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We develop a nonperturbative method to calculate the electron propagator in low-dimensional and strongly
correlated electron systems. The method builds on our earlier work using a Hubbard-Stratonovich transforma-
tion to map the tunneling problem to the x-ray edge problem, which accounts for the infrared catastrophe
caused by the sudden introduction of a new electron into a conductor during a tunneling event. Here we use a
cumulant expansion to include fluctuations about this x-ray edge limit. We find that the dominant effect of
electron-electron interaction at low energies is to correct the noninteracting Green’s function by a factor e−S/�,
where S can be interpreted as the Euclidean action for a density field describing the time-dependent charge
distribution of the newly added electron. Initially localized, this charge distribution spreads in time as the
electron is accommodated by the host conductor, and during this relaxation process action is accumulated
according to classical electrostatics with a screened interaction. The theory applies to lattice or continuum
models of any dimensionality, with or without translational invariance. In one dimension the method correctly
predicts a power-law density of states for electrons with short-range interaction and no disorder, and when
applied to the solvable Tomonaga-Luttinger model, the exact density of states is obtained.
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I. INTRODUCTION

In the conventional many-body theoretic treatment of tun-
neling, the low-temperature tunneling current between an or-
dinary metal and a strongly correlated electron system is
controlled by the single-particle density of states �DOS� of
the correlated system. Tunneling experiments are therefore
often used as a probe of the DOS. In a wide variety of low-
dimensional and strongly correlated electron systems, includ-
ing all one-dimensional �1D� metals, the two-dimensional
�2D� diffusive metal, the 2D Hall fluid, and the edge of the
sharply confined Hall fluid, the DOS exhibits anomalies such
as cusps, algebraic suppressions, and pseudogaps at the
Fermi energy. We have recently proposed that the origin of
these anomalies is the infrared catastrophe caused by the
response of the host electron gas to the sudden introduction
of a new particle that occurs during a tunneling event.1

The infrared catastrophe is a singular screening response
of a degenerate Fermi gas to a localized potential applied
abruptly in time, which is known to be responsible for the
anomalous x-ray optical and photoemission edge spectra of
metals,2,3 the Anderson orthogonality catastrophe,4,5 and the
Kondo effect.6,7 Imagine an electron in a tunneling process
being replaced by a negatively charged, distinguishable par-
ticle with mass M. In the M→� limit, the time-dependent
potential produced by the particle being added to the origin
at time �=0 and removed at a later time �0 is8

�xr�r,�� = U�r��������0 − �� , �1�

where U is the two-particle interaction. �xr is identical, up to
a sign, to the abruptly turned-on hole potential of the x-ray
edge problem, so an infrared catastrophe is expected. Tun-
neling of a real, finite-mass electron is different because it
recoils, softening the potential produced. The real electron is

also an indistinguishable fermion, unable to tunnel into the
occupied states below the Fermi energy.

In Ref. 1 we introduced an exact functional integral rep-
resentation for the interacting propagator, and developed a
nonperturbative technique for evaluating it by identifying a
“dangerous’’ scalar field configuration of the form �1�, and
then treating this special field configuration by using meth-
ods developed for the x-ray edge problem. All other field
configurations were ignored, thereby reducing the tunneling
problem to an x-ray edge problem. Nonetheless, qualitatively
correct results were obtained for the 1D electron gas and the
2D Hall fluid using this approach. In this paper we attempt to
go beyond this “x-ray edge’’ limit by including fluctuations
about �xr. We find that by including fluctuations through the
use of a simple functional cumulant expansion, a qualita-
tively correct DOS is obtained for electrons with short-range
interaction and no disorder in one, two, and three dimen-
sions. We also show that when applied to the solvable
Tomonaga-Luttinger model, the low-energy fixed-point
Hamiltonian for most 1D metals, the exact DOS is obtained.
A preliminary account of this work has been given
elsewhere.9

II. GENERAL FORMALISM AND CUMULANT
EXPANSION METHOD

We assume a grand-canonical Hamiltonian H=H0+V,
where

H0 � �
�
� dDr��

†�r��	2

2m
+ v�r� − 
����r� �2�

is the Hartree mean-field Hamiltonian, and
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V �
1

2
� dDrdDr��n�r�U�r − r���n�r�� . �3�

Here ��p+ �e /c�A, and v�r� is any single-particle poten-
tial, which may include a periodic lattice potential or disor-
der or both, and which also includes the Hartree interaction
with the self-consistent density n0�r�. Note in a translation-
ally invariant system the equilibrium density is unaffected by
interactions, but in a disordered or inhomogeneous system it
will be necessary to distinguish between the approximate
Hartree and the exact density distributions. The interaction
term is written in terms of the density fluctuation

�n�r� � �
�

��
†�r����r� − n0�r� . �4�

Following Ref. 1, we use a Hubbard-Stratonovich transfor-
mation to write the exact Euclidean propagator

G�rf�f,ri�i,�0� � − �T��f
�rf,�0��̄�i

�ri,0�	H, �5�

in the form

G�rf�f,ri�i,�0� = N
� D�e−1/2�
�U−1��g�rf�f,ri�i,�0���

� D�e−1/2�
�U−1��

,

�6�

where

g��� � − �T��f
�rf,�0��̄�i

�ri,0�ei
��r,���n�r,��	0 �7�

is a noninteracting correlation function in the presence
of a purely imaginary scalar potential i��r ,��, and N
��T exp�−
0

�d�V�	0
−1 is a constant, independent of �0. Equa-

tion �6� is an exact expression for the interacting Green’s
function.

The region of function space that contributes to the func-
tional integral in �6� is controlled by the width of the Gauss-
ian, which in the small U limit becomes strongly localized
around �=0. By expanding �7� in powers of � and evaluat-
ing the functional integral term by term, one recovers the
naive perturbative expansion for G�rf�f ,ri�i ,�0� in powers
of U. Therefore, it will be necessary to go beyond a pertur-
bative expansion for g�rf�f ,ri�i ,�0 ���. We evaluate
g�rf�f ,ri�i ,�0 ��� approximately, using a second-order func-
tional cumulant expansion. Such an expansion amounts to a
resummation of the most divergent terms in the perturbation
series when �=�xr and the infrared catastrophe occurs.
Indeed, one can view our resulting expression for
g�rf�f ,ri�i ,�0 ��� as a functional generalization of Mahan’s
“perturbative’’ result for a similar correlation function.2 Fur-
thermore, for field configurations far from �xr, the cumulant
expansion will yield a result that is, by construction, exact
through second order in U. After carrying this out we obtain

g��� � G0�rf�f,ri�i,�0�e
C1�r����r,��+
C2�r�,r������r,����r�,���,

�8�

where

C1�r�� =
g1�r��

G0�rf�f,ri�i,�0�
�9�

and

C2�r�,r���� =
g2�r�,r����

G0�rf�f,ri�i,�0�
−

g1�r��g1�r����
2
G0�rf�f,ri�i,�0��2 .

�10�

Here

gn�r1�1, . . . ,rn�n�

� −
in

n!
�T��f

�rf,�0��̄�i
�ri,0��n�r1�1� ¯ �n�rn�n�	0

�11�

is the coefficient of �n appearing in the perturbative expan-
sion of �7�, as in

g�rf�f,ri�i,�0��� = G0�rf�f,ri�i,�0�

+ �
n=1

� � gn�r1�1, . . . ,rn�n���r1,�1� ¯ ��rn,�n� .

�12�

The cumulants C1 and C2 in terms of G0 are

and �suppressing spin for clarity�

C2�r�,r���� =
1

2G0�rf,ri,�0�2 �
G0�r,r�,� − ���G0�rf,ri,�0�

− G0�r,ri,��G0�rf,r�,�0 − ����
r ↔ r�,� ↔ ���� . �14�

The functional integral in �6� can now be done exactly, lead-
ing to

G�rf�f,ri�i,�0� = A��0�G0�rf�f,ri�i,�0�e−S��0�, �15�

where

A � N
� D�e−1/2

��U−1−2C2���

� D�e−1/2�
�U−1��

= N 
det�1 − 2C2U��−1/2,

�16�

and

S �
1

2
�

0

�

d� d��� dDr dDr�
�r,��Ueff�r�,r����
�r�,��� .

�17�

Here


�r,�� � − iC1�r�� �18�
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=− �
�

G0�rf�f,r�,�0 − ��G0�r�,ri�i,��
G0�rf�f,ri�i,�0�

�19�

and

Ueff�r�,r���� � 
U−1�r − r����� − ��� − 2C2�r�,r�����−1

�20�

is a screened interaction.
Because spin-orbit coupling has been neglected in H, the

noninteracting Green’s function is diagonal in spin, and


�r,�� = −
G0�rf�i,r�i,�0 − ��G0�r�i,ri�i,��

G0�rf�i,ri�i,�0�
��i�f

. �21�

Equation �15� is the principal result of this work.

III. CHARGE SPREADING INTERPRETATION

We interpret �15� as follows: S is the Euclidean action10

for a time-dependent charge distribution 
�r ,��. We shall

show that 
�r ,�� acts like the charge density associated with
an electron being inserted at ri at �=0 and removed at rf at
�0. This charge density interacts via an effective interaction
Ueff�r� ,r���� that accounts for the modification of the
electron-electron interaction by dynamic screening.11 Our re-
sult can therefore be regarded as a variant of the intuitive but
phenomenological charge spreading picture of Spivak12 and
of Levitov and Shytov.13 However, here the dynamics of

�r ,�� is completely determined by the mean-field Hamil-
tonian, and has the dynamics of essentially noninteracting
electrons.

First consider the integrated charge,

Q��� � � dDr
�r,�� = −
� dDrG0�rf,r,�0 − ��G0�r,ri,��

G0�rf,ri,�0�
.

�22�

Using exact eigenfunction expansions for the Green’s func-
tions we obtain

Q��� = −
��

��
*�rf����ri�e−���−
��0�
nF��� − 
� − 1�2���0 − ������ + nF��� − 
�
nF��� − 
� − 1�
��− �� + ��� − �0���

��
��

*�rf����ri�e−���−
��0
nF��� − 
� − 1�
,

�23�

where nF is the Fermi distribution function and the �� are the single-particle eigenfunctions of H0. In the zero-temperature
limit

Q��� = −
��

��
*�rf����ri�e−���−
��0��N� − 1�2���0 − ������ + N��N� − 1�
��− �� + ��� − �0���

��
��

*�rf����ri�e−���−
��0�N� − 1�
, �24�

where N� is the ground-state occupation number of state �,
which in the absence of ground-state degeneracy takes the
value of 0 or 1. In this case �24� reduces to

Q��� = ���0 − ������ . �25�

When the sum rule �25� holds, the net added charge, as de-
scribed by 
�r ,��, is unity �in units of the electron charge�
for times between 0 and �0, and zero otherwise. This behav-
ior correctly mimics the action of the field operators in �5�.

At short times, ���0, the charge density is approximately


�r,�� � − G0�r,ri,�� , �26�

which is localized around r=ri. As time evolves this distri-
bution relaxes. Then as � approaches �0 the charge density
again becomes localized around r=rf,


�r,�� � − G0�rf,r,�0 − �� . �27�

A plot of 
�r ,�� for the 1D electron gas is given in Fig. 1.
The dynamics of 
�r ,�� can be shown to be governed by

the equation of motion


�� + H0�r��
�r,�� = − ��rf − r����0 − �� + ��r − ri����� .

�28�

This can be seen by noting that the noninteracting Green’s
function satisfies


�� + H0�r��G0�r,r�,�,��� = − ��r − r����� − ��� . �29�

Then, by using the definition �19� one can obtain �28�. Again,
we stress that 
�r ,�� describes the dynamics of noninteract-
ing electrons, governed by the mean-field Hamiltonian H0,
which in the absence of disorder or inhomogeneity reduces
to the noninteracting Hamiltonian �which is the case for the
systems considered here�.

Although 
�r ,�� has many properties that make it reason-
able to interpret as the charge density associated with the
added and subsequently removed electron described in �5�,
one should not take this interpretation too literally. The tun-
neling electron is an indistinguishable particle, so one cannot
ascribe 
�r ,�� to “the” tunneling particle. �Our formalism,
however, does treat the indistinguishability exactly.� Also it
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should be noted that the sum rule �25� holds only in the
zero-temperature limit and in the absence of ground-state
degeneracy. And as will be seen in Sec. IV C, 
�r ,�� may
even be complex valued.

IV. APPLICATIONS OF THE CUMULANT METHOD

In the following examples we will assume electrons with
a short-range interaction U, no disorder, and no magnetic
field. In Sec. IV A we show that our method correctly pre-
dicts a constant DOS near the Fermi energy in 2D and in
three dimensions �3D�, and in Sec. IV B we obtain a power-
law DOS in 1D, in qualitative agreement with Luttinger liq-
uid theory.14–20 Finally, in Sec. IV C we use our method to
calculate the DOS for the solvable Tomonaga-Luttinger
model, obtaining the exact DOS exponent.

A. 2D and 3D electron gas: Recovery of the Fermi
liquid phase

The sum rule �25� allows one to determine the energy
dependence of the DOS in D dimensions, asymptotically in
the low-energy limit, as follows: In the absence of disorder, a
droplet of charge injected into a degenerate Fermi gas with
Fermi velocity vF will relax to a size of order ��vF� after a
time �. Approximating 
�r ,�� to have uniform magnitude in
a region of size � and vanishing elsewhere, the sum rule then
requires the magnitude of 
 to vary as �−D. The interaction
energy of such a charge distribution �assuming a short-range
interaction� is

E =
U

2
� dDr

�r��2 �

U

�D , �30�

which varies with time as �−D. The action accumulated up to
time �0 therefore scales as

S �
U

�0
D−1 if D � 2 �31�

or

S � U ln �0 if D = 1. �32�

The cases �31� and �32� are dramatically different: In 2D
and 3D the action vanishes at long times, and the propagator
�15� is therefore not appreciably affected by interactions. The
resulting DOS is energy independent at low energies, and the
expected Fermi liquid behavior is recovered. In 1D, however,
the action diverges logarithmically, leading to an algebraic
DOS.

B. 1D electron gas: Recovery of the Luttinger liquid phase

The scaling argument of the previous section showed that
the DOS in the 1D electron gas with short-range interaction
is algebraic, as expected. In this section we calculate the
associated exponent.

We proceed in two stages. Initially we keep only the first
cumulant C1, and then afterwards we discuss the effect of C2.
In 1D it is possible to evaluate the action �17� exactly in the
long-time asymptotic limit at the first-cumulant level. Setting
xf=xi=0, we have 
see �15��

G��0� = const � G0��0�e−S��0�. �33�

Considering a local interaction of the form U�x−x��
=U0���x−x�� the action is

S��0� =
U0�

2
�

0

�

d��
−�

�

dx

�x,���2. �34�

By linearizing the spectrum around the Fermi energy, the
zero-temperature propagator at low energy is

G0�x,�� =
1

�
Im� eikFx

x + ivF�
� =

x sin kFx − vF� cos kFx

��x2 + vF
2�2�

.

�35�

The charge density �19� in this case is


�x,�� =
vF�0

�

x sin kFx − vF��0 − ��cos kFx

x2 + vF
2�� − �0�2

�
x sin kFx − vF� cos kFx

x2 + vF
2�2 . �36�

Figure 1 shows the charge density 
�x ,�� as it spreads in
time from its initially localized position.

By a lengthy but straightforward calculation it can be
shown that

S��0� =
3

8

U0�

vF�
ln� �0

a
� , �37�

where a is a microscopic cutoff. This leads to a power-law
decay of the interacting propagator as

G��� �
1

�� , �38�

where

� =
3

8

U0�

vF�
+ 1 �39�

is the propagator exponent. The DOS exponent �, defined as

FIG. 1. Charge density 
�x ,�� for the 1D electron gas at two
times, showing Friedel oscillations and gradual spreading.
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N��� = const � ��, �40�

is given in this case by

� =
3

8

U0�

vF�
. �41�

The effects of the second cumulant C2 are now straight-
forward to understand: In addition to introducing a slowly
varying prefactor A, whose only �0 dependence comes from
the time dependence of the screening in �20�, the second
cumulant screens the bare interaction and does not prevent
the logarithmic divergence of the action, but it does modify
the DOS exponent. It is interesting, however, that in the large
U limit, the effective interaction becomes independent of U,
a clear indication of nonperturbative behavior.

It is illustrative to compare �41� to the prediction of the
perturbative x-ray edge limit of Ref. 1, where one neglects
all field configurations in �6� except �xr. There we found �for
this same short-range interaction model�,

� = 2
U0�

vF�
�42�

to leading order in U. The DOS exponents �41� and �42� are
in qualitative agreement, but the inclusion of fluctuations
about �xr in �41� softens the exponent by almost a factor of
4, as one might expect.

The exact DOS exponent is not known for this model. In
the next section we apply the cumulant method to the
Tomonaga-Luttinger model, for which the exact propagator
can be calculated using bosonization.

C. Tomonaga-Luttinger model

We consider the spinless or U�1� Tomonaga-Luttinger
model. The noninteracting spectrum is

�k = 
 + vF�±k − kF� , �43�

where the upper sign refers to the right branch and the lower
to the left one. The interaction is

V =
1

2
� dx�ni�x�Uij�nj�x� , �44�

�n±�x� � lim
a→0

:�±�x + a��±�x�: , �45�

where the normal ordering is with respect to the noninteract-
ing ground state. The matrix U has the form

U = �U4 U2

U2 U4
� . �46�

We want to calculate

G±�xf�f,xi�i� = − N�T�±�xf,�f��̄±�xi,�i�e−
d�V���	 . �47�

Make a Hubbard-Stratonovich transformation of the form

e−1/2�
�niUij�nj� =
� D�−D�+e−1/2�
�iUij

−1�j�ei�
�i�ni�

� D�−D�+e−1/2�
�iUij
−1�j�

, �48�

which leads to

G±�xf�f,xi�i�

= N
� D�−D�+e−1/2�
�iUij

−1�j�g±�xf�f,xi�i��−,�+�

� D�−D�+e−1/2�
�iUij
−1�j�

,

�49�

where

g±�xf�f,xi�i��+,�−�

� − �T�±�xf�f��̄±�xi�i�ei
0
�d�
dx�i�x,���ni�x,��	0. �50�

The correlation function �50� can also be written as

g±�xf�f,xi�i��+,�−� = g±�xf�f,xi�i��±� · Z�
��� , �51�

where

Z±
�±� � �Tei
0
�d�
dx�±�x,���n±�x,��	0,±, �52�

and

g±�xf�f,xi�i��±� = − �T�±�xf�f��̄±�xi�i�ei
0
�d�
dx�±�x,���n±�x,��	0,±.

�53�

Next we cumulant expand both �52� and �53� to second
order. For �52�,

Z±
�±� � e1/2

d�d��
dxdx�	±�x−x�,�−����±�±��. �54�

Here 	± is the noninteracting density-density correlation
function

	±�x,�� � − �T�n±�x,���n±�0�	0,±, �55�

which can be written as

	±�x,�� = G0,±�x,��G0,±�− x,− �� . �56�

The noninteracting chiral propagator is

G0,±�x,�� = ±
1

2�i

e±ikFx

x ± ivF�
. �57�

For �53�,

g±�xf�f,xi�i��±� � G0,±�xf�f,xi�i��±�

� e
dxd�C1,±�±+
dxdx�d�d��C2,±�±�±� ,

�58�

where

C1,±�x,�� = − i
G0,±�xf,x,�0 − ��G0,±�x,xi,��

G0,±�xf,xi,�0�
. �59�

C2,± for this model reduces to
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C2,±�x − x�,� − ��� =
1

2
	±�x − x�,� − ��� . �60�

Now we solve for Ueff, defined by

� dx�d��Ueff
−1�x − x�,� − ���Ueff�x� − x�,�� − ���

= ��x − x����� − ���1 , �61�

where

Uij
eff�x,�� = 
Uij

−1�x,�� − 	±�x,���i+� j+ − 	��x,���i−� j−�−1,

�62�

and 1 is a 2�2 identity matrix. To achieve this we Fourier
transform �61�. This reduces �61� to a matrix equation which
gives

Ueff�k,�� = ��U4 U2

U2 U4
�−1

− �	±�k,�� 0

0 	��k,��
��−1

.

�63�

The �� or �� component is

Ueff�k,�� =
U4 − �U4

2 − U2
2�	��k,��

1 − U4	t�k,�� + �U4
2 − U2

2�	+�k,��	−�k,��
,

�64�

where

	t�k,�� = 	+�k,�� + 	−�k,�� = −
1

�

k2

�� + ik��� − ik�
.

�65�

The effective interaction for right movers is �setting vF=1
temporarily�

Ueff�k,�� = U4
�� + ik��� − iuk�

�� + ivk��� − ivk�
, �66�

where

u � 1 +
�U4/2��2 − �U2/2��2

�U4/2��
�67�

and

v ���1 +
U4

2�
�2

− �U2

2�
�2

. �68�

The action can be written as

S =
1

2
� dk

2�

d�

2�

±�− k,− ��Ueff�k,��
±�k,�� . �69�

The chiral tunneling charge density is


±�x,�� = −
G0,±�xf,x,�0 − ��G0,±�x,xi,��

G0,±�xf,xi,�0�
. �70�

We now specialize to the DOS case where xi=xf=0, and
assuming right movers we set 
+�
. The tunneling charge
density is


�x,�� =
vF�0

2�

1

�x + ivF��
x + ivF�� − �0��
, �71�

which correctly satisfies the sum rule

� dx
�x,�� = �������0 − �� . �72�

Fourier transforming, we find that


�k,�� =
1

i� − vFk

�ei��0 − 1���k� + �ei��0 − evFk�0���− k��

�73�

and


�k,��
�− k,− ��

=
1

�� + ik�2 
�1 − ei��0e−k�0 + e−k�0 − e−i��0���k�

+ �1 − ei��0 + ek�0 − e−i��0ek�0���− k�� . �74�

The action therefore is

S��0� =
1

2
� dk

2�

d�

2�

�� + ik��� − iuk�
�� + ivk��� − ivk�

U4

�� + ik�2

� 
�1 − ei��0e−k�0 + e−k�0 − e−i��0���k�

+ �1 − ei��0 + ek�0 − e−i��0ek�0���− k�� . �75�

The complete action can be written as S=S�+S�, where

S� =
U4

8�2�
0+

�

dk�
−�

�

d�
�� − iuk�

�� + ivk��� − ivk��� + ik�

��1 − ei��0e−k�0 + e−k�0 − e−i��0� �76�

and

S� =
U4

8�2�
−�

0−

dk�
−�

�

d�
�� − iuk�

�� + ivk��� − ivk��� + ik�

��1 − ei��0 + ek�0 − e−i��0ek�0� . �77�

S�=S� under change of coordinates k→−k and �→−�, so
S=2S�. To proceed we need the large-�0 asymptotic result

I��0� � �
0+

�

dk
e−k�0

k
→ − ln �0, �78�

where the additive constant, not shown explicitly, is cutoff
dependent. These lead, in the large �0 limit, to

S =
U4

4�
� 2�1 + u�

�1 + v��1 − v�
−

u + v
v�1 − v��ln��0� �79�

or

S =
U4

4�
� v − u

v�1 + v��ln��0� . �80�

Finally, we obtain

S = � ln �0 + const + O�1/�0� �81�

and
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N��� = const � ��, �82�

where

� =
U4

4�

v − u

v�1 + v�
=

�u − v��1 − v�
2v�1 + u�

�83�

=

1 +
U4

2�vF
−��1 +

U4

2�vF
�2

− � U2

2�vF
�2

2��1 +
U4

2�vF
�2

− � U2

2�vF
�2

.

�84�

This is in exact agreement with the bosonization result

� =
g + g−1

2
− 1, �85�

with

g =�1 +
U4

2�vF
−

U2

2�vF

1 +
U4

2�vF
+

U2

2�vF

. �86�

Why does the cumulant method give the exact result for
this model? The answer is that a second-order cumulant ex-
pansion of the form used here is exact for free bosons, which
are the exact eigenstates of the Tomonaga-Luttinger model.21

V. DISCUSSION

Our principal result �15� suggests that the dominant effect
of interaction on the low-energy DOS in a variety of strongly
correlated electron systems is to add a time-dependent charg-
ing energy contribution to the total potential barrier seen by a
tunneling electron, as in Ref. 13. The energy is computed
according to classical electrostatics with a dynamically
screened two-particle interaction. In 2D and 3D the added
charge is accommodated efficiently and reaches a zero-action
state at long times. In 1D the added charge leads to diverging
action, and hence suppressed tunneling.

The robustness of the present cumulant method has not
been fully explored, although it is known to fail qualitatively
in systems with ground-state degeneracy, such as in the
quantum Hall fluid. We believe the cause of this failure to be
the nonsatisfiability of the sum rule �25� in such situations. In
the future we plan to apply this method to other exactly
solvable systems, such as the 1D Hubbard and Calogero-
Sutherland models.
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