, for this model, there is no negative con-
tribution to Ktot from DF. Thus, the negative contribution to
Ktot which is responsible for the vanishing of the mean value
when Rtop /R exceeds rc comes entirely from diffusion in the
downhill direction across the top terrace.

An approximate but reasonable estimate of �K̂tot� and rc

comes from applying Eq. �5� with c=0 and neglecting the
term including x1. For smaller Rtop /R, we found from the
analysis of step dynamics model that �Ln*��0.42Rtop. Then,
Eq. �5� becomes

�K̂tot� � � − 0.42�1 + ���Rtop/R� �14�

for Rtop /R�rc with rc�2.38� / �1+��. Finally, we note that
although a stationary shape is obtained for Rtop /R above the
critical value rc there is no tendency for slope selection
�without DF�.

V. MOUND SHAPE AND SLOPE SELECTION IN
PHENOMENOLOGICAL CONTINUUM TREATMENTS

Mound slope selection and subsequent evolution have
been modeled extensively using phenomenological con-

tinuum theories �PCTs�. In these PCTs for �1+1�D, the evo-
lution of a continuous film height h�x , t� at lateral position x
and time t, obeys1,8,12,30,43–47

�

�t
h�x,t� = Fb −

�

�x
JPCT�x,t� . �15�

where JPCT is a suitable mesoscale or coarse-grained lateral
mass current which is proportional to F �assuming no de-
sorption and irreversible incorporation at step edges�. It is an
open and challenging problem to rigorously derive an ex-
pression for JPCT starting from an atomistic model. Typically,
a phenomenological form is assumed where JPCT is decom-
posed as JPCT=Jup�JDF�JSB�Jrelax.

Here, Jup�m�, which depends on the local slope m= �
�xh,

denotes the destabilizing net uphill current due to surface
diffusion in the presence of inhibited interlayer transport.1,5

JDF�m� denotes the downhill current due to DF. In the “sim-
plest picture,”48 it is taken as the microscopic lateral down-
hill current associated with DF which is proportional to the
step density, and thus to m.15,49–53 The term JSB produces
up-down symmetry breaking, and Jrelax facilitates “relax-
ation” near mound peaks and valleys.8,30 Shape selection in
the PCT corresponds to the vanishing of JPCT. For selected
slopes on the straight sides of mounds �where both JSB and
Jrelax vanish�, this corresponds to cancellation of the Jup and
JDF.

A simple estimate of the dominant behavior of JUP for
broader terrace widths L=b / 	m	 significantly greater than c
�but still in the step flow regime� would suggest that
Jup�m��Fb�L /2. A refined estimate from coarse-graining of
step dynamics equations for local stair-case regions yields
Jup�m��Fb��L−c� /2.35 In either case, assuming that JDF

�m leads to the result ms
PCT��b /c�
�, for small �. This

apparent discrepancy with the predicted linear variation in
the step dynamics model was noted previously,35 but is mis-
leading.

We now present a more detailed and precise analysis of
the relevant microscopic lateral mass currents in our model
�based on the mean lateral distance travelled per depositing
atom due to specific processes� for atoms depositing on a
perfect staircase with terrace width L. For DF, the fraction of
atoms deposited in the step region is c /L, and mean lateral
distance traveled by those atoms deposited is c /2. Thus, one
has that

JDF�m� = − Fb�c/2��c/L� = − Fc2m/2. �16�

Next, consider the remaining fraction �L−c� /L of atoms de-
posited on a terrace of width L outside the step edge region.
Those attaching to the accending step �with probability P+�
travel an average distance of �L−c� /2. Those attaching to the
descending step �with probability P−� travel an average dis-
tance c+ �L−c� /2= �L+c� /2 accounting for the extra nondif-
fusive motion across the step region. Thus, one has

Jup�m� = Fb�P+�L − c�/2 − P−�L + c�/2��L − c�/L

= Fb��L − c�/2 − Fbc�L − c�/�2L� . �17�

Setting Jup�m�+JDF�m�=0 to obtain the selected slope

FIG. 10. Dependence on Rtop/R of the mean value of K̂tot aver-
aged over 1 ML for the evolution of a mound without DF. Symbols
and �solid or dashed� lines represent the results from step dynamics
model and Eq. �14�, respectively.
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m=ms yields exactly the same result as obtained from the
step dynamics modeling, i.e., ms

PCT��b /c��, for small �,
crossing over to ms

PCT=b / �2c�, for �=1.
There have been several simulation-based and analytic

studies of slope selection for realistic astomistic models of
homoepitaxial growth �effectively corresponding to a BCF-
type rather than a constant choice of P±�.15,23,49,51–53 These
determined net lateral mass current, JPCT, and even separate
contributions, based on the above microscopic definition,
i.e., from the mean lateral distance traveled per deposited
atom. These analyses of selected slope are thus consistent
with that above.

There remains the challenge of developing reliable ex-
pressions for JPCT in the evolution equation for a PCT. One
strategy is to first obtain a “local” continuum evolution equa-
tion by coarse graining of the step dynamics model over a
single mound. This produces a JPCT without any DF or re-
laxation terms, and which is nonvanishing over a single
mound of selected shape.35 This is not inconsistent with the
boundary conditions applied at the mound valley �which im-
poses the selected slope� and at the peak. In any case, one
could add or subtract a constant to JPCT without changing
evolution. For the desired further-coarse grained evolution
equation applicable for arrays of mounds, we are exploring
the replacement of the boundary condition at the peak by
effective relaxation term.35 One must also reliably treat slope
selection and behavior near the mound valleys.

VI. DISCUSSION AND CONCLUSIONS

We have shown that refinement of conventional step dy-
namics models incorporating downward funneling �DF�
deposition dynamics is a particularly effective tool for eluci-
dation of mound shape and slope selection during unstable
multilayer growth. Our analysis reveals how the incorpora-
tion of DF �or other nonthermal downward transport mecha-
nisms� leads to slope selection. A key effect of DF is to
facilitate step annihilation at the mound valleys and thus to
enhance the growth of the valley heights at the base of
mounds.

A key concept in analysis of these step dynamics models
is the net step attachment flux Ktot and the associated con-
straint �Ktot�=0, which controls selected mound shapes. It is
natural to compare this picture with the steady-state condi-
tion in PCT that the coarse-grained lateral mass current van-
ishes, i.e., that JPCT=0. There is of course some similarity
between Ktot, or its local components Kn and KDF, and JPCT.
Indeed, we have shown consistency in the prediction of se-
lected slopes from these two formulations. However, only
Ktot is defined precisely and generally for the discrete step
dynamics model, and only this quantity varies periodically
alternating in sign �with significant amplitude for larger
Rtop /R�.

Key concepts �e.g., related to Ktot� and analytic techniques
�e.g., for analysis of periodic solutions� developed or utilized
in this work have general applicability beyond the case of
constant P± �for which we presented simulation results�. As
indicated in Sec. II, it is natural to consider a BCF-type
choice of P± as given in Eq. �5�, which should be applicable

at least in the regime of broader terraces or smaller slopes. In
our step dynamics model with DF for this choice, now a key
parameter is the rescaled ES length lES=LES/c. Analysis of
the selected slope for this model reveals a transition from
smooth growth for lES�1 �where effectively ms=0� to
mound formation with ms increasing linearly �in lES� from
zero for lES�1 and quickly saturating at a maximum value
for lES=O�1�. These observations have consequences for in-
terpretation of experiments. For example, the small mound
slopes observed in experimental and simulation-based stud-
ies of the growth of Ag on Ag�100� at 300 K may not cor-
respond to true selected slopes since lES is likely significantly
larger than unity.11 Instead, the observed slopes may be con-
trolled by a relatively large value of Rtop /R for this system.
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APPENDIX A: STOCHASTIC NUCLEATION

In the deterministic nucleation scheme used above, a new
terrace or island is created on the top of a mound exactly
when the radius of the current top terrace reaches a critical
value of Rtop. In reality, the nucleation occurs for a distribu-
tion of radii centered on such a “critical” value. Thus, a more
realistic stochastic prescription of nucleation could be imple-
mented based on a knowledge of this distribution.

Detailed analysis of the nucleation process on top of
mounds indicates that the probability for no nucleation to
have occurred is given by1,2

Pnonuc�t� = exp�− cn�Risl�t�
Rtop

n� , �A1�

where Risl�t� is the growing radius of the top island at a time
t after its nucleation. The choice of the constant cn will be
described below. The value of the exponent n depends on the
strength of the ES barrier. Adapting the existing analyses1 to
�1+1�D, one can show that n=5 for LES�Lisl, and n=6 for
LES�Lisl for the �1+1�D models described here. Different
values are obtained for �2+1�D models.54

If pnucdt describes the probability for nucleation to occur
between times t and t+dt, then it follows that

pnuc�t� =
d

dt
�1 − Pnonuc�, where �

0

	

pnuc�t�dt = 1.

�A2�

More usefully, if pnuc
* dRisl= pnucdt describes the probabil-

ity for nucleation to occur when the island radius is between
Risl and Risl+dRisl, it follows that
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pnuc
* �Risl� = ncn

�Risl�n−1

�Rtop�n exp�− cn� Risl

Rtop
n� . �A3�

This distribution is quite sharply peaked about Rtop given the
large value of n, a feature which provides some justification
for the deterministic treatment of nucleation. The constant cn
is determined from the constraint that �Risl�=Rtop. Utilizing
Eq. �A3�, one obtains

�cn�1/n = n�
0

	

dyynexp�− yn� , �A4�

so, e.g., c5=0.653 and c6=0.637 �where n=6 is used below�.
To implement stochastic nucleation, we determine a func-

tion Risl=Risl�x� which recovers the correct distribution of
island radii when x is selected as a uniformly distributed
random number on �0,1�. It thus follows that dx
= pnuc

* �Risl�dRisl, and consequently that

x = �
0

Risl

pnuc
* �Risl�dRisl = 1 − Pnonuc. �A5�

In conclusion, one has that

Risl = Rtop�−
ln�1 − x�

cn
�1/n

. �A6�

With this prescription, there is no upper limit on the range
of Risl. If Rtop /R is significant, then some selected Risl will
likely exceed the mound radius, R. In this case, some refine-
ment of the above probability distribution is required to im-
pose an upper cuttoff of Risl�R. However, in the analysis
below, Rtop /R is sufficiently small that effectively all selected
Risl are below R.

In our numerical analysis of the evolution of a finite
mound with stochastic nucleation, we use Eq. �A6� to gen-
erate a sequence of values for Rtop which are used for the
nucleation of successive top layers. We integrate Eqs. �2�,
�3�, and �4� for some time to let the system evolve into a
steady state, then average mound profiles obtained over
many ML of deposition. Figure 11 compares such mound

profiles for the deterministic and stochastic nucleation
schemes. The profiles are similar except very near the mound
peak, which is flat for deterministic nucleation but smooth
�after averaging� for stochastic nucleation.

APPENDIX B: PERIODIC EVOLUTION
OF A SEMI-INFINITE MOUND: P+=1

Here, we determine the periodic solution for the evolution
of a semi-infinite mound in the special case where P+=1 and
where the evolution equations adopt a simpler recursive
form. Specifically, these equations become

dx1

d�
= − x1 − c ,

dxn

d�
= − �xn − xn−1�, for n � 1. �B1�

For the periodic solution just after the bottom step disap-
pears, we assign the step positions as xn��=0�=xn

* for n�1.
Then, the above equations can be solved recursively with
these initial conditions and the additional requirement of ob-
taining a periodic solution, i.e.,

x1�� = 1� = 0, x2�� = 1� = x1
*, x3�� = 1� = x2

*, . . . . �B2�

Integrating these equations leads to the recursion relations

x1
* = c�e − 1� , �B3�

x2
* = �e − 1�x1

* − c�e − 2� , �B4�

xn
* = �e − 1�x1

* − c�e − 2� −
1 + xn−2

*

2!
− ¯

−
1 + x1

*

�n − 1�!
, for n � 2. �B5�

It is convenient to recast these equations for the terrace
widths, L0

*=x1
*, and Ln

*=xn+1
* −xn

* for n�1, as

L0
* = c�e − 1� , �B6�

L1
* = �e − 1�L0

* − c , �B7�

Ln
* = �e − 1�Ln−1

* −
Ln−2

*

2!
− ¯ −

L1
*

�n − 1�!

−
ce

n!
, for n � 2. �B8�

Solving these equations yields

L0
* = c�e − 1� = 1.71828c , �B9�

L1
* = c�e2 − 2e� = 1.95249c , �B10�

L2
* = c�e3 − 3e2 − 3e/2� = 1.99579c , �B11�

L3
* = c�e4 − 4e3 + 4e2 − 2e/3� = 2.00003c, . . . �B12�

FIG. 11. Comparison of the deterministic and stochastic nucle-
ation schemes. Here, we choose n=6, c=1/2, and b=1.
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More direct analysis of the limiting behavior, as n→	,
which is of primary interest, comes from utilizing a suitable
z transform x̂�z ,��=�n=1

	 znxn���. Applying this transform to
the evolution equations yields a simple ordinary differential
equation for x̂�z ,�� which can be solved to obtain

x̂�z,�� = x̂�z,0�e−�1−z�� −
z

1 − z
�1 − e−�1−z���, for 0 � � � 1.

�B13�

Imposition of the boundary condition for a periodic solution
requires that

x̂�z,1� = zx̂�z,0� . �B14�

Substituting into Eq. �B13� finally yields the result

x̂�z,0� = −
z

1 − z

exp�1 − z� − 1

z exp�1 − z� − 1
�

2c

�1 − z�2 , as z → 1.

�B15�

Since xn
*�const+nL	 for large n, it follows that x̂�z ,0�

�L	 / �1−z�2 as z→1, so L	=2c. In conclusion, we obtain
the exact result ms

	=b / �2c� for P+=1.
Finally, we note that for P+�1, a recursive analysis is not

possible. However, application of a suitable modified trans-
form to the evolution equations should allow an exact treat-
ment.

APPENDIX C: EXACT ANALYSIS
OF A THREE-LEVEL SYSTEM

To further elucidate the periodic evolution of finite
mounds �either with or without DF�, it is natural to consider
the “extreme” case corresponding to large Rtop�R where
there are at most two steps. In this case, there are at most
three levels of terraces, so the evolution corresponds to a
so-called three-level system. Below, we set Rtop=R−xc, and
assume constant P±.

We consider an “initial” configuration for periodic evolu-
tion as corresponding to the time just after nucleation of the
second upper island of step. See Fig. 12�a�. Then, one has
that x1��=0�=xc, and x2��=0�=R.

There are two distinct stages of the mound evolution. In
the first stage for 0����*��1�, say, before x1 reaches zero
�at �=�*�, the mound has two steps as shown in Fig. 12�b�.
The evolution of these two steps is described by

dx1

d�
= − x1 − P−�x2 − x1� − c , �C1�

dx2

d�
= − P+�x2 − x1 − c� − �1 − x2� . �C2�

It is more convenient to transform these equations intro-
ducing new dependent variables x2−x1 and x2+x1, noting
that d�x2+x1� /d�=−R. �There is a natural generalization of
this latter relation for mounds with any number of steps.�
Integrating these equations for ���*, one obtains

x2 + x1 = xc + �1 − ��R , �C3�

x2 − x1 = � xc

�
+

R

�2 + c
1 + �

�
�1 − e−��� + �R − xc�e−�� −

�R

�
.

�C4�

At �=�* when x1 vanishes, these two quantities become
equal, which imposes a key constraint on �* utilized below.

Finally, we note that in this first stage, the net step attach-
ment flux is given by

Ktot
1 /F = x1 + x2 − 1 + ��x2 − x1 − c� − c �C5�

and can thus be calculated exactly from the above results.
Figure 12�c� illustrates the second stage of mound evolution
where there is only one step, starting when x1 vanishes at
�=�* and ending when x2=xc at �=1. In this regime, the
evolution of step 2 is trivially given by

FIG. 13. The behavior of xc�max� with � in the three-level
system for the different choices of c /R.

FIG. 12. Schematic of the evolution of a mound with at most
two steps: �a� initial state, �b� first stage before x1 reaches zero, �c�
second stage where there is only one step following the disappear-
ance of the original bottom step.
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dx2

d�
= − R , �C6�

so x2=xc+ �1−��R. The net step attachment flux in the sec-
ond stage is given by

Ktot
2 /F = 2x2 − R , �C7�

and can thus be readily calculated using Eq. �C6�.
Next, we investigate the average value �Ktot�, of Ktot over

a period of 1 ML,

�Ktot

F
� = �

0

�*

d�Ktot
1 /F + �

�*

1

d�Ktot
2 /F

= − � xc

�
+

R

�2 +
2c�1 + ��

�
�1 − e−��*

�

− �R − xc�e−��*
+

�*R

�
+ 2xc − �*R . �C8�

Given the constraint on �* mentioned above, it follows that
�Ktot� 
 0. This result holds for the general c �including
c=0 corresponding to no DF�.

Finally, we have noted that the above three-level system
picture of periodic evolution applies only for sufficiently
large Rtop �or sufficiently small xc�. The specific condition for
the maximum possible value xc�max� of xc comes from the
constraint on �* mentioned above, after setting �*=1. Spe-
cifically, one obtains

xc�max� =
� R

�2 + c 1+�
� ��1 − e−�� + Re−� −

R

�

1 − 1−e−�

� + e−�
. �C9�

For �=0, one has xc�max�=R /2+c. For �=1, one has
xc�max�=c�e−1�. The behavior of xc�max� for the general
case is shown in Fig. 13.
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