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We study the local density of states �LDOS� of two-dimensional noninteracting electrons in the presence of
spin-orbit �SO� coupling. Although SO coupling has no effect on the average density of states, it manifests
itself in the correlations of the LDOS. Namely, the correlation function acquires two satellites centered at
energy difference equal to the SO splitting, 2�SO, of the electron Fermi surface. For a smooth disorder the
satellites are well separated from the main peak. Weak Zeeman splitting �Z��SO in a parallel magnetic field
causes an anomaly in the shape of the satellites. We consider the effect of SO-induced satellites in the LDOS
correlations on the shape of the correlation function of resonant-tunneling conductances at different source-
drain biases, which can be measured experimentally. This shape is strongly sensitive to the relation between
�SO and �Z.
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I. INTRODUCTION

The density of states, �0, in two-dimensional �2D� elec-
tron gas is energy independent. It remains energy indepen-
dent in a parallel magnetic field, which causes the spin split-
ting, 2�Z, of the electron spectrum. The density of states,
corresponding to each spin branch, is equal to �0 /2. Spin-
orbit �SO� coupling also results in the splitting of the elec-
tron spectrum into two branches.1 In this case the density of
states in each branch, �= ±1, depends on energy

����� =
�0

2
�1 + �

�SO

2�
� , �1�

where ±�SO is the splitting of a state which had the energy
���SO in the absence of the SO coupling. As can be seen
from Eq. �1�, the net density of states is still identically equal
to �0. Since the magnitude of the splitting, 2�SO, at the Fermi
level �=EF is inversely proportional to the length of the spin
rotation, this magnitude represents an important characteris-
tic of the 2D structure, containing the electron gas. The im-
portance of the spin-rotation length was appreciated since
1990, when the proposal for device application of the spin-
polarized currents was put forward.2 This proposal has lately
attracted a lot of interest.

If the magnitude of the SO splitting is large enough, it can
be inferred from the beating pattern of the Shubnikov–de
Haas oscillations, as was demonstrated by Dorozhkin and
Olshanetskii3 for Si-based structures, and subsequently4 by
Luo et al. for narrow-gap heterostructures. While for large
�SO �several meV�, as in Ref. 4, the beats of the
Shubnikov–de Haas oscillations yield a rather accurate value
of SO splitting, extracting small splittings from the beating
pattern is complicated in two regards: �i� very low magnetic
fields �with cyclotron energy smaller than �SO� and, corre-
spondingly, very low temperatures are required to observe
the beatings; �ii� presence of even moderate disorder

suppresses the Shubnikov–de Haas oscillations by the Dingle
factor, which gets large at low fields.

In the present paper we demonstrate that the disorder can,
actually, reveal the SO splitting even if �SO is smaller than
the single particle scattering rate, �−1. In a disordered sample
the local density of states �LDOS� fluctuates randomly in
space and these fluctuations contain information about SO
coupling. Our main point is that this information, which is
lost in the average LDOS, is preserved in the correlation
function of LDOS at two different energies, P��1 ,�2�. This
function, whose magnitude is inversely proportional to the
disorder, exhibits peaks at ��1−�2�= ±2�SO. Even for �SO�
�1 the peaks are well pronounced when the disorder is
smooth, so that the transport relaxation time, �tr, is much
longer than �. This is illustrated in Fig. 1. Smooth disorder
implies that the momentum transfer in a single scattering act
is small compared to the Fermi momentum, kF. In this way,
the states with energies �+�SO and �−�SO remain correlated
after many, ��tr /�, scattering acts. Therefore, the SO-
induced satellites in P��1 ,�2� are sharp even in the presence
of a strong disorder, �−1��SO, if the condition �SO�tr�1 is

FIG. 1. Schematic illustration of the processes responsible for
SO-induced peaks in LDOS correlator at �= ±2�SO.
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met. In terms of underlying physics, the observation that a
small SO-splitting can be resolved in a smooth potential is
quite analogous to the observation made in Ref. 5 concerning
the manifestation of the Landau levels in P��1 ,�2� in the
presence of a strong disorder, when the Landau level struc-
ture in the average density of states is completely smeared
out.6 Let us emphasize, though, that in our case �unlike Ref.
5� the density of states in the absence of disorder is constant,
which does not contain �SO. Thus, it is only in the presence
of disorder that LDOS becomes sensitive to the SO splitting.

Concerning the experimental consequences of SO-
induced satellites in P��1 ,�2�, we note that the local density
of states governs the probability of electron tunneling from
the impurity in the barrier into the 2D gas.7–9 This fact was
recently utilized in the resonant-tunneling spectroscopy10–14

of the LDOS. More specifically, the correlator of the LDOS
determines the behavior of correlation function, C�	V�, of
the fluctuations of the tunneling conductance with the
change, 	V, of the source-drain bias. From the analysis of
C�	V�, measured experimentally, the authors13 were able to
extract the quantitative information about the structure of
states and their inelastic lifetime in the disordered emitter. In
the present paper we demonstrate that the SO-induced corre-
lations in the LDOS give rise to the new characteristic fea-
tures in C�	V�. We also demonstrate that these new features
are extremely sensitive to a weak parallel magnetic field.

The paper is organized as follows. In Sec. II we derive the
analytic expression for P��1−�2� in the case of a smooth
disorder. In Sec. III we give the qualitative explanation for
the ratio between the amplitudes of the main peak in P��1

−�2� and of the SO-induced satellites. In Sec. IV we use the
shape of P��1−�2� to calculate the SO-induced features in
the correlator, C�	V�, of the tunneling conductances. Con-
cluding remarks are presented in Sec. V.

II. CALCULATION OF P„�1−�2…

A. Hamiltonian and eigenfunctions

We choose the conventional form, 
��̂�k�n, of the SO-
term originating from the confinement potential asymmetry.1

Here 
 is the coupling constant, �̂ is the spin operator, and n
is the unit vector normal to the two-dimensional plane. In a
parallel magnetic field that induces the Zeeman splitting
2�Z, the Hamiltonian of a free electron is

Ĥ =
�2k2

2m
+ 
��̂� k�n + �Ẑx, �2�

where m is the electron mass. The eigenfunctions of the
Hamiltonian Eq. �2� are classified according to the chirality,
�= ±1, and form two branches of the spectrum, as illustrated
in Fig. 1. In the vicinity of the Fermi surface the spectrum,
E��k�, can be simplified

E��k� = EF + ���k� , �3�

where ���k� is defined as

���k� = �vF�k − kF� + ���k� , �4�

and

��k� = ��SO
2 + �Z

2 + 2�SO�Z sin �k. �5�

Here vF=�kF /m is the Fermi velocity, �SO=
kF, and �k is
the azimuthal angle of k. It is convenient to introduce the

projection operators �̂��k�, which are defined through the
eigenfunctions

���k� =
1

21/2� 1

− i� exp�i�k�
� , �6�

of the Hamiltonian Eq. �2� as �̂��k�=���k���
† �k�, so that15

�̂��k� =
1

2
� 1 i� exp�− i�k�

− i� exp�i�k� 1
� , �7�

where the angle �k is related to the azimuthal angle �k as

tan �k = tan �k +
�Z

�SO cos �k
. �8�

In terms of projection operators the Hamiltonian can be pre-

sented in a simple form Ĥ=	�E��k��̂��k�.

B. Correlator of the LDOS in the chirality representation:
Diffusive regime

In the presence of disorder, the LDOS at energy � at point
r is defined as

��r,�� =
1

2�i
Tr
ĜA�r,r,�� − ĜR�r,r,��� , �9�

where the advanced and retarded Green’s functions are 2
�2 matrices in the chirality space, and the trace is taken
over different chiralities. The main contribution to the LDOS
correlator comes from the cross terms G�R�G�A�

P�� − ��� =
1

�0
2 �	��r,��	��r,���

=
1

2�2�0
2 Re�Tr ĜR�r,r,��Tr ĜA�r,r,��� , �10�

where 	��r ,�� is the deviation of the LDOS from the
disorder-free value, �0. It is easy to see from Eq. �4� that
�0=m /��2, and does not depend on energy. To evaluate the
correlator Eq. �10� it is convenient to use the chirality repre-
sentation of the Green functions

ĜR,A��,p� = 	
�

�̂��p�

� − ���p� ±
i

2�

= 	
�

�̂��p�G�
R,A��,p� ,

�11�

where � is the scattering time. As in the absence of the SO
coupling, the LDOS correlator represents the sum of the dif-
fusion and cooperon contributions.16 Generalized expres-
sions for the corresponding contributions in the chirality rep-
resentation read
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PD�� − ��� =
1

2�2�0
2 Re� dq

�2��2 � dp

�2��2 � dp�

�2��2 	
��,��

��2�2

�1�1�p,p�,q,� − �����1,�1

* �p,p����2,�2
�p,p��	−�1,�1

	−�2,�2
G�1

R ��,p

+ q�G�1

R ��,p� + q�G�2

A ���,p�G�2

A ���,p�� , �12�

PC�� − ��� =
1

2�2�0
2 Re� dq

�2��2 � dp

�2��2 � dp�

�2��2 	
��,��

��2�2

�1�1�p,p�,q,� − �����1,�1
�p,p����2,�2

* �p,p��G�1

R ��,q − p�G�1

R ��,q

− p��G�2

A ���,p�G�2

A ���,p�� = PD��� − �� , �13�

where

��,��p,p�� = ��
† �p����p�� = 1

2 �1 + �� exp�i
�p − �p���� . �14�

The two-particle vertex functions ��2�2

�1�1�p ,p� ,q ,�� in Eqs.
�12� and �13� satisfy the matrix Dyson-type equation

��2�2

�1�1�p,p�,q,��

= S�p − p����1,�1
�p,p����2,�2

�p,p��

+� dp1

�2��2 	
�1,�2

K�2�2

�1�1�p,p1,q,����2�2

�1�1�p1,p�,q,�� �15�

with a kernel

K�2�2

�1�1�p,p1,q,��

=��1,�1
�p,p����2,�2

�p,p��G�1
R �� + �,p1

+ q�G�2
A ��,p1�S�p − p�� , �16�

where the function S�p−p�� is the Fourier transform of the
correlator of the random potential. Upon integration over �p1�
Eq. �15� takes the form

��2�2

�1�1�p,p�,q,��

= S�p − p����1,�1
�p,p����2,�2

�p,p��

+� d�p1

�2��2 	
�1,�2

K̃�2�2

�1�1�p,p1,q,����2�2

�1�1�p1,p�,q,�� , �17�

where we have introduced the modified kernel K̃�2�2

�1�1, defined
as

K̃�2�2

�1�1�p,p1,q,�� = �m�

2�
� ��1,�1

�p,p����2,�2
�p,p��S�p − p��

1 − i
� − �1��p1� + �2��p1 + q��� + i�qvF� cos��p − �q�
. �18�

Here � is the elastic scattering time. When the random po-
tential is smooth, the function S restricts the difference p
−p� within a narrow domain �p−p���kF. As we will see
below this leads to a drastic simplification of the system Eqs.
�17� and �18�.

C. Smooth potential; ��1−�2�É2�SO

In the case of a smooth potential the factors ��,��p ,p��
for coinciding chiralities, �=�, differ strongly from those
with opposite chiralities, �=−�. Indeed, when �p−p�� is
small compared to kF, we have �p��p� and thus �p��p�,
so that ��,−��1, whereas ��,� is close to unity and can be
presented as

��,��p,p�� = 1 −
��p − �p��

2

8
. �19�

Using Eq. �8�, the factor ��,� can be expressed through the
angle, �p−�p�, between the vectors p and p� as follows:

��,��p,p�� = 1 −
�SO

2 ��SO + �Z sin �p�2

4�4�p�
��p� − �p�2.

�20�

The latter simplification allows us to set ��,−�=0 and
��,�=1 everywhere except for the kernel of the Dyson equa-
tion. As a result, the system Eqs. �17� gets decoupled into
closed equations for the elements, ��,�

�,� with ���, of the
matrix ��2�2

�1�1. The underlying reason for this decoupling is
that these elements describe the two-particle motion, in
course of which one particle moves within the branch �
whereas another particle moves within the branch �. For a
smooth potential coupling of these elements to the other
branch-nonconserving elements is small in parameter �1
−��,���1. With the above simplification Eq. �17� takes the
form17
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��,�
�,��p,p�,q,�� = S�kF��p − �p���

+� d�p1

�2��2 K̃�,�
�,��p,p1,q,����,�

�,��p1,p�,q,�� ,

�21�

while the kernel Eq. �18� simplifies to

K̃�,�
�,��p,p1,q,��

= �m�

2�
� ���,��p,p1��2S�kF��p − �p1

��

1 − i�
� − �� − ����p� − �qvF cos��p − �q��
.

�22�

Substituting Eq. �22� into Eq. �21� yields an integral equation
for the vertex ��,�

�,�. Note, that this equation differs from the
standard equation for the vertex in the absence of the SO
coupling only by the factor ���,��p ,p1��2 in the integrand,
where ��,��p ,p1� is defined by Eq. �19�. Thus, if the small
difference of this factor from unity is neglected, the solution
for ��,�

�,� would contain a conventional diffusive pole at �
= ��−����p�− iDq2, where D=vF

2�tr /2 is the diffusion coef-
ficient, and

�tr
−1 =

1

2
� dp

�2��2 ��k − �p�2S��k − p��	
E��k� − E��p��

�23�

is the transport relaxation time. It is much longer than the
scattering time, �, which is given by Eq. �23� in which the
factor ��k−�p�2 is replaced by 2. Taking into account the
small correction originating from the difference 1
− ���,��p ,p1��2 amounts to the imaginary shift of the pole
position by i�int

−1, where �int is defined as

�int
−1�k� =

1

4
� dp

�2��2 ��k − �p�2S��k − p��	
E��k� − E��p�� .

�24�

The meaning of �int is the interbranch scattering time. In-
deed, a general expression for the scattering time between
the branches with different chiralities can be written as

��,−�
−1 �k�

=� dp

�2��2Tr
�̂��k��̂−��p��S��k − p��	
E��k� − E−��p��

=� dp

�2��2 
1 − ���,��k,p��2�S��k − p��	
E��k� − E−��p�� .

�25�

Comparing Eqs. �24� and �25�, we see that they differ only
by the arguments of the 	 functions. This difference is neg-
ligible when �SO�EF, and thus we have ��,−��k���int�k�.
We also see that the integral Eq. �24� in the expression for
�int

−1 differs from the integral in Eq. �23� for �tr
−1 only by the

replacement �k→�k. Using the relation Eq. �20� between
the two angles, we can express �int through the transport
relaxation time

�int��� = 2�tr

��Z
2 + �SO

2 + 2�Z�SO sin ��2

�SO
2 ��SO + �Z sin ��2 . �26�

With shifted diffusion pole, the final expression for the ver-
tex ���

�� takes the form

���
���p,p�,q,�� =

iS�kF��p − �p���

�
� − �� − ����p� + iDq2 + i�int
−1�p��

.

�27�

Substituting this form into Eq. �12� yields the following ex-
pression for the diffusion contribution to the correlator of
LDOS

PD��� =
�

�
	
���

Re �
0

1/vF�tr

dqq�
0

2� d�p

2�

��
0

2� d�p�

2�

S�kF��p − �p���

− i
� − �� − ����p�� + Dq2 + �int
−1�p�

.

�28�

Two integrations �over q and over �p�� in Eq. �28� can be
readily performed resulting in the following expression for
SO-induced satellites PD���

PD��� = −
1

4�EF�tr
	
���

L�,���� , �29�

where the functions L�,���� are the following azimuthal av-
erages

L�,���� = �
0

2� d�

2�
ln�
� − �� − �������2�tr

2 +
�tr

2

�int
2 ���� .

�30�

The ratio �tr /�int��� in Eq. �30� is defined by Eq. �26�. This
ratio is equal to 1/2 for �Z=0 and is �1 for �Z��SO. Since
L�,����=L�,��−�� the cooperon contribution, PC���, to the
LDOS correlator coincides with PD���, as it should be ex-
pected on general grounds. Thus, Eqs. �29� and �30� consti-
tute our final result. The functions L�,����, which determine
the energy dependence of the correlator, exhibit a singular
dependence on a weak magnetic field, �Z��SO for �=−�,
as demonstrated in the next section. Here we note that the
analytical expression Eq. �27� was obtained using a standard
diffusive approximation, which amounts to expansion of de-
nominator in Eq. �22�. Validity of this expansion sets the
upper limit q�1/vF�tr in the integral �28�. Contribution to
LDOS correlator from larger momenta is discussed below in
Sec. II F.

D. Shape of the satellites

As it follows from Eq. �26�, in a weak magnetic field we
have �int����2�tr=const���. Then for the satellites, centered
at �= ±2�SO we can identify the � dependence of the inte-
grand in Eq. �30�. This dependence comes from ����, de-
fined by Eq. �5�. For �Z��SO, we have ������SO

+�Z sin �. Upon substituting this form into Eq. �30�, the
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integration can be performed analytically with the use of the
following identity

1

2�
�

0

2�

d� ln�a + b sin ��2

= �ln �1

2
a +

1

2
�a2 − b2�2

for �a�� �b�

2 ln
1

2
�b� for �a�� �b� ,� �31�

yielding

P��� = − � 1

�EF�tr
��ln�� − 2�SO��tr for �� − 2�SO���Z

ln �Z�tr for �� − 2�SO���Z.
�

�32�

Equation �32� suggests that in the limit �Z��SO the SO
satellites of the LDOS correlator exhibit plateaus of width
2�Z centered at �= ±2�SO. We will discuss the numerical

results for the shape of the satellites later after calculating the
shape of the central peak.

E. Smooth potential; ��1−�2�™�SO

In this section we solve the system of Eqs. �17� with
kernels defined by Eq. �18� for small energy difference ��1
−�2���SO. First, we point out that the vertex functions ��,�

�,�

and �−�,�
−�,� are relevant, since in Eq. �18� �1 must be equal to

�2. At the first glance, in Eq. �17� for ��,�
�,�, only the term in

the r.h.s. containing the same ��,�
�,� should be kept. Indeed,

the coupling of this term to �−�,�
−�,� is determined by the kernel

K̃−�,�
−�,�, which, as it is seen from Eq. �18�, contains a square of

the small parameter �−�,�. However, unlike the case of the
satellites, the “feedback” becomes important for small ��1
−�2�. Namely, Eq. �17� for �−�,�

−�,� contains in the r.h.s. the
coupling to ��,�

�,� with the same small coefficient ��−�,�
2 .

Specifics of the small energy difference, as compared to sat-
ellites, is that both ��,�

�,� and �−�,�
−�,� are resonant in this case.

Thus Eq. �17� reduces to the following system of coupled
equations:

��,�
�,��p,p�,q,�� = S�kF��p − �p��� +� d�p1

�2��2 K̃�,�
�,��p,p1,q,����,�

�,��p1,p�,q,�� +� d�p1

�2��2 K̃�,−�
�,−��p,p1,q,���−�,�

−�,��p1,p�,q,�� ,

�33�

�−�,�
−�,��p,p�,q,�� = S�kF��p − �p������,−��p,p1��2 +� d�p1

�2��2 K̃−�,−�
−�,−��p,p1,q,���−�,�

−�,��p1,p�,q,��

+� d�p1

�2��2 K̃−�,�
−�,��p,p1,q,����,�

�,��p1,p�,q,�� . �34�

Solution of the system �33� and �34�, yields22

���
���p,p�,q,�� =

i

2�
S�kF��p − �p���� 1

� + iDq2 + i� f
−1�p�

+
1

� + iDq2 + 2i�int
−1�p�� , �35�

�−��
−���p,p�,q,�� =

i

2�
S�kF��p − �p���� 1

� + iDq2 + i� f
−1�p�

−
1

� + iDq2 + 2i�int
−1�p�� , �36�

where the diffusion pole in the first term is cut by the inelas-
tic time, � f. Substituting ���

�� and �−��
−�� into the general ex-

pression Eq. �12� and keeping only the terms with coeffi-
cients ����1, we arrive at the final result

P��� = − � 1

2�EF�tr
��ln��2�tr

2 +
�tr

2

� f
2� + ln��2�tr

2 + 1�� .

�37�

Note that each term in the sum �37� is comprised of two
�equal� contributions from �1,1

1,1 and �−1,−1
−1,−1.

F. Ballistic contribution

It might seem from Eq. �28� that the upper limit, q
=1/vF�tr, narrows dramatically the domain of validity of the
results for LDOS correlator. However, this is not the case.
Calculation of the average product of two Green functions
�in application to the interaction-induced corrections to the
DOS� with energy difference exceeding the inverse scatter-
ing time was first carried out in Ref. 18. In particular, it was
demonstrated in Ref. 18 that, upon using the exact vertex
function, the logarithmic form of this product persists at ��
�1. However, consideration in Ref. 18 was restricted to the
short-range disorder, while it is essential for us that the dis-
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order is smooth. The insight for the situation of a smooth
disorder comes from Ref. 19, where it was demonstrated
that, as soon as the relevant spatial scale exceeds the corre-
lation radius, d, of the random potential �which is much
smaller than the mean free path�, the single-particle scatter-
ing time in the diffuson must be replaced by the transport
time. Thus, the combination of Refs. 18 and 19 suggests that
correct result for the LDOS correlator in the ballistic regime
and in smooth disorder can be obtained by extending inte-
gration in Eq. �28� to high momenta. The same conclusion
can be inferred from Ref. 5, where the LDOS correlator in a
smooth potential and in a classical magnetic field was stud-
ied. In the case of a smooth disorder the adequate physical
picture is a semiclassical electron motion along weakly de-
flected trajectories. In this regard, in a magnetic field the
natural cutoff of the momentum integration is the inverse
cyclotron radius, Rc, which was assumed in Ref. 5 to be
larger than d. This assumption is necessary to ensure that
classical trajectories with the length 2�Rc are longer than d.
In the absence of magnetic field, classical trajectories can
have an arbitrary length. Level-level correlation comes only
from long trajectories �with length exceeding d�. Hence the
momentum cutoff of the logarithm must be chosen at d−1.

G. Numerical results

Numerical results for the full LDOS correlator are pre-
sented in Fig. 2�a�. The full correlator is the sum of the main
peak Eq. �37� and two satellites given by Eqs. �29� and �30�.
Separate contributions to the full correlator from the main
peak and from the satellites, calculated from Eqs. �37� and

�30�, respectively, are shown in Fig. 2�b�. Integral �30� was
evaluated numerically upon substitution of Eq. �26� into the
integrand 
asymptotical expression Eq. �32� was not used in
the numerics�. We emphasize that the plateaus in Fig. 2 are
present and remain sharp without neglecting ��tr /�int�2 in the
integrand. In Fig. 3 we illustrate how sharp plateaus develop
upon gradual increase of the product �SO�tr. The plateaus are
also slightly tilted. The reason for this tilt is the effect of the
“background” originating from the main peak. In our numer-
ics the ballistic contribution, discussed in the previous sec-
tion, was neglected. The justification for this is that, under
the condition �SO�vF /d, the difference between the cutoffs
q=1/vF�tr and q=d−1 in Eq. �28� amounts to the energy-
independent constant within the entire domain ���SO. The
condition �SO�vF /d is met in all realistic situations. It en-
sures that the slopes and behavior between the peaks in Fig.
2 are reliable. On the other hand, the constant coming from
ballistic contribution does not affect the correlation function
of the tunneling conductance studied in Sec. IV.

III. DISCUSSION

The general case of an arbitrary SO splitting would re-
quire a lengthy calculation, involving 4�4 diffusion and
cooperon matrices.20,21 However, in the most interesting case
of a strong splitting, when �SO�int�1, a considerable simpli-
fication occurs: the LDOS correlation function, P���, at large
enough ���int

−1 can be expressed in terms of that in the ab-
sence of splitting, P�� ,�SO=0�� P0���. The splitting energy
2�SO enters only through the argument of P0 and the low-
energy cutoff � /�int, which assumes the role of dephasing
time.

To establish the relation between P and P0, we notice22

that the states with the same energy, E, have two different
values of the wave number, �k±=�2mE±�SO/vF, depending
on the branch �see Fig. 1�. Similarly, states at energy E�=E
+� have wave numbers �k±�=�2mE+ ��±�SO� /vF. Thus, we

FIG. 2. �a� Correlator of the LDOS, P��1 ,�2�, calculated from
Eqs. �29� and �37� for �SO�tr=50 and � f /�tr=10, is plotted versus
dimensionless energy � /�SO. The numbers near the lines show the
value of �Z/�SO. For convenience different curves are shifted along
the vertical axis. �b� Separate contributions of the main peak
�dashed line� and satellites �dotted line� are shown for �Z/�SO

=0.1.

FIG. 3. Correlator of the LDOS, P��1 ,�2�, calculated from Eqs.
�29� and �37�, is plotted versus dimensionless energy � /�SO for
�Z/�SO=0.1 and different values of �SO�tr equal to 10 �curve 1�;
20 �curve 2�; and 50 �curve 3�. For convenience different curves are
shifted along the vertical axis.
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can identify four contributions to P���, coming from corre-
lating each of the k± states with either of k±� states. Since, for
�SO�int�1, the degree of correlation between a pair of states
depends only on the difference of the wave numbers, all four
contributions have the same functional form. It is given by
the function P0��� with the corresponding arguments, which
can be either �vF�k+�−k+�=�vF�k−�−k−�=� or �vF�k+�−k−�=�
+2�SO, or �vF�k−�−k+�=�−2�SO. It must be emphasized
that, since separate branches cannot be resolved beyond the
time �int, the correlator P0 for ����2�SO must be computed
with a low-energy cutoff � /�int. Hence the condition ��int
�1, adopted in this qualitative consideration, ensures that
the SO-induced satellites in P��� do not overlap with the
main peak. Combining the four contributions, we obtain

P��� = 1
4 
2P0��� + P0�� + 2�SO� + P0�� − 2�SO�� . �38�

Obviously, the above general consideration applies to the
both diffusion and cooperon contributions to the LDOS cor-
relator, P. This consideration clarifies why the height of the
central peak in P��� is twice the height of each of the SO
satellites. The factor 2 in the first term of Eq. �38� appears
because the argument � occurs twice out of the four possi-
bilities mentioned above. Equation �38� also illustrates why
the SO-induced structure in the correlator P��� does not
emerge when the second term in the Hamiltonian Eq. �2� is
treated perturbatively. Namely, although, within perturbation
theory, the second and the third terms in Eq. �38� contain
corrections that are linear in �SO, these corrections cancel
each other out.

IV. MANIFESTATION IN THE TUNNELING
SPECTROSCOPY

In the tunneling-spectroscopy experiments10–14,23–26 the
measured quantity is a resonant-tunneling current, Isd,
through a localized impurity state as a function of the source-
drain bias, Vsd. Such an impurity plays the role of a “spec-
trometer” since its energy position, �0, changes with Vsd.
Within a narrow range, 	V, of Vsd this change is linear, i.e.,
�=�0�V+	V�−�0�V���	V, where � is the structure-
specific parameter. Experimentally,10–14,23–26 measurements
are performed in the plateau regime when the temperature is
much lower than Vsd, so that the value of resonant-tunneling
current

I�Vsd� =
e

h
�

−�

�

d�
�l����r���


� − �0�Vsd��2 + 
�l��� + �r����2/4
�39�

is temperature independent. In Eq. �39�, �l and �r stand for
the tunneling widths, associated with the escape from the
impurity into the emitter and collector, respectively. These
widths are proportional to the LDOS in the electrodes. Typi-
cally, the widths �l and �r differ strongly, �r��l. In addition,
the energy dependence of �r is weak, so that it can be con-
sidered as a constant. As a result, it is a tunneling coupling to
collector that dominates the width of the Lorentzian in Eq.
�39�. With regard to the weak fluctuating dependence of cur-
rent, I, on Vsd in the plateau regime, it is exclusively due to

the energy dependence of �l, which, in turn, originates from
the fluctuations of the LDOS.

Quantitative analysis of the experimental data is per-
formed �see, e.g., Ref. 13� by plotting the correlator C�	V�
= �	g�V+	V�	g�V� of the fluctuations of the differential
conductance g=dIsd /dV around its average value, �g, as a
function of 	V for different values of V=Vsd. The expression
for C�	V� in terms of the LDOS correlator P��−��� is ob-
tained �see Refs. 9 and 27� by, first, calculating the correlator
of current fluctuations �	I�Vsd�	I�Vsd� � and then taking de-
rivatives with respect to Vsd and Vsd� . Using the fact that a
convolution of two Lorentzians is also a Lorentzian, the final
expression for C�	V� can be written in the form

C�	V� = �	g�Vsd + 	V�	g�Vsd�

= −
��l2

4

�2

��2��r� d�
P��� + P�− ���
�� − ��2 + �r

2 � . �40�

If, following Ref. 9, we substitute the conventional form
P���� ln��2� f

2+1� into Eq. �40�, where � f is the “floating
up” time of a hole created as a result of the tunneling act,
then Eq. �40� yields9 C�	V�=F2�	V /Vc�, where the dimen-
sionless function F2�x� is defined as

F2�x� =
1 − x2

�1 + x2�2 , �41�

and the characteristic value, Vc, is given by Vc=�−1��r

+� /� f�. In the presence of the SO coupling the correlator
P��� has three peaks, centered at �=0 and �= ±2�SO. With-
out Zeeman splitting all three peaks have the same shape,
which allows us to express the correlator, Eq. �40�, in terms
of the function F2 as follows:

C�	V� =
1

4
F2�	VVc

� +
1

4
F2�	V

Vc�
� +

1

4
F2��	V − 2�SO

�Vc�
�

+
1

4
F2��	V + 2�SO

�Vc�
� , �42�

where Vc�=Vc+�−1� /�int=�
−1��r+� /� f +� /�int�, Vc�=Vc

+2�−1� /�int=�
−1��r+� /� f +2� /�int�, and �int is the intersub-

band scattering time defined by Eq. �26�. It is seen from Eq.
�42� that the SO peaks in P��� give rise to the satellites in
C�	V� at 	V=2�−1�SO. Thus, the SO coupling has a notice-
able effect on the correlator of the tunnel conductances when
2�−1�SO�Vc�. In Fig. 4 the correlator C is plotted vs 	V /Vc�
for three different values of the dimensionless SO splitting
�SO� =�SO/�Vc�. It is seen that at �SO� =0.5 the correlator
C�	V /Vc�� develops a characteristic “shoulder,” while at
�SO� =0.7 it exhibits a well-developed additional maximum.
In the experiments11–14 the characteristic width of the impu-
rity level, �r, was  1 K. This suggests that the SO satellites
should be well resolved in tunneling spectroscopy of the
narrow-gap semiconductors, where �SO is of the order of
several meV. Concerning the GaAs-based structures, the SO
splitting there is much smaller �of the order of 1 K�, and
depends strongly on the details of the confinement potential.
Therefore, the observation of the additional peaks in tunnel-
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ing spectroscopy would require a higher “spectrometer reso-
lution.” The characteristic signature of the SO-related fea-
tures in the correlator C�	V� would be a strong sensitivity of
the correlator to a weak parallel magnetic field. In Fig. 5 we
plot C�	V /Vc�� for the same values �SO� =0.5 and �SO� =0.7 as
in Fig. 4 and for different ratios �Z/�SO. The curves were
calculated using Eqs. �29� and �37� for P���. We see that
both the shoulder at �SO� =0.5 and additional maximum at
�SO� =0.7 do not disappear with increasing �Z, but rather get
shifted down. Remarkably, the effect of the parallel field is
noticeable already at very small �Z/�SO�0.1.

V. CONCLUSIONS

In the present paper we have demonstrated that the intrin-
sic SO splitting of the electron spectrum in the absence of
disorder manifests itself in a disorder-induced effect, meso-
scopic fluctuations of the local density of states. This obser-
vation suggests that the splitting, 2�SO must show up in the
resonant tunneling spectroscopy in the form of additional
peaks in the correlator C�	V�. The fact that the positions of
these peaks do not depend on the disorder offers a possibility
to measure experimentally the magnitude of the splitting.
Note that, unlike the magnetotransport experiments, where
the SO-related features are quickly washed out with increas-
ing temperature,28 the resonant tunneling current in the pla-
teau regime depends on temperature rather weakly.12 As it
was demonstrated in Sec. II, the correlator, P, of the LDOS
develops a plateau in a weak parallel magnetic field �Z
��SO. This singular behavior manifests itself in the anoma-
lous sensitivity of the correlator of the tunneling conduc-
tances to �Z, as illustrated in Fig. 5.

Note in conclusion that the form of the SO term in Hamil-
tonian Eq. �2� implies that the SO coupling originates from
the interface 1. In realistic heterostructures it is possible that
the dominating mechanism of the SO coupling is the absence
of the inversion symmetry in the bulk.29 If the corresponding

splitting, �D, of the 2D electron spectrum30 resulting from
this mechanism is much larger than �SO, all the above results
remain valid upon replacement of �SO by �D. In the absence
of Zeeman splitting, both mechanisms 1 and 29 can be easily
incorporated into the theory by replacing ��k� in the energy

spectrum Eq. �4� by �̃�k�= ��SO
2 +�D

2 +2�SO�D sin 2�k�1/2.
As a final remark, we note that electron-electron interac-

tions were completely neglected in our calculation. The rea-
son for this is that, while the correlator P��1−�2� depends
only on the difference ��1−�2�, the effect of electron-electron
interactions on P depends crucially on absolute positions of
the energies �1 ,�2 with respect to the Fermi level, EF. In-
deed, if �1 ,�2 are close to EF �more precisely, within �SO
from EF�, then the average density of states, �0, which we
assumed to be constant, acquires a logarithmic interaction-
induced correction depending on ��−EF� �zero-bias
anomaly�. Moreover, these corrections also exhibit SO-
induced satellites17 at ��−EF�= ±2�SO. Thus, our experimen-
tal predictions 
Eq. �42� and Figs. 3 and 4� pertain to the
domain of the source-drain voltages, VSD, for which the po-
sition, �0�VSD�, of the localized state in the barrier is well
below EF. We note that in experimental papers,12–14 in which
the quantitative analysis of the fluctuations of the tunnel con-
ductance has been performed, the domain of VSD used in the
analysis was well above the threshold for the resonant tun-
neling �at the threshold the electrons tunnel from the Fermi
level�. Within this domain the inelastic scattering time, � f, is
temperature independent. On the other hand, within this do-
main, � f depends on the energy of the electron �measured
from the Fermi level� as a power law.13
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FIG. 5. Evolution of the SO-related features in the correlator
C�	V� with parallel magnetic field is shown for same �SO=0.5Vc�
�a� and �SO=0.7Vc� �b� as in Fig. 4. Solid lines �Z=0; dashed lines
�Z=0.1�SO; dotted lines �Z=0.2�SO.

FIG. 4. The correlator C�	V�= �	g�V�	g�V+	V� of differential
tunneling conductances is plotted from Eq. �42� versus dimension-
less voltage difference 	V /Vc� for different values of the SO split-
ting: �SO=0 �solid line�; �SO=0.5Vc� �dotted line�; �SO=0.7Vc�
�dashed line�. For simplicity, we have assumed �r!� /�int, so that
Vc��Vc�Vc�.
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