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Two-dimensional carbon, or graphene, is a semimetal that presents unusual low-energy electronic excitations
described in terms of Dirac fermions. We analyze in a self-consistent way the effects of localized (impurities
or vacancies) and extended (edges or grain boundaries) defects on the electronic and transport properties of
graphene. On the one hand, point defects induce a finite elastic lifetime at low energies with the enhancement
of the electronic density of states close to the Fermi level. Localized disorder leads to a universal, disorder
independent, electrical conductivity at low temperatures, of the order of the quantum of conductance. The static
conductivity increases with temperature and shows oscillations in the presence of a magnetic field. The
graphene magnetic susceptibility is temperature dependent (unlike an ordinary metal) and also increases with
the amount of defects. Optical transport properties are also calculated in detail. On the other hand, extended
defects induce localized states near the Fermi level. In the absence of electron-hole symmetry, these states lead
to a transfer of charge between the defects and the bulk, the phenomenon we call self-doping. The role of
electron-electron interactions in controlling self-doping is also analyzed. We also discuss the integer and
fractional quantum Hall effect in graphene, the role played by the edge states induced by a magnetic field, and
their relation to the almost field independent surface states induced at boundaries. The possibility of magnetism

in graphene, in the presence of short-range electron-electron interactions and disorder is also analyzed.
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I. INTRODUCTION

Carbon is a life sustaining element that, due to the versa-
tility of its bonding, is present in nature in many allotropic
forms. Besides being an element that is fundamental for life
on the planet, it has been explored recently for basic science
and technology in the form of three-dimensional graphite,'
one-dimensional nanotubes,?> zero-dimensional fullerenes,?
and more recently“'5 in the form of two-dimensional carbon,
also known as graphene. Experiments in graphene-based de-
vices have shown that it is possible to control their electrical
properties by the application of external gate voltage,*'!
opening doors for carbon-based nanoelectronics. In addition,
the interplay between disorder and magnetic field effects
leads to an unusual quantum Hall effect predicted
theoretically'>'# and measured experimentally.®!'!151¢ These
systems can be switched from n-type to p-type carriers and
show unusual electronic properties. We show that their
physical properties can be ascribed to their low dimension-
ality, the phenomenon of self-doping, that is, the change in
the bulk electronic density due to the breaking of particle-
hole symmetry, and the unavoidable presence of structural
defects. Our theory not only provides a description of the
recent experimental data, but also makes predictions that can
be checked experimentally. Our results also have a direct
implication in the physics of carbon-based materials such as
graphite, fullerenes, and carbon nanotubes.

Graphene is the building block for many forms of carbon
allotropes. Its structure consists of a carbon honeycomb lat-
tice made out of hexagons (see Fig. 1). The hexagons can be
thought of benzene rings from which the hydrogen atoms
were extracted. Graphite is obtained by the stacking of
graphene layers that is stabilized by weak van der Waals
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interactions.!” Carbon nanotubes are synthesized by

graphene wrapping. Depending on the direction in which
graphene is wrapped, one can obtain either metallic or semi-
conducting electrical properties. Fullerenes can also be ob-
tained from graphene by modifying the hexagons into penta-
gons and heptagons in a systematic way. Even diamond can
be obtained from graphene under extreme pressure and tem-
peratures by transforming the two-dimensional sp? bonds
into three-dimensional sp3 ones. Therefore, there has been
enormous interest over the years in understanding the physi-
cal properties of graphene in detail. Nevertheless, only re-

missing atom or vacancy

FIG. 1. (Color online) A honeycomb lattice with vacancies. The
primitive lattice vectors are shown.
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FIG. 2. (Color online) Density
of states, p(w) (multiplied by the
cutoff energy D), as a function of

energy o (in units of D), for dif-
ferent values of the impurity den-

sity, according to the FBA. (a)
p(w) over the entire energy range;
(b) p(w) for ®<D; (c) p(w) as a
function of w/(n;D) indicating the
appearance of an energy scale of
the order of n;D/4.
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cently, with the advances in material growth and control, has
one been able to study truly two-dimensional carbon physics.

One of the most striking features of the electronic struc-
ture of perfect graphene planes is the linear relationship be-
tween the electronic energy, Ej, with the two-dimensional
(2D) momentum, k=(k,,k,), that is: Ex=vglk|, where vg is
the Dirac-Fermi velocity. This singular dispersion relation is
a direct consequence of the honeycomb lattice structure that
can be seen as two interpenetrating triangular sublattices. In
ordinary metals and semiconductors the electronic energy
and momentum are related quadratically via the so-called
effective mass, m”, [Ey=h%k*/(2m")], that controls much of
their physical properties. Because of the linear dispersion
relation, the effective mass in graphene is zero, leading to an
unusual electrodynamics. In fact, graphene can be described
mathematically by the two-dimensional Dirac equation,
whose elementary excitations are particles and holes (or an-
tiparticles), in close analogy with systems in particle physics.
In a perfect graphene sheet the chemical potential, w, crosses
the Dirac point and, because of the dimensionality, the elec-
tronic density of states vanishes at the Fermi energy. The
vanishing of the effective mass or density of states has pro-
found consequences. It has been shown, for instance, that the
Coulomb interaction, unlike in an ordinary metal, remains
unscreened'® and gives rise to an inverse quasiparticle life-
time that increases linearly with energy or temperature,'® in
contrast with the usual metallic Fermi liquid paradigm,
where the inverse lifetime increases quadratically with en-
ergy.

The fact that graphene is a two-dimensional system has
also serious consequences in terms of the positional order of
the carbon atoms. Long-range carbon order in graphene is
only really possible at zero temperature because thermal
fluctuations can destroy long-range order in two dimensions
(the so-called Hohenberg-Mermin-Wagner theorem?’). At a
finite temperature 7, topological defects such as dislocations
are always present. Furthermore, because of the particular

o
n
o

structure of the honeycomb lattice, the dynamics of lattice
defects in graphene planes belong to the generic class of
kinetically constrained models,?!>> where defects are never
completely annealed since their number decreases only as a
logarithmic function of the annealing time.?! Indeed, defects
are ubiquitous in carbon allotropes with sp? coordination and
have been observed in these systems.?? As a consequence of
the presence of topological defects, the electronic properties
discussed previously are significantly modified. As we show
below, extended defects can lead to the phenomenon of self-
doping with the formation of electron or hole pockets close
to the Dirac points. We show, however, that the presence of
such defects can still lead to long electronic mean free paths.
We present next an analysis of the physical properties of
graphene as a function of the density of defects, at zero and
finite temperature, frequency, and magnetic field. The defects
analyzed here, like boundaries (edges), dislocations, vacan-
cies, can be considered strong distortions of the perfect sys-
tem. In this respect, our work complements the studies of
defects and interactions in systems described by the two-
dimensional Dirac equation.>*

The role of disorder on the electronic properties of
coupled graphene planes shows also its importance on the
unexpected appearance of ferromagnetism in proton irradi-
ated graphite.”>° In a recent publication, the role of the
exchange mechanism on a disordered graphene plane was
addressed.’! It was found that disorder can stabilize a ferro-
magnetic phase in the presence of long-range Coulomb in-
teractions. On the other hand, the effect of disorder on the
density of states of a single graphene plane amounts to the
creation of a finite density of states at zero energy. Therefore,
a certain amount of screening should be present and the
question of whether the interplay of disorder and short-range
Coulomb interaction may stabilize a ferromagnetic ground
state has to be addressed as well.

Moreover, with the current experimental techniques, it is
possible to study not only a single layer of graphene but also
graphene multilayers (bilayers, trilayers, etc.). Recent experi-
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ments provide direct evidence that while the high-energy
physics of graphene multilayers (for energies above around
100 meV from the Dirac point) is quite different from that of
single layer graphene, the low-energy physics seems to be
universal, two-dimensional, independent of the number of
layers, and dominated by disorder.>%!' Hence, the work de-
scribed here may be fundamental for the understanding of
this low-energy behavior. There is still an interesting ques-
tion whether this universal low-energy physics survives in
bulk graphite.

In this paper we present a comprehensive and unabridged
study of the electronic properties of graphene in the presence
of defects (localized and extended), and electron-electron in-
teraction, as a function of temperature, external frequency,
gate voltage, and magnetic field. We study the electronic
density of states, the electron spectral function, the frequency
dependent conductivity, the magnetotransport, and the inte-
ger and fractional quantum Hall effect. We also discuss the
possibility of a magnetic instability of graphene due to short-
range electron-electron interactions and disorder (the prob-
lem of ferromagnetism in the presence of disorder and long-
range Coulomb interactions was discussed in a previous
publication’?).

The paper is organized as follows: in Sec. II A a formal
solution for the single impurity and many impurities
T-matrix calculation is given. Details of the position averag-
ing procedure are given in Sec. V in connection with the
same problem, but in a magnetic field. In Sec. II B the prob-
lem of Dirac fermions in a disordered honeycomb lattice is
studied within the full Born approximation (FBA) and the
full self-consistent Born approximation (FSBA) for the den-
sity of states. Using the results of Sec. II B, the spectral and
transport properties of Dirac fermions are computed in Sec.
III. In Sec. IV we address the question of magnetism and the
interplay between short-range electron-electron interactions
and disorder. The density of states of Dirac fermions in a
magnetic field perpendicular to a graphene plane is studied in

Sec. V and the magnetotransport properties of this system are
computed both at zero and finite frequencies, using the
FSBA. The quantization values for the integer quantum Hall
effect and for Jain’s sequence of the fractional quantum Hall
effect are discussed. Finally, Sec. VII contains our conclu-
sions. We have also added appendixes with the details of the
calculations.

II. IMPURITIES AND VACANCIES

The honeycomb lattice can be described in terms of two
triangular sublattices, A and B (see Fig. 1). The unit vectors
of the underlying triangular sublattice are

a
= 5(3» \‘/550),

a
a,=203.- \3.,0). (1)

where a is the lattice spacing (we use units such that Ky
=1=%). The reciprocal lattice vectors are

21 - 2T -
b;=—(1,v3,0), by=——(1,-v3,0). (2)
3a 3a

The vectors connecting any A atom to its nearest neighbors
are

a I
5[ = 5(19V370)3

a
52: 5(1’_ \‘/5’0)’

53=a(1,0,0), (3)

and the vectors connecting to next-nearest neighbors are
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FIG. 4. (Color online) Imagi-
A} - nary (left panel) and real (right
‘ panel) part of the self-energy, > (€)
(normalized by Dn;), as a function
of energy € (in units of D), for dif-
ferent values of the impurity con-
centration n;, according to the
FSBA.
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4)

In what follows we use a tight-binding description for the
7 orbitals of carbon with a Hamiltonian given by

n5=—n6=al—32.

Hyp=-12 (a; 4bj,+H.c.)
(i.j).o

> (aj,(ﬂj,o+ b,T,, o+ HC),
(o

(5)

where al » (a; ;) creates (annihilates) an electron on site R;
with spin o (o=1, ] ) on sublattice A and b » (b; ) creates
(annihilates) an electron on site R; with spin o(o=1,]) on
sublattice B. t is the nearest neighbor ({i,j)) hopping energy
(t=2.7 eV), and ¢’ is the next-nearest neighbor ({{i,))) hop-
ping energy (¢'/t=0.1). We notice en passant that in earlier
studies of graphite’? it has been assumed that ¢'=0. This
assumption, however, is not warranted since there is overlap
between carbon 7 orbitals in the same sublattice. In fact, we
will show that ' plays an important role in graphene since it
breaks the particle-hole symmetry and is responsible for vari-
ous effects observed experimentally.

Translational symmetry is broken by the presence of dis-
order. Localized defects such as vacancies and impurities are
included in the tight-binding description by the addition of a
local energy term,

Hipp = 2 Vi(aiaai,u’ + b;‘:—§3,(fbi+53,u')’ (6)

where V; is a random potential at site R;. In momentum
space we define

e/

-3
-0.8 -0.6 -04 -02 0 02 04 06 0.8

D

1 . 1
i,(r = /_E * Rlak o bi,(r = ,’_2 e Rlbk o (7)
Ny & v

Ng &

where Ny=Np=N, and the noninteracting Hamiltonian, H,
=H,y, +Hipp, reads

H, =2 [¢(K)aj, by o+ ¢ ()b}, ay ]
k,o

+ 2 a;(k)(a;c-,oak,u' + b;c-,o'bk,tr)
k,o

+ 2 Vq[a£+q,aak,o' + bl1c-+q,¢rbk,0'] ’ (8)
q.k.o
where
3
plk) =12 ™,
i=1
6
Plk) =12 ™™, )
i=1

and V, is the Fourier transform of the random potential due
to impurities. Hamiltonian (8) is the starting point of our
approach.

A. The single impurity problem and the T-matrix
approximation

In the single impurity case one can write Vq=V/N where
V is the strength of the impurity potential. In what follows
we use standard finite temperature Green’s function
formalism.>*34 Because of the existence of two sublattices,
the Green’s function can be written as a 2 X 2 matrix,
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Gupok,p,7) Gaplk,p,7
Gg(k,p,7)=< AA, (k.p.7) AB, (k.p ))’ (10)
GBA,O'(ks P, T) GBB,cr(k’p’ T)
where
GAA,zr(k9p» T) == <,-Tak,(r(7-)a;,u-(0)>a
GAB,cr(kap» 7-) == <7bk,0(7-)b;,g-(o)>s
GBA,U(k’p’ T) == <,]-l)k,0'(7-)a;,0'(0)>’
Gg o(k.p.7) = = (Tay, ,(7)b} ,(0)), (11)
where 7 is the “imaginary” time, and 7 is the time ordering
operator.

For a single impurity the Green’s function can be written
as (p=k),*
G(k7 wn) = Go(ks wn) + Go(k’ wn)Timp.(wn)GO(k7 wn) B
(12)

where w,=27T(n+1/2) is the fermionic Matsubara fre-
quency, G(k,w,) is the propagator of the tight-binding
Hamiltonian (5) and

Vv _
Timp.(wn) = ]T,[I - VGO(wn)]_l s (13)
is the single impurity T matrix, where
— 1
G(0,) = 2 Gk, o,). (14)

k

The above result is exact for a single impurity. For a finite
but small density, n;=N,/N, of impurities, the Green’s func-
tion equation becomes

G(k,0,) = G"(k,w,) + Gk, »,)T(0,)G(k,w,), (15)

which is valid up to first order in n;, that is, it takes only into
account the multiple scattering of the electrons by a single
impurity. Equation (15) can be solved as

G(k7wn) = [[Go(k’ wn)]_l - T(wn)]_l > (16)

where

T(w,) = NTipp (@,) = Va[1 - VG (w,)]".  (17)

For vacancies we take V— o and (17) reduces to

T(w,) =-n{G"(w,)]". (18)

It is worth stressing that Egs. (12) and (13), although
similar in form to Egs. (16) and (17), have a very different
meaning. Whereas the first set applies to the single impurity
problem, the latter set is the consequence of an assemble
average over the impurity positions (see Sec. V for details on
the averaging procedure in the context of Landau levels)
with a resummation procedure, corresponding to the FBA.3*
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B. The low-energy physics and the electronic density of states

The results of the previous section are entirely general, in
the sense that no approximation for the band structure was
made. Consider, for simplicity, the tight-binding Hamiltonian
(5) in the case of t'=0, that can be written, in momentum
space, as

s |0 ¢(k)Hak,,,}
Ht.b._%[ak,(r’bk,a-] |:¢*(k) O kar 5 (19)

which can be diagonalized and produces the spectrum
E.(k) = [¢(K)|, (20)

where the plus (minus) sign is related with the upper (lower)
band. It is easy to show that the spectrum vanishes at the K
point in the Brillouin zone with wave vector, Q
=[27/(3V3a),2m/(3a)], and other five points in the Bril-
louin zone related by symmetry. In fact, it is easy to show
that

3 3

$Q+p) = 1ae™ p, ~ip,) + j1a’e™ 3P -pi-2ip.p,).
(21)
¢(Q + P) _ e[{s(Qﬂ,) ~ eiﬂ-/g (pv — lpx) (22)

|6(Q+p)| p|

where p (p<<Q) is measured relatively to the K point in

Brillouin zone and we have defined ¢®®=¢(k)/|p(k)|, for
latter use. Using (21) in (20) we find
3
E.(Q+p) = iita|p|= +vgp|, (23)

for the electron’s dispersion. Equation (23) is the dispersion
of a relativistic particle with “light” velocity vy=3ta/2, that
is, a Dirac fermion. Hence, at low energies (energies much
lower than the bandwidth), the effective description of the
tight-binding problem reduces the six points in the Brillouin
zone to two Dirac cones, each one of them associated with a
different sublattice. The low-energy description is valid as
long as the characteristic momenta (energy) of the excita-
tions is smaller than a cutoff, k, (D=vk,), of the order of the
inverse lattice spacing. In the spirit of a Debye model, where
one conserves the total number of states in the Brillouin
zone, we choose k. such that Wkg=(27r)2/Ac, where A,
=3134?/2 is the area of the hexagonal unit cell. Hence, Eq.
(23) is valid for p<<k. and E<D=kvp.

So far we have discussed the case of t'=0. When #' #0
the problem can also be easily diagonalized and one finds
that, close to the K point, the electron dispersion changes to

r 2

9t'a
E.(Q+p)=~-3txvgp|+ 2 P’ (24)

showing that ¢' does not change the Dirac physics but intro-
duces an asymmetry between the upper and lower bands, that
is, it breaks the particle-hole symmetry. Hence, ¢’ affects
only the intermediate- to high-energy behavior and preserves
the low-energy physics. For many of the properties discussed
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in this section ¢’ does not play an important role and will be
dropped. Nevertheless, we will see later that in the presence
of extended defects ¢’ plays an important role and has to be
introduced in order to provide a consistent physical picture
of graphene.

For ¢'=0 we find

172
Gup(w k) = 2 - (25)
j=x1 10y~
i8(k)
je's 2
GAB(wmk) = E . (26)
. —is(k)
je /2
Gpalw )= 2 ——————, (27)
. i, = jlok)
Gpp(w,.k) = Gyp(w,,k). (28)

The expansion of the energy around the K point simplifies
greatly the expressions in the calculation of the T matrix,
since they lead to simpler forms to Egs. (25)—(28). For the
case of vacancies, Eq. (18), it is easy to see that at low
energies the T matrix reads

T(w,) == n[Gj(w,)]'1, (29)
where I is a 2 X2 identity matrix, and
1 1
G \(w,) = YV
TN D w0, = jl o)
‘_Ef k11 fe dkk
2pj_+1 Q2m)iw, —jUFk 471'p iw, — jugk
=- iw, In(D*w?), (30)

- 47TpvfF

where p=S/V is the graphene planar density (S is the area of

the graphene layer). After a Wick rotation (iw, — w+i0%) one
finds

(_;gA(w+i0+) =-Fy(w) - impy(w), (31)
where
2w D
Fylw) = E ln(m), (32)
po(w) = M (33)

D2
where we have used that p=1/A,=k>/(4m), and hence
4mpvy=D>. In the above equations we always assume ||

<D. Notice that py(w) is simply the density of states of
two-dimensional Dirac fermions.

1. A single vacancy

Assuming that a single unit cell has been diluted, we use
Egs. (12) and (13) to determine the correction to the Dirac
fermion density of states. The actual density of states, p(w),
is given by

1 _ . 2/N (w)
L o mrero
2/N

indicating that the contribution of the vacancy to the density
of states is singular in the low-frequency regime. The contri-
bution is negative because one has exactly one missing state
associated with the vacancy. The electronic wave function
around a single impurity was computed in Ref. 35. The result
obtained here is identical to the one obtained in the dilution
problem in Heisenberg antiferromagnets.3®3” The reason for
this coincidence is easy to understand: the low-energy exci-
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tations of an antiferromagnet in the ordered Néel phase are
antiferromagnetic magnons with linear dispersion relation,
that is, relativistic bosons with a “speed of light” given by
the spin-wave velocity. Since we have been discussing a non-
interacting problem, the statistics plays no role, and the ef-
fect of disorder is the same for relativistic bosons or fermi-
ons.

2. The full Born approximation (FBA)

The situation is clearly different if one has a finite density
of vacancies. In this case we have to deal with Egs. (16) and
(17) corresponding to the FBA where all one-impurity scat-
tering events have been considered. As before, the density of
states is given by p(w)=-Im G44(w+i0*)/7 and it is pos-
sible, after some tedious algebra, to obtain an analytical ex-
pression for this quantity, given by

_ po(w) 2n n( D’ )
- D? a(w) b (w) + 2 (w)
1 ab(w)[ (a(w)D)
—Y —— | arctan T

wD? a1 (o)

+ arctan( ab(w) ) } ,

c(w)

p(w)

(35)

with
a(w) = Fi(w) + mpi(w),

b(w) = a(w)w - niFo(w),

c(w) = nympo(w), (36)

where Fy(w) and py(w) are defined in (32) and (33), respec-
tively. A plot of Eq. (35) is given in Fig. 2 for two values of
the impurity concentration n;. Once again, the low-energy
behavior of p(w) is the same found in the context of diluted

antiferromagnets.’®3” We remark that the dilution procedure
introduces a low-energy scale proportional to Dn;, as can be
seen from Fig. 2(c).

3. The full self-consistent Born approximation (FSBA)

The FBA does not take into account electronic scattering
from multiple vacancies, but accounts only for multiple scat-
tering from a single one. In order to include some contribu-
tions from multiple site scattering, another partial series sum-
mation can be performed by replacing the bare propagator in
the expression of the T matrix in (18) by full propagator,
leading to the FSBA. Because the matrix elements of the
scattering potential computed from two Bloch states |k) and
Ip) are assumed momentum independent, the self-energy for
the electrons depends only on the frequency. The self-
consistent problem requires, in general, a careful numerical
solution but in this particular case it is possible to reduce the
problem to a set of coupled algebraic equations. The self-
consistent problem requires the solution of the following
equation:

-n;

— (37)
GgA[wn - 2(wn)]

3(w,) =

where 2 (w,) is the electron self-energy. One can show that
the self-energy can be written as

a (38)

S(w+i0%) = m,

where F(w) and p(w) are determined by the following set of
coupled algebraic equations:

V(F,p,w) + ﬂY(F,p,w),

a(w)D? (39)

" st
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c(w) b(w) III. SPECTRAL AND TRANSPORT PROPERTIES
Wp(w) = ZW(F,P,CU) - ZY(F’paw)9 (40) . . .
2a(w)D a(w)D The electronic spectral function is defined as

where we used the definitions (36) and also defined the func-
tions W(F,p,w) and Y(F,p,w),

[aa(w)D + b(w)]* + *(w)
b (w) + A(w)

‘I’(F,p,w)z In . (4D

Y(F,p,w) = -2 arctan[ b(w)/c(w)]
+ E a arctana(w)D/c(w) — ab(w)/c(w)].

(42)

The solution of Egs. (39) and (40) describes the effect of the
vacancies on the density of states of the Dirac fermions. p(w)
is the self-consistent density of states, and F(w) corresponds
to the real part of self-energy [in analogy with py(w) and
Fy(w) defined in (33) and (32)]. In Fig. 3 we show the result
of this procedure for various impurity concentrations.

The low-energy behavior of the density of states, showing
a parabolic enhancement of p(w), has also been found in the
context of heavy-fermion superconductors.®® An exact nu-
merical calculation of the electronic density was carried out
in Ref. 35, where it was found that besides the low-energy
domelike shape of the p(w) (as shown in Fig. 3), a large peak
appears very close to w=0. This peak is reminiscent of the
single impurity result given in (34). Hence, besides the peak,
the FSBA gives a very good account of the density of states
in this problem.

Notice that the self-energy, 2(w), in (38) depends on n; in
a nontrivial way, since both the self-consistent F(w) and
p(w) also depend on n;. The self-energy is depicted in Fig. 4
for various values of the dilution density n;.

Ak, w)=— 7%_ Im G(k,w + i0%), (43)
and can be interpreted as the probability density that an elec-
tron has momentum k and energy w. For a noninteracting,
nondisordered problem, the spectral function is simply a
Dirac delta function at w=FE(k). In the presence of disorder
and/or electron-electron interactions the spectral function is
broadened and its sharpness determines whether the elec-
tronic system supports quasiparticles. The spectral function
can be measured directly in angle resolved photoemission
experiments (ARPES).

In terms of the self-energy, 2(k,w), the spectral function
reads

1 Im E(k, (1))
Ak o)== h 0 —Re S(k, )P+ [Im Sk, o)
(44)

In the case of graphene, there are two contributions to the
self-energy,

E(k, w) = E'e‘—e.(k) + Edis.(w) >

where 2. _. (k) is the self-energy correction due to the
electron-electron interactions that was computed originally

in Ref. 40,
1 6‘2 2
et L2
mZ2, (k) 48\ ey UF|

where e is the electron charge, and ¢, the dielectric constant
of graphene. The other contribution, 3,4, is due to disorder
and is given in (38).

(45)

; (46)
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Notice that these two contributions to the self-energy have
very different dependence with the energy: while the
electron-electron self-energy decreases as the energy (mo-
mentum) decreases, the self-energy due to disorder increases
as the energy decreases. Hence, electron-electron interactions
are dominant at high energies while disorder is dominant at
low energies. This interplay between the two self-energies
leads to the prediction that there will be a minimum in the
self-energy for some energy where the electron-electron in-
teraction becomes of the same order of the electron-vacancy
interaction. In Fig. 5 we plot the self-energy as a function of
energy for various impurity concentrations together with the
spectral function (inset). One can clearly observe the non-
monotonic dependence of the self-energy with the energy.
This behavior should be observable in ARPES experiments.

Assuming an electric field applied in the x direction, the
frequency dependent (real part) conductivity is calculated
from the Kubo formula

o(q,w)=lf
wJy

where J, is the x component of the current operator which,
due to gauge invariance, has the form*!

- il T
Jx =-—lle 2 u, - 5ai,a'bi+§,0' — Uy 5bi,o’+éai,0'

i,0,0

die"([J}(q,0).7.(q,0)]) (47)

(48)

(the notation i+ means R;+ &). In Fourier space, and after
expanding the general expression around the K point in the
Brillouin zone, we obtain

Jo==ivpe 2, (e7™a) by o~ €™ b ). (49)
k.o

Substitution of (49) into (47) shows that the problem de-
pends on the Green’s functions defined in (11). However, due
to the special form of Eq. (22) the conductivity does not have

— =10
e
L vl v
100 1000
® (cm”)

contributions coming from products of Green’s functions of
the form G43Gp,. Taking into account the number of bands
and the spin degeneracy, the Kubo formula for the real part
of the conductivity at finite frequency and temperature has
the form

“d
o(w,T)=- NA—ewf ZETD’(H ) - f(e)]

X >, Im Gyu(k, €+ i0%)Im Gyq(k, €+ w + i0Y),
k

(50)

where f(€)=1/(e!*®'T+1) is the Fermi-Dirac distribution
function. The integral over k in (50) can be performed and
one finds

62

27w

o(w,T)=- J def(e+ w) - f(e)|K(w,€), (51)

where
K(w,e) =Im 2(e+ w)Im X (€)O(w, €),

[O(w, €) defined in Appendix Al.
It is instructive to consider the zero-temperature, zero-
frequency limit of the conductivity in Eq. (50) (restoring 7)

_26_2(1 M) _2e
Tah\ D*+[m30)P) wh

The result (53) shows that as long as Im 2(0) <D, o has a
universal value independent of the dilution concentration, in
agreement with earlier theoretical works,*>*} and in agree-
ment with the experimental data in graphene.®

At finite temperatures the integral in (51) has to be evalu-
ated numerically. Consider o(0,T) whose behavior is deter-
mined by K(€) =K(0, €). The quantities K(€) and —f’(€)K(e)

(52)

g9

(53)
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[—f'(e) is the derivative of the Fermi function in order to €|
are both represented in Fig. 6. The behavior of K(e) shows
V-like shape as the energy € is varied. As a consequence,
0(0,0) should present the same V-like shape as the chemical
potential x moves around pu=0. Such behavior has indeed
been observed in atomically thin carbon films,*° where the
density of electrons was controlled by a gate potential. The
temperature dependence of the (0, T), for =0, is depicted
in Fig. 7 for different vacancy concentrations, and it is found
to follow Sommerfeld asymptotic expansion, but the number
of terms needed to fit the numerical curve grows very fast as
the dilution is reduced.

In Fig. 8 we plot the frequency dependence of o(w,T)
obtained from numerical integration of (51) with the self-
energy given in (38). At low temperature, we see that o(w,T)
develops a maximum around an energy value that is depen-
dent on the number of impurities. In fact, if one plots o(w,T)
as function of w/vn;, the conductivity almost shows scaling
behavior for all impurity dilutions (see lower left panel). As
the temperature increases, and if o(0,7T) is sufficiently large,
the conductivity o(w,T) acquires a Drude-like behavior
(right panel).

IV. MAGNETIC RESPONSE AND THE ROLE OF SHORT-
RANGE COULOMB INTERACTIONS

The ferromagnetism measured in proton irradiated graph-
ite opens the question whether the interplay of interactions
and disorder can drive the system from a paramagnetic to a
magnetic ground state.** We study the effect of disorder on
the magnetic susceptibility in the presence of short-range in-
teractions, and the resulting change in the tendency towards
magnetic instabilities. The problem of magnetic instabilities
due to long-range exchange interactions® in the presence of
small density of carriers was discussed in great detail in Ref.

31. We do not address here the effects associated to the in-
terplay between the long-range Coulomb interaction and dif-
ferent types of lattice disorder*® and the appearance of local
moments close to defects.*’~>°

The paramagnetic susceptibility of graphene is given by

am, B il o
X1)=— =4 N; E Gaalke,iw, — h)
=—4J def'(e)p(e), (54)
where
m(T) =22, o{a] ,a; ,) (55)

i,o

is the magnetization, and p(e€) is the electronic density of
states which, in the presence of disorder, is given in (40).
Within the Stoner mechanism,”' ferromagnetism is possible
if the local electron-electron interaction term (the so-called
Hubbard term),>” U, is large than a critical value given by

1 1
— =—(0). 56
A X0 (56)
In the case of an antiferromagnetic instability the same cri-
teria would lead to another critical value of U given by

| D

Upp mDJ 7

sl
Im3(e) |’

Notice that in the case of antiferromagnetism one finds that
Uyr=D/(1-n;) when Im 3 — 0, in agreement with Hartree-
Fock calculations.>

In Fig. 9 we plot the magnetic susceptibility as function of
T for different values of n;. The signature of the presence of
Dirac fermions comes from the linear dependence on T for

dep(€)arctan {

125411-10



ELECTRONIC PROPERTIES OF DISORDERED TWO-...

0,=014eV, T=12T

PHYSICAL REVIEW B 73, 125411 (2006)

B I Y SO IR SR SR U B B O AR T
~ F YRR I L = it PP S A R A R A
S kLT meooor | 41 Timisbd A FIG. 10. (Color online) Top:
L 0006 LIy L i i [ A "‘*.'“i"?-"— . .
= v |,fl“\‘|\'L\: b ! —. n,=0.005 ' oo A' ANy Electronic  density of states
S BREREAL Ik’(‘ki\ il i1 |== nm=00009| | I i ,i)'):\/,' w1y E\'i . (DOS), p(w), as a function of
Sooos MR 1 L e L P /o, (0,20.14 &V s the cyclo-
e v K ! — L L T P |\||\|||| [ . .
Q. L Ry, 7T | S A W T tron frequency) in a magnetic field
8 0002—5 IR E N P44 i BAN b B=12T for different impurity
R IR RN | AEIREEERERE concentrations ;. Bottom: p(w).
e = DL s 0 function of wlo, (o
0 i1l b 1 1 1 11 11 1 Il 1 | T S I 'l =0.1 eV iS the Cyclo[ron fre_
uency) in a magnetic field B
©,=016V,B=6T ﬂéT? n o magetic |
0.008 [ ’ [ 1 ’ 1 T ' - - = | [ 1 | [ (L ! (T - _Or 1eren lmpurly con-
I A I T i n,=0.001 i oo b centrations n;. The solid line
%: I T S T A ' |— n=00008| ! A A A shows the DOS in the absence of
SR S EE R RN A N Iy 1 S A N R R R Ry disorder. The positions of the Lan-
S B Q| i i i i i i i ! . i i E i E i i E E A . dau levels in the absence of disor-
3 0.004 i ieh Lobobo i A i der are shown as vertical lines.
3 L ML | i ] i Lo The two arrows in the top panel
@« P i “ show the position of the renormal-
8 0.002 P i ized Landau levels (see Fig. 11)
B :I :I given by the solution of Eq. (73).
O 11

'
(3]

-1
o)/coC

T/D<1. Notice that, unlike the case of an ordinary metal
that has a Pauli susceptibility that is nearly independent of
temperature, the graphene susceptibility increases with tem-
peratures and number of impurities. At low temperatures
x(T) presents a small upturn not visible in Fig. 9. From the
value of x(0) and (56) we obtain the critical interaction re-
quired for a ferromagnetic transition, which is shown in the
lower left panel of Fig. 9. Notice that the critical interaction
strength for ferromagnetism decreases as the vacancy con-
centration increases, indicating that disorder favors a ferro-
magnetic transition.

Using (57) and the results of the previous sections we can
also calculate the critical value for an antiferromagnetic tran-
sition. The result is shown in the lower right panel of Fig. 9.
In contrast with the ferromagnetic case, the antiferromag-
netic instability is suppressed by disorder, requiring a large
value of the electron-electron interaction. Notice that the
value of the critical ferromagnetic coupling is always bigger
than the antiferromagnetic one, indicating that at half-filling
the graphene lattice is more susceptible to antiferromagnetic
correlations. This result is consistent with an old proposal by
Pauling that graphene should be a resonant valence bond
(RVB) state with local singlet correlations.'’

Hence, the Stoner criteria seem to be unable to explain the
ferromagnetic behavior observed experimentally. One might
ask whether additional scattering mechanisms, such as that
provided by long-range electron-electron interactions, can
modify the critical values of the couplings. The self-energy
correction due to long-range electron-electron scattering is
given in (46) and can be added to the Dyson equation for the
Green’s function and a self-consistent density of states can
be computed. This approach does not modify the value of Uy
which is determined by the low frequency behavior of the
self-energy. In case of antiferromagnetism we find that in-

deed it leads to an increase on Uj, but the result is noncon-
servative since the integral over the density of states gives a
smaller value than (1-n;). Therefore, we find from these
calculations and previous ones?'>* that graphene is not par-
ticularly susceptible to ferromagnetism.

V. MAGNETOTRANSPORT

The description of the magnetotransport properties of
electrons in a disordered honeycomb lattice is complex be-
cause of the interference effects associated with the Hofs-
tadter problem.>® As in the previous sections, we simplify
our problem by describing the electrons in the honeycomb
lattice as Dirac fermions in the continuum. A similar ap-
proach was considered by Abrikosov in the quantum magne-
toresistance study of nonstoichiometric chalcogenides.’® In
the case of graphene, the effective Hamiltonian describing
Dirac fermions in a magnetic field (including disorder) can
be written as H=Hy+H; with

Hy=-vp E o[- id; +eA,(r)],

=X,y

(58)

where, in the Landau gauge, (A,,A,,A,)=(-By,0,0) is the
vector potential for a constant magnetic field B in the z di-
rection, o; is the i=x,y,z Pauli matrix, and
N;
Hi= VE 5(r—r])l

j=1

(59)

(we set the velocity of light to unit, c=1). The formulation of
the problem in second quantization requires the solution of
H,, which is sketched in Appendix B. The field operators are
defined as (see Appendix B for notation; the spin index is
omitted for simplicity)
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\I’(I’) = E = Cr-1t E Ck.n,a
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(60)

where [z=1/ VeB is the cyclotron length, and the cyclotron
frequency is given by

w. = \/EUF/ZB:UF\”%. (61)

The sum over n=0,1,2,... is cut off at an n, given by
E(1,n5)=D. In this representation H, becomes diagonal,

Y
v

Hi:
L

J=1 p.k
1

_p1123)¢0(yj_kllzi)c;,n,ack,—l+ Z >

n,m,a,\

Equation (64) describes the elastic scattering of electrons in
Landau levels by the impurities. It is worth noting that this
type of scattering connects Landau levels of negative and
positive energy.

A. The full self-consistent Born approximation

In order to describe the effect of impurity scattering on
the magnetoresistance of graphene, the Green’s function for

PHYSICAL REVIEW B 73, 125411 (2006)

leading to Green’s functions of the form (in Matsubara rep-
resentation)

1

Golk,n,ajiw) = ————, 62
olk,n, asiw) o E(an) (62)

where
E(a,n) = aw\n+ 1 (63)

are the Landau levels for this problem (a==1 labels the two
bands). Notice that Gy(k,n,a;iw) is effectively k indepen-
dent, and E(a,—1)=0 is the zero-energy Landau level. The
part of Hamiltonian due to the impurities is written as

d . . a . a
> > ek doly; —Pl%;) doly;— kl%})c;),—lck,—l +2 TE¢0(Yj —Pl%;)¢n+1(yj - kl%})c['),—lck,n,a + E%H()’j

na N

[6,(y; = P by = klp) + aN b1 (v = PIE) it (v = kI ]e) o aCimn |- (64)

Landau levels in the presence of disorder needs to be com-
puted. In the context of the 2D electron gas, an equivalent
study was performed by Otha and Ando,’’° using the aver-
aging procedure over impurity positions of Duke.®® Here the
averaging procedure over impurity positions is performed in
the standard way, namely, having determined the Green’s
function for a given impurity configuration (r, ... ,rN[_), the
position averaged Green’s function is determined from (as in
Sec. IT A)

N;
(G(p.n,aziwiry, ... ,ry)) = G(p,n, a;iw) =L‘2Nf[H f drj:| G(p.n,aziwiry, ....ry). (65)
J=1
|
In Sec. IT A the averaging involved plane wave states; in the Glp,n,a;0+0") =[w—-En,a)- El(w)]—‘, (68)
presence of Landau levels the average over impurity posi-
tions involves the wave functions of the one-dimensional
harmonic oscillator. In the averaging procedure we have used . »
the following identities: Gp,— Lo+0%) =[w-3y(w)]", (69)
f dy ¢n(y - pl?}) d)m(y - pl?}) = 5)1,m7 (66) where
S, -
f dp¢n(y —pl%)qﬁm(y —plé) = ;2’”1 . (67) El(w) =- nz[Z(w)] 1, (70)
B

After a lengthy algebra, the Green’s function in the presence
of vacancies, in the FSBA, can be written as

3y(0) == nfgGlp,— Lw+0M)2+ Z(w)] ",  (71)
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<

Z(w)=g.G(p,— 1;0+07)/2 + gCE G(p,n,a;w+0%)/2,

| (72)

and g,=A./(27l3) is the degeneracy of a Landau level per
unit cell. One should notice that the Green’s functions do not
depend upon p explicitly. The self-consistent solution of Eqs.
(68)—(72) gives density of states, the electron self-energy,
and the renormalization of Landau level energy position due
to disorder.

The effect of dilution in the density of states of Dirac
fermions in a magnetic field is shown in Fig. 10. For refer-
ence we note that E(1,1)=0.14eV for B=14T, and
E(1,1)=0.1 eV for B=6 T. From Fig. 10 we see that given
an impurity concentration the effect of broadening due to
vacancies is less effective as the magnetic field increases. It
is also clear that the position of Landau levels is renormal-
ized relatively to the nondisordered case. The renormaliza-
tion of the Landau level position can be determined from
poles of (69),

w—E(a,n) —Re 2(w) =0. (73)

Of course, due to the importance of scattering at low ener-
gies, the solution to Eq. (73) does not represent exact eigen-
states of the system since the imaginary part of the self-
energy is nonvanishing; however, these energies do
determine the form of the density of states, as we discuss
below.

In Fig. 11, the graphical solution to Eq. (73) is given for
two different energies [E(-1,n), with n=1,2], being clear
that the renormalization is important for the first Landau
level. This result is due to the increase of the scattering at
low energies, which is present already in the case of zero
magnetic field. The values of w satisfying Eq. (73) show up
in density of states as the energy values where the oscilla-
tions due to the Landau level quantization have a maximum.
In Fig. 10, the position of the renormalized Landau levels is

shown in the upper panel (marked by two arrows), corre-
sponding to the bare energies E(—1,n), with n=1,2. The
importance of this renormalization decreases with the reduc-
tion of number of vacancies. This is clear in Fig. 10 where a
visible shift toward low energies is evident when n; has a
small 10% change, from n,=107> to n;=9 X 107,

B. Calculation of the transport properties

The study of the magnetoresistance properties of the sys-
tem requires the calculation of the conductivity tensor. In
terms of the field operators, the current density operator j is
given by!?

J=vpe[ ¥ (0, )) 0, P (x,y), ¥ (x,y) o, W xy)],  (74)

leading to current operator in the Landau basis written as
oS At t
J.=vpe ’,—[cp’_]ck,o’a + cp,o,acp,_l] +vpe
p.a V2

x 2

1

— i T

2[)\(1 - 5n,0)cp,n,acp,n—l,)\ + acp,n,acp,nﬂ,)\]’
J AN

(75)

i
— I N ¥
Jy= UFEE ,—[Cp,_1ck,o,a - Cp,O,an,—l] +vpe
p.a V2

i N .
X E _[_ )\(1 - 5n,0)c[';,n,acp,n—l,)\ + ac};,n,acp,nﬂ,)\]-
P, o\

(76)

As in Sec. III, we compute the current-current correlation
function and from it the conductivity tensor is derived. The
diagonal component of the conductivity tensor o, (w,T) is
given by (with the spin included)
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(77)

and the off-diagonal component o,,(w,T) of the conductivity tensor is given by

de €
270 <2T)E

2wpe)* 1 (7
sl =20 |
dmly o) wy

{'y[Re G(0,a;e+ yo +i0")Im G(— 1;e+i0") —Re G(- 1;e+ yw

+i0MIm G(0, az e+ i0%)]+ >, l/[Re Gn,a;e+ yo+i0HImG(n—1,\;e+i0") —Re G(n-1,a;e+ yw

An=1

+i0%)Im G(n,\; e+ iO*)]] .

If we neglect the real part of the self-energy, and assume
Im >,(w)=I"=const (i=1,2), and let w— 0, Eq. (77) reduces
to Eq. (85) in Ref. 61, if we further assume the case
E(1,1)>T then Eq. (78) reduces to Eq. (86) of the same
reference.

As in Sec. III it is instructive to consider first the case
w,T— 0, which leads to [0,,(0,0)=0y],

22
=
n0+1

" ny+ 1+ [Im 21(0)/(1}6]2

1 +[Im 3,(0)/w.J?

|

and ©,>Im3(0) [or

(79)

When Im X,(0)=Im 2,(0) ng

(78)

>Im3,(0)/w.], with w.=E(0,1)=\2vs/1%, Bq. (79) re-
duces to oy=2/(e?*/h), which is identical to the result (53)
in the absence of the field found in Sec. III. This result was
obtained previously by Ando and collaborators using the
second-order self-consistent Born approximation.®>%> How-
ever, in the FSBA it is required that the above conditions be
satisfied for this result to hold. From Fig. 12 we see that the
above conditions hold approximately over a wide range of
field strength.

Because the dc magnetotransport properties have been
measured on graphene samples* subjected to a gate potential
(allowing us to tune the electronic density), it is important to
compute the conductivity kernel, since this has direct experi-
mental relevance. In the the case w— 0 we write the conduc-
tivity o,,(0,7) as
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e (* ofe graphite,'3%93% assumes that in the absence of interlayer
0.,(0,7) = h j dG?KB(E)’ (80) interactions the electronic structure of graphite shows

where the conductivity kernel Kg(€) is given is Appendix A.
The magnetic field dependence of kernel Kg(e€) is shown in
Fig. 12. Observe that the effect of disorder is the creation of
a region where Kg(€) remains constant before it starts to
increase in energy with superimposed oscillations coming
from the Landau levels. The same effect, but with the ab-
sence of the oscillations, was identified at the level of the
self-consistent density of states plotted in Fig. 10. Together
with 0,,(0,7), the Hall conductivity o,,(0,7) allows the cal-
culation of the resistivity tensor

p _ O-.XX
Py 2 20
Ot 0y
Py = _ O (81)
R

Let us now focus on the optical conductivity, o,(w). This
quantity can be probed by reflectivity experiments on the
sub-THz to mid-IR frequency range.®* We depict the behav-
ior of Eq. (77) in Fig. 13 for different magnetic fields. It is
clear that the first peak is controlled by the E(1,1)-E(1,
—1), and we have checked that it does not obey any particu-
lar scaling form as function of w/B. On the other hand, as
the effect of scattering becomes less important, the high-
energy conductivity oscillations start obeying the scaling
w/\B, as we show in the lower right panel of Fig. 13.

VI. EXTENDED DEFECTS

A. Self-doping in the absence of electron-hole symmetry

The standard description of a graphene sheet, following
the usual treatment of the electronic band structure of

electron-hole symmetry. This can be justified using a tight-
binding model by considering only hopping between 7 or-
bitals located at nearest neighbor carbon atoms. Within this
approximation it can be shown that in certain graphene
edges®”-% one would find a flat surface band.® Disclinations
(a pentagonal or heptagonal ring) can also lead to a discrete
spectrum and states at zero energy.*>’" Other types of de-
fects, like a combination of a fivefold and sevenfold ring (a
lattice dislocation) or a Stone-Wales defect (made up of two
pentagons and two heptagons) also lead to a finite density of
states at the Fermi level.”!-73

Band structure calculations show that the electronic struc-
ture of a single graphene plane is not strictly symmetrical
around the energy of the Dirac points.”* The absence of
electron-hole symmetry shifts the energy of the states local-
ized near impurities above or below the Fermi level, leading
to a transfer of charge from/to the clean regions to the de-
fects. Hence, the combination of localized defects and the
lack of perfect electron-hole symmetry around the Dirac
points leads to the possibility of self-doping, in addition to
the usual scattering processes whose influence on the trans-
port properties has been discussed in the preceding sections.

Point defects, like impurities and vacancies, can nucleate
a few electronic states in their vicinity. Hence, a concentra-
tion of n; impurities per carbon atom leads to a change in the
electronic density of the regions between the impurities of
order n;. The corresponding shift in the Fermi energy is e
=vp\n;. In addition, the impurities lead to a finite elastic
mean free path, lelaszanl»—” 2, and to an elastic scattering time
Toas = (Ugn;) ™!, in agreement with the FSBA calculation in
the preceding sections. Hence, the regions with few impuri-
ties can be considered low-density metals in the dirty limit,
as TS_ILS: €F.

Extended lattice defects, such as edges, grain boundaries,
or microcracks, are likely to induce the formation of a num-
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ber of electronic states proportional to their length, L/a,
where a is of the order of the lattice constant. Hence, a
distribution of extended defects of length L at a distance
proportional to L itself gives rise to a concentration of L/a
carriers per unit of carbon in regions of order (L/a)’. The
resulting system can be considered a metal with a low den-
sity of carriers, n.,ie; & a/L per unit cell, and an elastic mean
free path [,,,==L. Then, we obtain

Uf
€n = ’,—_,
F ValL
1 v
— ==, (82)
Telas L

and, therefore, (7,,,)”! <e€r when a/L<1. Hence, the exis-
tence of extended defects leads to the possibility of self-
doping but maintaining most of the sample in the clean limit.
In this regime, coherent oscillations of the transport proper-
ties are to be expected, although the observed electronic
properties will correspond to a shifted Fermi energy with
respect to the nominally neutral defect-free system.

B. Electronic structure near extended defects

We describe the effects that break electron-hole symmetry
near the Dirac points in terms of a finite next-nearest neigh-
bor hopping between 7 orbitals, 7', in (5). From band struc-
ture calculations,” we expect that |t'/f|<0.2. We calculate
the electronic structure of a ribbon of width L terminated at
zigzag edges, which are known to lead to surface states for
t'=0. The translational symmetry along the axis of the rib-
bon allows us to define bands in terms of the wave vector
parallel to this axis. In Fig. 14, we show the bands closest to
€=0 for a ribbon of width 200 unit cells and different values
of t'/t. The electronic structure associated to the interior re-
gion (the continuum cone), projected in Fig. 14 is not sig-

nificantly changed by #'. The localized surface bands, ex-
tending from k;=(2)/3 to ky=—(2)/3, on the other hand,
acquires a dispersion of order ¢’ (for a perturbative treatment
of this effect, see Ref. 75). Hence, if the Fermi energy re-
mains unchanged at the position of the Dirac points (€pjpe
=-3¢'), this band will be filled, and the ribbon will no longer
be charge neutral. In order to restore charge neutrality, the
Fermi level needs to be shifted down (for the sign of ¢’
chosen in the figure) by an amount of order #’. As a conse-
quence, some of the extended states near the Dirac points are
filled, leading to the phenomenon of self-doping. The local
charge as a function of distance to the edges, setting the
Fermi energy so that the ribbon is globally neutral. Note that
the charge transferred to the surface states is very localized
near the edges of the system.

C. Electrostatic effects

The charge transfer discussed in the preceding subsection
is suppressed by electrostatic effects, as large deviations
from charge neutrality have an associated energy cost. In
order to study these charging effects we add to the free-
electron Hamiltonian (5) the Coulomb energy of interaction
between electrons

H1=E Ui nmn;, (83)
ij

where n,»=EU(aZga,~’U+ bj;ab,-’(,) is the number operator at site
R;, and

62

Ui =
J 60|R[—Rj

, (84)

is the Coulomb interaction between electrons. We expect, on
physical grounds, that an electrostatic potential builds up at
the edges, shifting the position of the surface states, and re-
ducing the charge transferred to/from them. The potential at
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FIG. 15. (Color online) Displaced charge (in units of number of
electrons per carbon), as function of the distance to the edge (in
units of a) of a ribbon of width 300a. Full line: ¢'/t=-0.2; broken
line: ¢’ /t=-0.1. Notice that the Fermi energy is shifted upwards by
0.054¢ for t'=-0.1¢, and 0.077¢ for t' =-0.2¢.

the edge induced by a constant doping & per carbon atom is
roughly ~(&e*/a)(W/a) (8e*/a is the Coulomb energy per
carbon), and W the width of the ribbon (W/a is the number
of carbons involved). The charge transfer is arrested when
the potential shifts the localized states to the Fermi energy,
that is, when ¢’ = (¢?/a)(W/a) 5. The resulting self-doping is
therefore
r.2
= (85)
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We treat the Hamiltonian (83) within the Hartree approxi-
mation (that is, we replace H; by Hyg=2,;Vin; where V;
=3,U; {n;), and solve the problem self-consistently for (r;)).
Numerical results for graphene ribbons of length L=80\3a
and different widths are shown in Figs. 15 and 16 (¢'/t
=0.2 and ¢%*/a=0.57). The largest width studied is ~0.1 um,
and the total number of carbon atoms in the ribbon is =~10°.
Notice that as W increases, the self-doping decreases indicat-
ing that, for a perfect graphene plane (W—o0), the self-
doping effect disappears. For realistic parameters, we find
that the amount of self-doping is
107*-107> electrons per unit cell for domains of sizes
0.1-1 wm, in agreement with the amount of charge observed
in these systems.

D. Edge and surface states in the presence of a magnetic field

We can analyze the electronic structure of a graphene rib-
bon of finite width in the presence of a magnetic field. The
resulting tight-binding equations can be considered as an ex-
tension of the Hofstadter problem’® to a honeycomb lattice
with edges. The bulk electronic structure is characterized by
the Landau level structure discussed in previous sections.
These states are modified at the edges, leading to chiral edge
states, as discussed in relation to the integer quantum Hall
effect (IQHE).”” The existence of two Dirac points leads to
two independent edge states, with the same chirality. In ad-
dition, Landau levels with positive energy should behave in
an electronlike fashion, moving upwards in energy as their
“center of gravity” approaches the edges. Landau levels with
negative energy should be shifted towards lower energy near
the edges.
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FIG. 16. (Color online) Top: Self-consistent displaced charge density (in units of number of electrons per carbon) is shown as a
continuous line, and electrostatic potential (in units of 7) is shown as a dashed line, for a graphene ribbon with periodic boundary conditions
along the zigzag edge (with a length of L=960a) and with a circumference of size W=80v3a. The parameters used are described in the text.
The inset shows the details of the electronic density near the edge. Due to the presence of the edge, there is a displaced charge in the bulk
(bottom panel) that is shown as a function of the width W. Notice that the displaced charge vanishes in the bulk limit (W— ), in agreement

with (85).
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A zigzag edge induces also a nonchiral surface band. If
the width of these states is much smaller than the magnetic
field they will not be much affected by the presence of the
field. The extension of the surface states is comparable to the
lattice spacing for most of the range |k|<(2)/3, except
near the Dirac points, so that the effect of realistic magnetic
fields on these states is negligible.

The finite value of the second-nearest neighbor hopping ¢’
modifies the Landau levels obtained from the analysis of the
Dirac equation. Elementary calculations (as those given in
Appendix B) lead to

E.(n)=-3t + 2 2a(n + 1) £ [ a? + 207 P(n + 1),
(86)

with n=0,1,2,3,..., @=9t'a*/4, and y=3ta/2, with the
single assumption that #>¢'. This solution points out a num-
ber of interesting aspects, the most important of which is
disappearance of the zero-energy Landau level, made par-
tially of holes and partially of electrons. With ¢, the electron
or hole nature of the energy level becomes unambiguous, and
half of the original zero-energy Landau level (with #'=0)
moves down in energy (relative to the Fermi energy) and the
other half moves up. In addition, the level spacing for elec-
tron and hole levels becomes unequal.

The presence of a magnetic field acting on the ribbon does
not break the translational symmetry along the direction par-
allel to the ribbon, which allows us to discuss the electronic
structure in terms of the same bands calculated in the ab-
sence of the magnetic field. Results for the ribbon analyzed
in Fig. 14 for different magnetic fields are shown in Fig. 17.
The “center of gravity” of the wave functions associated to
the levels moves in the direction transverse to the ribbon as
the momentum is increased. The results show the bulk Lan-
dau levels and their changes as the wave functions approach
the edges. The surface band is practically unchanged, except

)
a

for small avoided crossings every time that it becomes de-
generate with a bulk Landau level. The results show quite
accurately the expected scaling €, +n for the eigenener-
gies derived from the Dirac equation, with small corrections
due to lattice effects and a finite ¢’ (see Appendix B). The
corresponding wave functions for different bands and mo-
menta are shown in Fig. 18. The Landau levels move rigidly
towards the edges, where one also finds surface states.

We can compute the Hall conductivity from the number of
chiral states induced by the field at the edges.”” If we fix the
chemical potential above the nth level, there are 2(2n+1)
edge modes crossing the Fermi level (including the spin de-
generacy). Hence, the Hall conductivity is

2 2
o= S2n+ 1) = (s 112), (87)
o h h

This result should be compared with the usual IQHE in het-
erostructures, in which the factor of 1/2 is absent. The pres-
ence of this 1/2 factor is a direct consequence of the pres-
ence of the zero mode in the Dirac fermion problem. The
existence of this anomalous IQHE was predicted long ago in
the context of high-energy physics’®7® and more recently in
the context of graphene,'”!* but was observed in graphene
only recently by two independent groups.®!! An incomplete
IQHE, with a finite longitudinal resistivity, was observed in
HOPG graphite.

E. Fractional quantum Hall effect

While the IQHE depends only on the cyclotron energy,
., and therefore is a robust effect, the fractional quantum
Hall effect (FQHE) is a more delicate problem since it is a
result of electron-electron interactions. The problem of
electron-electron interactions in the presence of a large mag-
netic field in a honeycomb lattice is a complex problem that
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FIG. 18. (Color online) Squared amplitude of the electronic wave function, |¢,(x)|?, as a function of the position x (in units of a)
transverse to a graphene ribbon (L=300a) for different parallel momenta k (in units of 1/a) for the lowest Landau levels: black: n=0; red:

n=1; green: n=2; blue: n=3.

deserves a separate study. In this paper we make a few con-
jectures about the structure of the FQHE based on generic
properties of Laughlin’s wave functions.

The electrons occupying the lowest Landau level are as-
sumed to be in a many-body wave function written as [R,;
=(x;,y;) and z=x+iy],*

\I’:exp<— lZmz ai,j)(l)(zl, ,ZN), (88)
i<j
where «; j=arctan[Im(z;—z;)/Re(z;—z;)], P(z;,...,2y) is an

antisymmetric function of the interchange of two z's, and
m=0,1,2,.... The effect of the singular phase associated
with the many-body wave function is to introduce an effec-
tive magnetic field B* given by

B '=B-V -a(r)/e=B-2m(2m)p(r)le, (89)
where the gauge field a(r) is given by
a(r) = ZmE \% (ri)a[,jv (90)

J#Fi

and p(r) is the electronic density. The procedure outlined
above is called flux attachment and leads to an appearance of
composite fermions. These composite particles do not feel

the external field B but instead an effective field B*. There-
fore, the FQHE of electrons can be seen as an IQHE of these
composite particles.

Given an electronic density 8, we may define an effective
filling factor p* for the composite particles as

. 270
=—. 91
p= g 91

In the lowest Landau level the electron filling factor is

==, 92
P=" (92)

and combining Egs. (91) and (92) we obtain

P
== > 93
P 2mp +1 ©3)
S0, we can write

B =B(1-2mp). (94)

The crucial assumption in the case of graphene is that the
effective p” associated with the integer quantum Hall effect
of composite particles has the form given in (87), that is
(spin ignored),
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p'=Qn+1), n=0,1,2,3,... (95)

(the effective field B is such that the system has one or more
filled composite particle Landau levels, and the chemical po-
tential lies between these two) leading to a quantized Hall
conductivity given by

2n+1 2¢*

- = 96
T om@n+ ) +1 h (%)

For n=0, one obtains the so-called Laughlin sequence: o,
=1/(2m+1)(2¢*/h), and for m=0 we recover (87). This ar-
gument shows that Jain’s sequence is quite different from
that of the 2D electron gas.’!

As in the case of the IQHE, the FQHE can be thought in
terms of chiral edge states, or chiral Luttinger liquids, that
circulate at the edge of the sample.3? One can see the IQHE
and FQHE as direct consequences of the presence of these
edge states. Because of their chiral nature, edge states do not
localize in the presence of disorder and hence the quantiza-
tion of the Hall conductivity is robust. In graphene, as we
have discussed previously, zigzag edges support surface
states that are nonchiral Luttinger liquids. We have recently
shown that electron-electron interactions between chiral Lut-
tinger liquids and nonchiral surface states can lead to insta-
bilities of the chiral edge modes leading to edge
reconstruction'? and hence to the destruction of the quanti-
zation of conductivity. We also have shown that this edge
reconstruction depends strongly on the amount of disorder at
the edge of the sample. While this effect is not strong in the
IQHE (because the cyclotron energy is very large when com-
pared with the other energy scales), it makes the experimen-
tal observation of the FQHE in graphene very difficult.

VII. CONCLUDING REMARKS

To summarize, we have analyzed the influence of local
and extended lattice defects in the electronic properties of
single graphene layer. Our results show that: (1) Point de-
fects, such as vacancies, lead to an enhancement of the den-
sity of states at low energies and to a finite density of states
at the Dirac point (in contrast to the clean case where the
density of states vanishes); (2) Vacancies have a strong effect
in the Dirac fermion self-energy leading to a very short qua-
siparticle lifetime at low energies; (3) The interplay between
local defects and electron-electron interaction lead to the ex-
istence of a minimum in the imaginary part of the electron
self-energy (a result that can be measured in ARPES); (4)
The low temperature dc conductivity is a universal number,
independent of the disorder concentration and magnetic field;
(5) The dc conductivity, as in the case of a semiconductor,
increases with temperature and chemical potential (a result
that can be observed by applying a bias voltage to the sys-
tem); (6) The ac conductivity increases with frequency at
low frequency and at very low impurity concentrations can
be fitted by a Drude-like model; (7) The magnetic suscepti-
bility of graphene increases with temperature (it is not Pauli-
like, as in an ordinary metal) and is sensitive to the amount

PHYSICAL REVIEW B 73, 125411 (2006)

of disorder in the system (it increases with disorder); (8)
Within the Stoner criteria for magnetic instabilities we find
that graphene is very stable against magnetic ordering and
that the phase diagram of the system is dominated by para-
magnetism; (9) In the presence of a magnetic field and dis-
order, the electronic density of states shows oscillations due
to the presence of Landau levels which are shifted from their
positions because of disorder; (10) The magnetoconductivity
presents oscillations in the presence of fields and that their
dependence with chemical potential and frequency are rather
nontrivial, showing transitions between different Landau lev-
els; (11) Extended defects, such as edges, lead to the effect of
self-doping where charge is transfered from/to the defects to
the bulk in the absence of particle-hole symmetry; (12) The
effect of extended defects on transport is very weak and that
electron scattering is dominated by local defects such as va-
cancies; (13) The quantization of the Hall conductance in the
IQHE is anomalous relative to the case of the 2D electron
gas with an extra factor of 1/2 due to the presence of a zero
mode in the Dirac fermion dispersion; (14) We conjecture
that the FQHE in graphene has a sequence of states which is
very different from the sequence found in the 2D electron
gas and we propose a formula for that sequence.

The results and experimental predictions made in this
work are based on a careful analysis of the problem of Dirac
fermions in the presence of disorder, electron-electron inter-
actions, and external fields. We use well-established theoret-
ical techniques and find results that agree quite well with a
series of amazing experiments in graphene.*~%!%!! The main
lesson of our work is that graphene presents a completely
unique electrodynamics when compared to ordinary metals
which are described quite well within Landau’s Fermi liquid
theory. In this work, we focus on the effects of disorder and
electron-electron interaction and have shown that Dirac fer-
mions respond to these perturbations in a way which is quite
different from ordinary electrons. In fact, graphene is a non-
Fermi liquid material where there is no concept of an effec-
tive mass and, therefore, a system where Fermi liquid con-
cepts are not directly applicable. A phenomenology beyond
Fermi liquid theory has to be developed for this system. Our
work can be considered a first step in that direction.
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APPENDIX A: O(w,e) AND Kz(e)

In the calculation of o(w,T) and o(0,T) we defined
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O(w, €)=

s1=%1,5p=%1

2 A%+ B?

where

N+s1M< D-s,A 5,A )
E arctan +arctan| — | | +
B B B

PHYSICAL REVIEW B 73, 125411 (2006)

P+s2V( D —s,C $,C )
arctan + arctan| ——
E E E

+Ml (D -5,A)*+ B? +V] (D-5,C)*+E? (A1)
— 10 - 5 5 — 10 - 5 5 R
£10 2 £10 C2+E2

M=(C*+E*-A*>-B)/D, V=-M,

N=2(s;A - 5,C) (A% + B*)/D,

P=-2(s5;A - 5,C)(A*+ B*)/D,

D=(A?+B> - C* - E*)> + 4(A% + B?)(C? = 5,5,AC) + 4(C* + E*)(A” = 5,5,AC),

A=€e+w—-Re(e+ w),

B=ImX(e+ w),
C=e—-Re3(e),
E=Im (e, (A2)
and cos a=(C>—E?)/(C*+E?).
In the magnetotransport properties, ,,(0,7) given by Eq. (80), depends on the kernel Kgz(x), which is defined as
K ( ) UIZ: 2 Im Ez(x) Im 21(){')
X)=
B 0w | [x—Re 3p(0) >+ [Im 3,(x) 2 [x - E(,0) = Re 3 (x) > + [Im 3 (x)
Im 3, (x) Im X, (x)
+ > ey 5 ——— 51 (A3)
an=1 X —E(a,n) —Re 2 (x)]* +[Im 2, (x) ]*[x = E(\,n — 1) =Re 2 (x) |* + [Im X (x)]
|
APPENDIX B: THE DIRAC EQUATION IN A MAGNETIC . 1 )
FIELD a'= 7@ - 130,), (B4)
N<lp

The Hamiltonian (58) can be solved using a trial spinor of
the form

gb(r)(cld)l(y))&

c20(y) \/Z ’ B1)

with L the size of the system in the x direction. After
straightforward manipulations, the eigenproblem reduces to

[ 0 a Cl¢1(Y)> (ﬁdﬁ()’))
UF\QIB<GT 0)<02¢2(y) £ cr,(y) ' (B2)

where

I
a=—=0+1), (B3)

N<ip

with the magnetic length defined as [2=1/(eB). For the case
of E+#0, it is simple to see that the spinor

1 ( bu(y) )

- ,

V2 a¢n+1(y)
is an eigenfunction of (B2) with eigenvalue FE(a,n)
=av\2/lg\n+1, with a=+1, and ¢, (n=0,1,2,...) the n
eigenfunction of the usual one-dimensional harmonic oscil-

lator. In addition, there exists a zero energy mode whose
eigenfunction is given by

(o)
&o(y) |

which completes the solution of the original eigenproblem.
As in the more conventional Landau level problem, the de-
generacy of each level is L?B/ ¢, with ¢py=h/e the quantum
of flux.

(B5)

(B6)
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