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We study the interaction of a pulsed electric field with a semiconductor quantum well by using the effective
nonlinear Bloch equations. We present analytical solutions for the Bloch equations for specific system param-
eters, under the rotating wave approximation. We also present conditions that could lead to complete inversion
in the system for a wide range of parameters. Our findings are assessed by numerical calculations for a double
quantum well based on GaAs.
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I. INTRODUCTION

The interaction of oscillating electric fields with intersub-
band transitions in semiconductor quantum wells has led to
the prediction of several interesting and potentially useful
effects, such as, for example, enhanced nonlinear optics,1,2

gain without inversion,3 and electromagnetically induced
transparency.4 Some interesting experiments also exist in this
field.5–13 Also, several useful devices such as lasers,14

photodetectors,15 modulators,16 optical,17 and quantum18

switches are based on intersubband transitions in semicon-
ductor quantum wells. In most of these studies atomic-like
multi-level theoretical approaches have been used for the de-
scription of the dynamics of the intersubband transitions.
Many-body effects arising from the macroscopic carrier den-
sity have also been included in a significant number of the-
oretical studies.19–32 These studies have shown that the opti-
cal response and the electron dynamics of the quantum wells
can be significantly influenced by changing the carrier den-
sity.

In a particular study in this area, Olaya-Castro et al.29

derived effective Bloch equations describing the effect of
electron-electron interactions on intersubband transitions in a
modulation-doped quantum well with two electronic sub-
bands coupled by an intense ac field. These equations are
nonlinear differential equations and the nonlinearities arise
due to the macroscopic number of carriers in the semicon-
ductor quantum well. Later, Haljan et al.30 used the general-
ized nonlinear Bloch equations for a doped double symmet-
ric quantum well and showed the occurrence of high order
harmonic generation in the terahertz regime by application of
a strong gigahertz electric field. They also showed that the
increase of electron sheet density above a critical value can
lead to level bifurcation and eventual disappearance of high
harmonics.

In this paper we study the potential for coherent control of
electron dynamics in a symmetric double quantum well, in
the two-subband approximation, that is coupled by a strong
pulsed electric field. For the system dynamics we use the
effective nonlinear Bloch equations of Olaya-Castro et al.29

We first simplify the nonlinear Bloch equations by using the
rotating wave approximation �RWA�33 and present analytical
solutions in cases where the two-subband system interacts
with specific pulsed electric fields. Conditions that lead to

complete inversion of the electronic population in the two-
subband system are also presented. We finally compare our
findings with numerical solutions of the effective nonlinear
Bloch equations for a realistic semiconductor quantum well
structure. Recently, Batista and Citrin32 studied Rabi oscilla-
tions in a two-subband n-type modulation-doped quantum
well that interacts with a pulsed electric field with time-
dependent frequency. The results presented here are comple-
mentary to those of the work of Batista and Citrin.32

II. EFFECTIVE NONLINEAR BLOCH EQUATIONS

The system under study is a symmetric double semicon-
ductor quantum well. We assume that only the two lower
energy subbands, n=0 for the lowest subband and n=1 for
the excited subband, contribute to the system dynamics. The
Fermi level is below the n=1 subband minimum, so the ex-
cited subband is initially empty. This is succeeded by a
proper choice of the electron sheet density. The two sub-
bands are coupled by a time-dependent electric field
E�t�=E0f�t�sin��t+��t��, where E0 is the electric field am-
plitude, f�t� is the dimensionless pulse envelope, � is the
angular frequency and ��t� is the time-dependent phase of
the electric field. In Ref. 29 Olaya-Castro et al. showed that
the system dynamics is described by the following effective
nonlinear Bloch equations:

Ṡ1�t� = ��10 − �S3�t��S2�t� −
S1�t�
T2

, �1�

Ṡ2�t� = − ��10 − �S3�t��S1�t�

+ 2��E�t�
�

− �S1�t��S3�t� −
S2�t�
T2

, �2�

Ṡ3�t� = − 2��E�t�
�

− �S1�t��S2�t� −
S3�t� + 1

T1
. �3�

Here, S1�t� and S2�t� are, respectively, the mean real and
imaginary parts of polarization and S3�t� is the mean popu-
lation inversion per electron �difference of the occupation
probabilities in the upper and lower subbands�. Also, � is the
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electric dipole matrix element between the two subbands and
the parameters �10,� ,� are given by

�10 =
E1 − E0

�
+

�e2

��
N

L1111 − L0000

2
, �4�

� =
�e2

��
N�L1001 −

L1111 + L0000

2
� , �5�

� =
�e2

��
NL1100. �6�

Here, N is the electron sheet density, � is the relative dielec-
tric constant, e is the electron charge, E0, E1 are the eigen-
values of energy for the ground and excited states in the well,
respectively, and Lijkl=		dzdz�	i�z�	 j�z��
z−z�
	k�z��	l�z�,
with i , j ,k , l=0,1. Also, 	i�z� is the wave function for the ith
subband along the growth direction �z axis�. Finally, in Eqs.
�1�–�3� the terms containing the population decay time T1
and the dephasing time T2 describe relaxation processes in
the quantum well and have been added phenomenologically
in the effective nonlinear Bloch equations. If there is no re-
laxation in the system T1 ,T2→
, then S1

2�t�+S2
2�t�+S3

2�t�
=1.

In comparison with the atomic optical Bloch equations33

we note that in the effective nonlinear Bloch equations the
transition frequency should be renormalized by a time-
independent term �see Eq. �4�� and by a time-dependent term
depending on the parameter � and S3�t�. The parameter �
consists of two compensating terms: the self-energy term and
the vertex term. In addition, the applied field contribution is
screened by the induced polarization term S1�t� with coeffi-
cient �.

We will proceed with the RWA.33 We introduce the vari-
ables U�t�, V�t�, Z�t� as

S1�t� = U�t�sin��t + ��t�� − V�t�cos��t + ��t�� ,

S2�t� = V�t�sin��t + ��t�� + U�t�cos��t + ��t�� ,

S3�t� = Z�t� . �7�

Then, Eqs. �1�–�3� are written as

U̇�t� = �� − �̇�t� − �� − ��Z�t��V�t�

− ��0�t� + �U�t��Z�t�sin�2�t + 2��t��

+ �V�t�Z�t�cos�2�t + 2��t�� −
U�t�
T2

, �8�

V̇�t� = − �� − �̇�t� − �� − ��Z�t��U�t�

+ ��0�t� + �U�t��Z�t�cos�2�t + 2��t�� − �0�t�Z�t�

+ �V�t�Z�t�sin�2�t + 2��t�� −
V�t�
T2

, �9�

Ż�t� = − ��0�t� + 2�U�t��V�t�cos�2�t + 2��t��

+ ��0�t�U�t� + ��U2�t� − V2�t���sin�2�t + 2��t��

+ �0�t�V�t� −
Z�t� + 1

T1
. �10�

Here, �0�t�=−�E0f�t� /� is the time-dependent Rabi fre-
quency and �=�10−� is the detuning from resonance. In the
case that T1 ,T2→
, then U2�t�+V2�t�+Z2�t�=1. In the RWA
the terms containing sin�2�t+2��t�� and cos�2�t+2��t��
are omitted from Eqs. �8�–�10�. Then, we obtain

U̇�t� = �� − �̇�t� − �� − ��Z�t��V�t� −
U�t�
T2

, �11�

V̇�t� = − �� − �̇�t� − �� − ��Z�t��U�t� − �0�t�Z�t� −
V�t�
T2

,

�12�

Ż�t� = �0�t�V�t� −
Z�t� + 1

T1
. �13�

We note that in the RWA the effective nonlinear Bloch equa-
tions, Eqs. �11�–�13�, reduce to similar equations as those
that describe a dense collection of two-level atoms interact-
ing with a laser field.34,35

III. ANALYTICAL SOLUTIONS

In what follows we assume that the system is initially
in the lowest subband, so the initial conditions are
S1�0�=S2�0�=0, S3�0�=−1, or U�0�=V�0�=0, Z�0�=−1. We
can present analytical solutions for the nonlinear Bloch equa-
tions under the RWA, Eqs. �11�–�13�, for two specific cases
described below. In both cases the relaxation processes are
ignored, so T1 ,T2→
. The system we consider is excited at
exact resonance, �=�10, and the applied field has a

hyperbolic secant form, so �0�t�=�̄ sech��t− t0� / tp�, where

�̄=−�E0 /� and f�t�=sech��t− t0� / tp�. Here, t0 is the center
of the pulse and it is chosen such that the electric pulse is
practically zero at t=0 �and t=2t0� and tp is the width of the
pulse.

First case: If there is no time-dependent phase, ��t�=0,

and �̄ is chosen such that �̄=���−��2+1/ tp
2, the analytic

solution of Eqs. �11�–�13� is given by35

U�t� =
�� − ��tp

��� − ��2tp
2 + 1

sech��t − t0�/tp� , �14�

V�t� =
1

��� − ��2tp
2 + 1

sech��t − t0�/tp� , �15�

Z�t� = tanh��t − t0�/tp� . �16�

Therefore, at t=2t0, Z�t�→1 and the electrons are transferred
in the upper subband. So, there is complete inversion of the
system.
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Second case: If the time-dependent phase is chosen such

that �̇�t�= ��−��tanh��t− t0� / tp� and �̄=1/ tp, then

U�t� = 0, �17�

V�t� = sech��t − t0�/tp� , �18�

Z�t� = tanh��t − t0�/tp� . �19�

In this case, too, we obtain complete population inversion in
the system at t=2t0. We note that the combination hyperbolic
secant pulse and hyperbolic tangent derivative for the time-
dependent phase have been also used in the Allen-Eberly
solution of the optical Bloch equations for a two-level atom
interacting with a laser pulse.33

We will assess the analytical results by comparing them
with numerical solutions of the nonlinear Bloch equations
�Eqs. �1�–�3��. We consider a GaAs/AlGaAs double quan-
tum well. The structure consists of two GaAs symmetric
square wells of width 5.5 nm and height 219 meV. The ex-
change self-energy terms, not present in the effective Bloch
equations, can be neglected in this structure, as the dynamics
of the system is dominated by the depolarization effects for
such values of the quantum well width.28 The wells are
separated by an AlGaAs barrier of width 1.1 nm. Also, the
electron sheet density is taken 5
1011 cm−2. Then, the

parameters are calculated to be E1−E0=44.955 meV,
�e2N�L1111−L0000� /2�=1.03 meV, ��=0.2375 meV and
��=−3.9 meV. As we can see from Fig. 1 where the time
evolution of the inversion, S3�t�, is presented, apart from a
small internal oscillation in the numerical results which arise
due to the non-RWA terms, there is a good agreement be-
tween the analytical and the numerical results. These internal
oscillations disappear for pulses of larger width and, in that
case, the analytical result describes more exactly the inver-
sion dynamics.

In order to study the effects of relaxation processes in
inversion dynamics, we repeat the numerical calculations in-
cluding the population decay and dephasing rates in the cal-
culations. As the dephasing is the crucial relaxation process
in semiconductor quantum wells we choose T1=10� and
T2=�. The results of our calculations for three different
dephasing times, �=3, 6, and 10 ps, are shown in Fig. 2. We
note that in this case complete inversion is not possible but
significant electron transfer still exists. It may be thought that
the efficiency of electron transfer can be effectively in-
creased by choosing significantly shorter electric pulses,
such that the effect of the relaxation processes is minimized.
However, in such case the RWA starts becoming insufficient
and the above analytical solutions are not proper for the de-
scription of the electron dynamics. The latter should be taken
into account during the decrease of pulse width.

FIG. 1. The time evolution of the inversion, S3�t�, obtained from
numerical solution of the nonlinear Bloch Eqs. �1�–�3� �dashed
curve� and the analytical result �solid curve�. In �a� the first case is
presented and in �b� the second case is presented. The parameters of
the pulse are t0=1.5 ps and tp=0.2 ps. In Fig. 1�b� ��t� is calculated
by the integration of �̇�t� from 0 to t.

FIG. 2. The time evolution of the inversion, S3�t�, obtained from
numerical solution of the nonlinear Bloch Eqs. �1�–�3� for the same
parameters as in Fig. 1 but with �=3 ps �solid curve�, �=6 ps
�dashed�, and �=10 ps �dot-dashed curve�.

COHERENT MANIPULATION OF A STRONGLY DRIVEN¼ PHYSICAL REVIEW B 73, 125344 �2006�

125344-3



IV. OTHER CONDITIONS FOR INVERSION

Using the analogy between Eqs. �11�–�13� and those of
the dense two-level atoms in a laser field34,35 we arrive at
conditions that lead to complete inversion in the system, if
the system is initially in the lower subband. We first assume
that there is no relaxation in the system, so T1 ,T2→
. The
interaction with the external field is at exact resonance,
�=�10, ��t�=0 and the applied field is taken to have Gauss-

ian shape, with �0�t�=�̄ exp�−�t− t0�2 / tp
2�. We note that the

shape of the electric pulse is not a very crucial parameter in
this case as the same results will be obtained for other pulse
shapes, such as, for example, hyperbolic secant pulses.

If the maximum value of the Rabi frequency is chosen

such that �̄=�−�, then, if the quantum well system interacts
with a resonant pulsed field with Gaussian form, complete
inversion may occur. This can be seen in Fig. 3 obtained
from numerical solutions of the nonlinear Bloch equations,
Eqs. �1�–�3�. Similar results are obtained for hyperbolic se-
cant pulses but we find that a Gaussian pulse creates the
inversion in shorter times than a sech pulse �not shown here�.

As we can see from Fig. 4, after a critical value, approxi-
mately tp=0.45 ps for the system under study, the two-
subband system exhibits inversion for a wide range of pulse
widths larger than this value. This effect can be explained

with the quasi-adiabatic following approximation of Ref. 35.
Also, by comparing Figs. 2 and 5, we see that the effects of
relaxation processes in the present method are slightly more
detrimental than previously to the efficiency of electron
transfer in the upper subband.

We note that the above condition is not the only one that
could lead to complete inversion in the system. Actually,
complete electron transfer to the upper subband occurs for
several values of the maximum Rabi frequency, as long as

�̄��−�, as is shown in Fig. 6. Also, complete return to the
initially occupied lower subband can be found for several

values of �̄ �see Fig. 6�. This figure shows a typical switch-
ing behavior that could be found in the quantum well system.
For the results of Fig. 6 the transfer process takes 3 ps. The
effects of relaxation processes in the maximum inversion are
shown in Fig. 7. We note that in the presence of relaxation
processes complete electron transfer to the upper subband or
complete electron return to the lower subband is not pos-
sible.

V. CONCLUSIONS

In this work we have studied the electron dynamics in a
symmetric double quantum well, in the two-subband ap-
proximation, that is coupled by a strong pulsed electric field.

FIG. 3. The time evolution of the inversion, S3�t�, obtained from
numerical solution of the nonlinear Bloch equations for a Gaussian

pulse with parameters �̄= ��−��, t0=1.5 ps, tp=0.6 ps, and
��t�=0.

FIG. 4. The inversion S3�t� at t=2t0 obtained from numerical
solution of the nonlinear Bloch equations as a function of the pulse

width tp for a Gaussian pulse with �̄= ��−�� and ��t�=0.

FIG. 5. The same as in Fig. 3 but with �=3 ps �solid curve�,
�=6 ps �dashed curve�, and �=10 ps �dot-dashed curve�.

FIG. 6. The inversion S3�t� at t=2t0 obtained from numerical
solution of the nonlinear Bloch equations as a function of the nor-

malized Rabi frequency �̄ / ��−�� for a Gaussian pulse with param-
eters t0=1.5 ps, tp=0.6 ps, and ��t�=0.

PASPALAKIS, TSAOUSIDOU, AND TERZIS PHYSICAL REVIEW B 73, 125344 �2006�

125344-4



We have used the effective nonlinear Bloch equations29 for
the description of the system dynamics. We have shown that
in the RWA the effective nonlinear Bloch equations of the
two-subband system are similar to the optical Bloch equa-
tions for a dense collection of two-level atoms interacting
with pulsed laser fields. Then, we present analytical solutions
for the case that the system interacts with hyperbolic secant
pulses with or without time-dependent frequency. In addi-
tion, conditions that lead to complete inversion of the elec-
tronic population in the two-subband system are also pre-
sented in the case that the quantum well structure interacts

with a Gaussian pulse. Our findings are verified by results
obtained from a numerical solution of the nonlinear Bloch
equations for a realistic double quantum well based on
GaAs. We have found that significant population inversion
occurs even in the cases where relaxation processes are taken
into account.

We finally note that in the results presented above the
pulse area �integral of the time-dependent Rabi frequency� is
not a parameter that should get very specific values in order
to achieve complete inversion in the two-subband system.
This is in contrast to what one may expect from the Rabi
solution of the optical Bloch equations for an atomic two-
level system interacting with pulsed laser fields.33 However,
the present system of effective Bloch equations is a nonlinear
system and its dynamics, as we have shown above, is quite
different from the well known optical Bloch equations.
Therefore, one may apply the results we present here in order
to obtain Rabi oscillations between two subbands in a semi-
conductor quantum well system.
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