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We present theoretical and experimental studies of the direct current effect on the detection of subterahertz
and terahertz radiation in gated two-dimensional structures. We developed a theory of the current-driven
detection both for resonant case, when the fundamental frequency of plasma oscillation is large compared to
inverse scattering time, �0��1, and for the nonresonant case, �0��1, when the plasma oscillations are
damped. We predict that, in the nonresonant case, even a very small dc current would increase the detection
amplitude up to two orders of magnitude. Physically, this increase is related to an abrupt transition from the
linear to saturation region near the knee of the current-voltage characteristic. When the current increases up to
the saturation value, the electron concentration near the drain becomes very low and can be strongly affected
by a small external field. As a consequence, the two-dimensional channel becomes extremely sensitive to
external perturbations. In the resonant case, the detection amplitude has maxima when the radiation frequency
is equal to fundamental plasma frequency and its harmonics. We predict that the effective linewidths of the
respective resonances would decrease with the increasing current. Physically, this happens because dc current
shifts the system towards the plasma wave instability. At some critical current value, the width corresponding
to the fundamental frequency would turn to zero, indicating the onset of plasma waves generation. Our
experimental measurements performed on GaAs HEMT confirm the theoretical predictions.
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I. INTRODUCTION

Plasma waves in a gated two-dimensional �2D� structure
have a linear dispersion law ��k�=sk,1 where s is the wave
velocity. A structure of a given length, L, acts for these
waves as a resonant “cavity,” having a quality factor of the
order of s� /L, where � is the momentum relaxation time. The
simplest realization of such structure is the channel of the
field effect transistor �FET�. The dramatic reduction of de-
vice sizes in the last decades has led to the development of
new generations of FETs, which may have high quality fac-
tors. Such FETs should demonstrate novel physics, specific
for ballistic regime.2 In particular, at certain boundary con-
ditions, the stationary current flow in such a FET should
become unstable with respect to formation the resonant
plasma oscillations with the frequencies3

�N = �0�1 + 2N� , �1�

where �0=�s /2L, and N=0,1 ,2 , . . .. Due to the coupling
with electromagnetic waves, the instability should lead to
generation of radiation with the same frequencies.

The plasma wave velocity s=�e2n /mC depends on the
carrier density in the channel n and the gate to channel ca-
pacitance per unit area C=� /4�d, where e is the electron
charge, m is the electron effective mass, d is the gate-to-
channel distance, and � is the dielectric constant. In the
gradual channel approximation

n =
CUg

e
, �2�

where Ug=Vgs−Vth is the difference between the gate-to-
source voltage Vgs and the threshold voltage Vth. Hence,

plasma wave velocity is controlled by gate voltage

s =�eUg

m
. �3�

In a short channel FET, the oscillation frequency, �0 /2�,
may be tuned by gate voltage to be in terahertz range. As a
consequence, the plasma wave instability should lead to gen-
eration of terahertz radiation,3 thus promising to close the
famous “terahertz gap,” moving from the low frequency
electronic side.

The instability may take place both in the hydrodynamic
regime3 �fast electron-electron collisions� and in the colli-
sionless plasma regime.4 In the former case, the dynamics of
plasma waves is described by equations which coincide with
the hydrodynamic equations for shallow water3 �see Eqs. �4�
and �5� below�. The hydrodynamic analogy has profound
consequences for understanding of physics of 2D electrons
in the ballistic FET. Phenomena similar to nonlinear waves
propagation,5 hydraulic jump,6 and the “choking” effect7

should take place in the electron fluid. Based on this analogy,
a variety of possible applications of FET operating as a THz
device have been suggested.3,8 In particular, it was shown
that the nonlinear properties of plasma oscillations can be
utilized for terahertz detectors, broadband detectors, mixers,
and frequency multipliers.9 Note also that the nonlinear hy-
drodynamic effects limit the development of the plasma
wave instability,5 yielding a square-root dependence of de-
veloped plasma oscillations on the dc current above the in-
stability threshold.

The experimental exploration of the subject began a long
time ago, starting from the observation of infrared
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absorption10 and weak infrared emission11 related to plasma
waves in silicon inversion layers. Later, the nonresonant
detection12,13 and weak resonant detection14 were observed
in high mobility transistors. It was also shown that the im-
pedance of a high mobility transistor exhibits maxima at the
fundamental plasma frequency and its harmonics.15 Recently,
interest in the study of plasma waves in ballistic FETs in-
creased dramatically. A new boost to the research in this
direction was given by a series of publications16–24 reporting
observation of the terahertz detection and emission in ballis-
tic high electron mobility transistors �HEMTs� fabricated
from different materials. The publication reporting nonreso-
nant terahertz detection in GaAs-based commercial HEMT16

was followed by several others demonstrating resonant
terahertz detection in GaAs-based commercial HEMTs,17,18

in Si metal-oxide-semiconductor field effect transistor
�MOSFET�,19 nitride based HEMTs,20 and in gated double
quantum well heterostructures.21,22 In all devices, the 2D
plasmon was tuned to the frequency of terahertz radiation by
varying the gate bias. The most remarkable results have been
reported in the past several months: the plasma waves emis-
sion was demonstrated in an InGaAs-based HEMT gate23

and in GaN-based HEMT,24 and room temperature resonant
detection was reported in InGaP/InGaAs/GaAs HEMT25

and in GaAs/AlGaAs HEMT.26

The experiments on nonresonant and resonant detection
seem to be in a good agreement with the theory.9 As for
emission measurements, the situation is more subtle. The re-
ported THz emission23,24 had a threshold character as had
been predicted in Ref. 3. The resonant frequency value and
the range of its shift by the gate-to-source bias were in a
reasonable agreement with the theory. However, the emission
was observed close to the velocity saturation regime or even
deeply in the saturation regime. Therefore, the effects spe-
cific for hot electron physics might play an important role.
Such effects are known to lead to different instabilities
caused by electron “runaway” phenomenon.27,28 In particu-
lar, transit time effects,29,30 enhanced emission of optical
phonons,31 and stratification of electron flow32 might lead to
the plasma wave excitation. In contrast to this, the mecha-
nism proposed in Ref. 3 relates terahertz generation to the
amplification of plasma waves on the boundaries of the chan-
nel and might take place in the ohmic regime when electrons
are “cold.” To understand the underlying physics of the ob-
served emission, additional experiments and theoretical in-
vestigations should be carried out. In this aspect, the study of
the source-to-drain dc current effect on the THz detection
looks very promising. It is this current that might lead to the
plasma wave instability,3 thus turning the system from the
detection to the generation regime.

In this paper, we study theoretically the effect of source-
to-drain dc current on the detection of the terahertz radiation
both in resonant and nonresonant regime. We also present
experimental study of THz detection governed by source-to-
drain dc current for nonresonant case. A theory of detection
at zero current was developed in Ref. 9. It was shown that a
FET, biased by the gate-to-source voltage and subjected to
electromagnetic radiation with frequency �, can develop a
constant drain-to-source voltage �U*, which at �0��1 has a
resonant dependence on the radiation frequency � with the

maxima at �N. Here we demonstrate �both experimentally
and theoretically� that the detection is drastically modified by
dc current. We show that source-to-drain current Id leads to a
very sharp increase of the detection efficiency by a factor of
two orders compared to the zero current case. A similar result
was observed before.33 It was reported that the detection
sharply increases with increasing Id. This increase was attrib-
uted to a sharp decrease of the gate-to-drain capacitance. In
this paper, we present a detailed theoretical description of the
phenomenon and derive the analytical expression for the de-
tector response both in resonant and nonresonant cases. The
results we obtain for the nonresonant case support the quali-
tative explanation presented in Ref. 33. These results also
allow us to explain our experiments. For the resonant case,
we predict the decreasing of the resonance width with in-
creasing the current. As expected, at some critical value of
the current, the width becomes zero, which implies the onset
of the plasma wave instability.

II. BASIC EQUATIONS

In this section, we will modify the previously developed
theory9 to include a dc current. We assume that electron-
electron collisions are very fast, turning the system into the
hydrodynamics regime. The hydrodynamic equations, de-
scribing a two-dimensional electronic fluid in FET channel,
are the equation of motion �the Euler equation� and the usual
continuity equation

�v
�t

+ v
�v
�x

+
v
�

= −
e

m

�U

�x
, �4�

�U

�t
+

��Uv�
�x

= 0, �5�

where U is the local value of the gate-to-channel voltage,
�U /�x is the longitudinal electric field in the channel, v is the
local electron velocity, and e is the absolute value of the
electron charge. Equation �5� takes into account that, in the
gradual channel approximation, the local density in the elec-
tron channel is related to the local value of the gate-to-
channel voltage as

n =
CU

e
, �6�

which is a simple generalization of Eq. �2�. Equations �4�
and �5� require two boundary conditions, which depend on
the properties of contacts. Following Ref. 3, we assume that
the voltage is fixed at the left side of the channel and the
current flowing through the right side of the channel does not
depend on time and is equal to Id,

U�0� = Ug + Uacos �t , �7�

U�L�v�L� =
jd

C
. �8�

Here jd= �Id � /W is the absolute value of the current density
�since the electron moves from source to drain, the current is
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negative�, and W is the channel width. In Eq. �7� we assumed
that radiation leads to the gate-voltage oscillations with the
amplitude Ua and the frequency �. The basic idea of detec-
tion is that such oscillations induce a constant source-to-
drain voltage9

�U* � Ua
2 �9�

In the next sections we will show that the coefficient pro-
portionality between �U* and Ua

2 increases sharply with in-
creasing Id.

III. NONRESONANT DETECTION

In the nonresonant case, �0��1 and ���1. The condi-
tion ���1 allows us to neglect the �v /�t term in Eq. �4�. We
will neglect also the term v�v /�x. The corresponding crite-
rion will be presented below. Thus, Eq. �4� simplifies

e

m

�U

�x
+

v
�

= 0. �10�

Substituting Eq. �10� into Eq. �5� we get

�U

�t
=

	

2

�2U2

�x2 , �11�

where 	=e� /m is the electron mobility. The boundary con-
ditions for Eq. �11� follow from Eqs. �7�, �8�, and �10�,

U�0� = Ug + Uacos �t , �12�

� �U2

�x
	

x=L

= −
2jd

	C
. �13�

In absence of radiation �Ua=0� we obtain from Eqs.
�11�–�13� the stationary voltage-current characteristic

jd =
	C

L
�UgU* −

U*2

2
	 , �14�

where U*=Ug−U�L� is the voltage drop across the channel.
This expression is valid for U*
Ug. At U* =Ug, the electron
concentration at the drain turns to zero �n�L�=CU�L� /e=0�
and current reaches the value

jsat =
	CUg

2

2L
. �15�

Physically, jsat is the saturation current in the Shockley
model which neglects velocity saturation34 �actually, at some
value of current smaller than jsat, but very close to jsat, ve-
locity saturates and Eq. �14� becomes invalid�. In this paper,
we restrict ourselves to the case U* �Ug and, respectively,
jd� jsat, neglecting velocity saturation effect.

For Ua�0, we search the solution of Eq. �11� in the form

U = U0�x� +
1

2
U1e−i�t +

1

2
U1

*ei�t. �16�

We neglected here the contribution of higher harmonics. The
corresponding criterion will be given below. First, we sepa-
rate oscillating and stationary terms in Eqs. �11� and �13�.
The stationary term obeys

�2

�x2�U0
2 +

1

2
�U1�2	 = 0, �17�

with the boundary conditions

U0�0� = Ug; 
 �

�x
�U0

2 +
1

2
�U1�2	�

x=L

= −
2jd

	C
. �18�

The spatial dependence of oscillating amplitude U1 is de-
scribed by the following equation:

−
i�

	
U1 =

�2�U1U0�
�x2 . �19�

The boundary conditions for this equation are

U1�0� = Ua, 
 ��U1U0�
�x

�
x=L

= 0. �20�

The solution of Eq. �17� with boundary conditions �18� is
given by

U0
2�x� +

�U1�x��2

2
= Ug

2 +
Ua

2

2
−

2jd

	C
x . �21�

The quantity U1 is proportional to small amplitude Ua. Thus
in zero approximation we can neglect �U1�2 �as well as Ua

2 �
in Eq. �21�. As a result we have

U0�x� = Ug
�1 − �x/L , �22�

where

� =
jd

jsat
. �23�

Using Eqs. �6� and �22� we find stationary electron distribu-
tion in the channel

n0�x� =
CUg

e
�1 − �x/L . �24�

As follows from Eqs. �22� and �24�, in the absence of
radiation, the potential and concentration at the drain are
given by

U0�L��Ua=0 = Ug
�1 − �, n0�L��Ua=0 =

CUg

e
�1 − � .

�25�

Since U*=Ug−U0�L�, radiation induced change of the
source-to-drain voltage is given by �U*=−�U0�L�, where
�U0�L�=U0�L�−U0�L��Ua=0. To avoid any confusion in signs,
in what follows we will call �U0�L� the detector response.
From Eqs. �21� and �25� we find

�U0�L� �
Ua

2 − �U1�L��2

4Ug
�1 − �

. �26�

Therefore, to find response, we need to calculate U1�L�. In-
troducing the function
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f =
U1U0

UaUg
�27�

and substituting Eq. �22� into Eq. �19�, we get

d2f

dy2 = − i
�0

�1 − �y
f . �28�

This equation should be solved with the boundary conditions

f�0� = 1, f��1� = 0. �29�

Here y=x /L and

�0 =
�L2

	Ug
=

�2

4

�

�0
2�

=
L2

L0
2 , �30�

where L0=s�� /�. Physically, L0 determines a characteristic
spatial scale of the decay of the alternating component of
voltage, U1,9 along the channel. Thus, for �0�1, the oscilla-
tions excited at the source do not reach the drain.

First, we briefly recall the case of zero current �for a de-
tailed discussion, see Ref. 9�. In this case, �=0, and Eq. �28�
is easily solved, yielding

U1�L� =
Ua

cosh��− iL/L0�
. �31�

Equation �21� for zero current becomes

U0�L� =�Ug
2 +

Ua
2 − �U1�L��2

2
� Ug +

Ua
2 − �U1�L��2

4Ug
.

�32�

In this equation we only kept the linear term with respect to
Ua

2. It is worth noting that the precision of our calculations
does not allow to account for higher order terms because we
neglected high order harmonics in Eq. �16�. For L�L0, the
oscillations on the drain are damped and U1�L�→0. Hence,
the response is given by9

�U0�L� =�Ug
2 +

Ua
2

2
− Ug �

Ua
2

4Ug
. �33�

In the opposite case, L�L0, the oscillation amplitude on the
drain is close to its value on the source U1�L��Ua

2�1
−L4 /6L0

4� and the response is given by9

�U0�L� =�Ug
2 +

Ua
2

12

L4

L0
4 − Ug �

Ua
2

24Ug

L4

L0
4 . �34�

We see that, in both cases, the response has the same sign,
corresponding to the negative induced drain-to-source volt-
age. This sign is the consequence of a larger induced poten-
tial at the source side of the channel compared to drain side
of the channel, where the ac potential is smaller, resulting in
a smaller dc drain potential. Equations �33� and �34� predict
the infinite growth of the response when Ug→0. We notice,
however, that these equations are only valid if Ug�Ua. For
Ug�Ua one should take into account higher order harmonics
in expansion Eq. �16�.

Next we will calculate response for a nonzero current.
The further consideration depends on the relation between L

and L0. We will see that, in contrast to the case jd=0, the
response might change sign in short samples, when L�L0.

A. Short samples

Consider first the case of short samples �L�L0�. As seen
from Eq. �30� this is equivalent to the low frequency case
��0=�� /�2�0

2�1�. Since �0�1, we can search the solution
of Eqs. �28� and �29� in series over the small parameter �0,

f�y� = 1 + i�0f1�y� + �0
2f2�y� + ¯ . �35�

Substituting this expansion into Eq. �28� and having in mind
Eqs. �21�, �22�, and �27� we get after some algebra

�U0�L� =
Ua

2

4Ug�1 − ��3/2�− � +
4�0

2

15

5 + 4�1 − � + 1 − �

�1 + �1 − ��4 	 .

�36�

Here we kept the terms which are proportional to Ua
2 only.

We also neglected terms of the higher order of �0
3 and higher.

For ��1, Eq. �36� simplifies

�U0�L� �
Ua

2

4Ug
�− � +

�0
2

6
	 . �37�

As seen, the response changes sign at relatively small cur-
rents �=�0

2 /6. The second term in Eq. �37� is positive and
represents the zero current response �see Eq. �34��.

To understand the physical meaning of the negative con-
tribution, we note that the first term in the brackets in the
r.h.s. of Eqs. �36� and �37� does not depend on radiation
frequency. Consider the limiting case �→0 �i.e., �0→0�. In
this case, the instant value of the voltage at the drain can be
found using stationary current-voltage characteristic of the
channel given by Eq. �14�. Expressing from Eq. �14� the
voltage at the drain as a function of jd and Ug we find
U�L�=�Ug

2−2Ljd /	C. In the case of very low frequencies
this equation still holds with the replacement Ug→Ug
+Uacos��t�. In other words, U�L , t� adiabatically follows the
instant value of the gate voltage,

U�L,t� =��Ug + Uacos��t��2 −
2Ljd

	C
. �38�

The stationary value of the voltage at the drain is found by
averaging Eq. �38� over time, U0�L�= U�L , t��, and expand-
ing the result up to the first order in Ua

2,

�U0�L� = −
�

�1 − ��3/2

Ua
2

4Ug
. �39�

As seen, this equation coincides with the first term of Eq.
�36�. This reveals the physical meaning of change in sign,
which is due to competition of two detection mechanisms:
one is due to the damped plasma waves �with the response
given by Eq. �34� or the second term in Eq. �37�, which
coincide�, and the second is due to the current-induced asym-
metry of the field distribution. The second mechanism is
dominant when �→0, i.e., at the saturation voltage, where
the transistor is extremely sensitive to external perturbations
�see discussion in Sec. VI�.
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B. Long samples

In this case L�L0 �which is equivalent to demanding
�2�0

2����1�. Since �0�1 we can search for solution of
Eq. �28� using the Wentzel-Kramers-Brillouin �WKB� ap-
proximation. In this approximation we obtain two solutions,
one of them increases exponentially and another one de-
creases exponentially. The boundary condition �29� allows us
to keep only the exponentially decreasing solution. This im-
plies that U1�L�→0 �with exponential precision�. Thus, from
Eq. �26� we find

�U0�L� =
Ua

2

4Ug

1
�1 − �

. �40�

We see that in both cases, L�L0 and L�L0, the response
sharply increases when �= jd / jsat→1. This increase is
caused by the increase in the nonuniformity of the potential
and field distribution in the channel that increases the non-
linear properties of the FET �see discussion in Sec. VI�.

To conclude this section we note that the theory of non-
resonant detection developed above should be also valid for
collisionless plasma, though we used hydrodynamic equa-
tions as a starting point. Indeed, in our calculations we ne-
glected the “hydrodynamic” term v�v /�x in Eq. �4�. In other
words, Eqs. �5� and �10� equally apply for cases when
electron-electron collisions are absent or for dense plasma,
where such collisions dominate. In the case of a dense
plasma, the approximation, in which the hydrodynamic term
is neglected becomes invalid both in long and short samples
when 1−�� ��0��4/3, i.e., in a small vicinity of the point �
=1.

IV. RESONANT CASE

The resonant case is realized when �0 is large,

�0� � 1. �41�

The resonance takes place when ���N. For simplicity we
will only consider the fundamental harmonics �N=0�. Again,
we search for the solution of Eqs. �4�, �5�, �7�, and �8� in the
following form:

U = U0�x� +
1

2
U1�x�e−i�t +

1

2
U1

*�x�ei�t + ¯ , �42�

v = vd�x� +
1

2
v1�x�e−i�t +

1

2
v1

*�x�ei�t + ¯ , �43�

where U1 and v1 are small compared to U0 and vd, respec-
tively. Substituting Eqs. �42� and �43� into Eqs. �4�, �5�, �7�,
and �8� and averaging over time we get

�

�x
�vd

2

2
+

�v1�2

4
+

eU0

m
	 +

vd

�
= 0, �44�

�

�x
�U0vd +

U1v1
* + U1

*v1

4
	 = 0. �45�

The boundary conditions are

U0�L�vd�L� +
U1�L�v1

*�L� + U1
*�L�v1�L�

4
=

jd

C
, �46�

U0�0� = Ug. �47�

To solve these equations we should first find U1 and v1. One
can see that the variations of U0 and vd are small,

U0�0� − U0�L�
U0�0�

�
vd�0� − vd�L�

vd�0�
�

vd

s

1

�0�
� 1. �48�

Therefore, writing equations for U1 and v1 we can assume
U0=const, vd=const, and

U1,v1 � eikx. �49�

Linearizing Eqs. �4�, �5�, �7�, and �8� we get

v1�1

�
− i� + ikvd	 + ik

eU1

m
= 0, �50�

U1�− i� + ikvd� + ikU0v1 = 0, �51�

U1�0� = Ua, U1�L�vd�L� + v1�L�U0�L� = 0. �52�

For s�vd and ���1

k± =
� + i/2�

s
�±1 −

vd

s
	 , �53�

U1 = C+
� − k+vd

k+U0
eik+x + C−

� − k−vd

k−U0
eik−x, �54�

v1 = C+eik+x + C−eik−x. �55�

Here

vd =
jd

CUg
. �56�

Using boundary conditions �52� we get

C+ =
Ua

1 −
k−

k+
ei�k+−k−�L

, C− =
Ua

1 −
k+

k−
e−i�k+−k−�L

. �57�

Equations �54�–�57� should be substituted into Eqs. �44� and
�45�. While solving Eq. �44�, we will neglect the terms
vd�vd /�x and vd /� �one can show that this assumption is
valid since vd /s�1 and �0��1�. Integrating Eq. �44� we
have

U0�L� − U0�0� =
1

4
��v1�0��2 − �v1�L��2� . �58�

Substituting Eqs. �53�, �55�, and �57� in Eq. �58� we have for
detector response

�U0�L� �
Ua

2

4Ug

�0
2

�� − �0�2 + � 1

2�
−

vd

L
	2 . �59�

We see that response is a resonant function of the � centered
at �=�0. The width of the resonant peak is given by
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1

2�ef f
=

1

2�
−

vd

L
. �60�

Since vd� jd, this width decreases with the current. For
vd /L=1/2�, �ef f turns to infinity. This condition coincides
with the threshold condition for plasma wave generation.3

V. EXPERIMENT

The experiment was performed on a 250 nm gate length
commercial GaAs HEMT �Fujitsu FHX0635� at room tem-
perature using a 200 GHz Gunn diode as a radiation source.
A waveguide ended with a metallic cone was connected to
the output aperture of the Gunn diode to couple the radiation.
The radiation power of the Gunn diode was approximately
20 mW. The sample was glued and wire-bounded on a
quartz plate �in order to avoid the interference of THz radia-
tion� and placed in an adjustable sample holder in front of
the Gunn diode exit aperture. The radiation beam was not
focused and the diameter of the “light spot” was approxi-
mately 10 mm at the position of the sample holder, i.e.,
much larger than the size of the device. No special coupling
antennas were used in the experiment. The radiation most
likely was coupled to the device through the metallization
pads. The radiation intensity was modulated by the mechani-
cal chopper at 140 Hz. The source terminal of the device was
grounded. The dc drain current Id was applied to the device
and controlled by a Keithley Source Meter 2410. The source
meter was operating in the current source mode, ensuring the
asymmetry in the boundary conditions for the ac signal at the
drain and source terminals. The dependence of the response,
�U0�L�, versus the drain current was measured using the
standard lock-in technique at different gate biases. The gate
bias was controlled by another Keithley source meter oper-
ated in the voltage source mode. The samples used in these
studies were the same as were used in Ref. 26. Figures 1�a�
and 1�b� show the current voltage characteristics of the GaAs
HEMT under investigation. The essential device parameters
such as the channel mobility, drain and source series resis-
tances, channel length modulation parameter, etc. were de-
termined first using the procedure described in Ref. 34. Then
the characteristics in Fig. 1 were fitted using the above pa-
rameters as initial values for the Aim-Spice software.36 The
fitted curves �dashed lines in the figure� practically coincide
with the measured characteristics. The fitting yielded the fol-
lowing transistor parameters: the source and drain series re-
sistances Rd=Rs=4 ohm, the field effect mobility, 	
=0.15 m2/V s, the effective electron saturation velocity vs
=2105 m/s, ideality factor �=1.8, and the device thresh-
old voltage, Uth=−0.38 V. Figure 2 shows the nonresonant
photoconductivity response of HEMT to the 200 GHz radia-
tion, versus the drain current, Id, at different values of the
gate bias. Vgs varied from −0.35 V �which was slightly
higher than the threshold voltage� up to −0.1 V. The re-
sponse �U0�L� increased significantly with the drain current
for a given gate bias, then saturated, reached a maximum,
and then decreased. This maximum value of photo response
monotonically decreased with increasing gate bias. Arrows
in Fig. 2 show the values of current, corresponding to the

velocity saturation. Solid curves in Fig. 2 are related to the
theoretical calculations of the photoresponce using Eq. �A5�.
The theory developed in Sec. III does not account for the
electron velocity saturation and it is applicable only to the
linear region of operation of the transistor. Therefore, the
theory can only be compared with the experimental data for
Id smaller than the current, corresponding to the velocity
saturation. In the experiment, �0=L2� /	Ug varied in the
range 3��0�10. Therefore, for discussion of the experi-

FIG. 1. Id−Vds �a� and Id−Vgs �b� characteristics of GaAs HFET
at different drain-source voltages �Ref. 26�. Dashed curves corre-
spond to theoretical calculations.

FIG. 2. Photoresponse of GaAs HEMT to 200 GHz radiation
�characters�, as a function of drain current at different gate biases.
Dashed lines are drawn to guide an eye. Solid curves represent the
theoretical dependencies. Arrows show the values of the current,
corresponding to the velocity saturation.
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mental results we should apply theory developed in Sec.
III B. In derivation of Eq. �40�, we used a gradual channel
approximation �see Eq. �6��. This approximation works well
when the gate voltage is far from the threshold voltage
�e�Vgs−Vth��T, where T is the temperature�. To achieve a
better agreement with experiment, we generalized Eq. �40� in
Appendix A to describe the gate voltage range close to Vth
but still higher than Vth �see Eq. �A5��. The response as a
function of Id is plotted on the Fig. 2 for different values of
Vgs. We see that there is a reasonable agreement with the
experiment.

The detailed experimental study of resonant case will be
presented elsewhere.26 Here we restrict ourselves by estimate
of the factor ��ef f, which is responsible for the shape of the
resonance curve. The values of ��ef f are shown in Fig. 3 for
different materials, different gate lengths and different mo-
bilities. As seen, the values of ��ef f �1 might be obtained at
reasonable values of the electron drift velocities, allowing for
the resonant detection by short channel FETs at room
temperature.26

VI. DISCUSSION

In this section, we discuss the physical meaning of the
obtained results. We start with discussing the nonresonant
case. Above we have shown that a dc current dramatically
increases the nonresonant detection amplitude both for short
and long samples, especially when the drain voltage ap-
proaches the current saturation voltage. This voltage is re-
lated to an abrupt transition from the linear to saturation
region of the current-voltage characteristic. Physically, the
increase of the response is caused by increase of nonlinear
properties of the FET channel, when the current flows in a
FET and the concentration and field distributions become
very nonuniform as illustrated in Fig. 4. Increasing the cur-
rent and driving the transistor into saturation regime, the
nonuniformity of the concentration and field distribution in
the channel increases. Indeed, in the absence of radiation,
theelectron concentration and potential at the drain
n0�L� ,U0�L� tend to zero, while the electric field at the drain

E0�L�=−��U0 /�x�x=L tends to infinity when jd tends to jsat

�see Eqs. �22�, �24�, and �25�� as follows:

n0�L� =
CUg

e
�1 − � → 0, �61�

U0�L� = Ug
�1 − � → 0, �62�

E0�L� = − � �U0

�x
	

x=L

=
Ug

2�1 − �

�

L
→ � , �63�

when �= jd / jsat→1. We see that for the simplified constant
mobility model used above, the electron concentration near
the drain is zero in the saturation regime, while the electric
field and, as a consequence, electron velocity are infinite

FIG. 3. Values of parameter ��ef f calculated for different mate-
rials and different mobilities for �=200 GHz.

FIG. 4. Distributions of the averaged over time electron concen-
tration �a� and dc component of electric field �b� along the channel
of the transistor for Ug

2�2jdL /	C in the simplified constant mobil-
ity model. For the case Ug

2=2jdL /	C ��=1� these distributions are
shown by dotted lines. This case corresponds to the pinch-off at the
drain �i.e., to the drain saturation current�. Notice the qualitative
change when � changes from the value less then unity to the value
larger than unity. For Ug

2�2jdL /	C ���1�, concentration and field
at the drain n0�L� ,E0�L� are finite, while in the case Ug

2

�2jdL /	C ���1� concentration at the drain exactly equals to zero
and electric field at the drain is infinite in the case of zero tempera-
ture. To get finite values of n0�L� ,E0�L� at ��1, one has to take
into account finite temperature effects.
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�this corresponds to “pinch-off” of the channel in the Shock-
ley model�. In reality, the velocity is limited by the effective
saturation velocity, and the electric field and electron concen-
tration remain finite but very large and small, respectively.
Actually, the transition to the saturation regime takes place
over the voltage range on the order of several thermal volt-
ages, which is very small compared to the saturation drain
voltage. Near the saturation voltage, even a small external
field affects the small electron concentration and potential
near the drain dramatically. This implies that the device be-
comes more sensitive to the external perturbations. To clarify
this point, we use Eqs. �15� and �23�, rewriting Eq. �62� as
follows:

U0�L� =�Ug
2 −

2jdL

	C
. �64�

This expression is nonanalytical at the saturation point Ug
2

=2jdL /	C ��=1�. For Ug
2�2jdL /	C ���1�, concentration

n0�L� ,U0�L� and E0�L� are finite, while in the case Ug
2

�2jdL /	C ���1� n0�L�=0,U0�L�=0 and E0�L�=�. The
theoretically obtained distributions are plotted in Fig. 4 for
��1. It is clear from Fig. 4 that periodic variation of the
gate voltage with arbitrary small amplitude leads to strong
response at the saturation point: during one half of the period
concentration and field at x=L are finite while during the
another part of the period concentration �field� at x=L is
equal to zero �infinity�. In other words, response should be
infinite at �=1. This explains the physical origin of singular-
ity in Eqs. �36� and �40�. Actually, the response remains fi-
nite due to several reasons. First, we calculate response in the
linear order with respect to Ua

2. One can show that this ap-
proximation is valid only when Ua�Ug�1−�� for L�L0 and
when Ua�Ug

�1−� for L�L0. Hence, response is limited
by the value ��UaUg for short samples and by the value
�Ua for long samples. Second, since U0�L�→0, while jd

→ jsat, the gradual channel approximation fails and one
should use Eq. �A1� instead of Eq. �2�. As we already men-
tioned, finite temperature effects smoothen transition to the
saturation regime and lead to finite values of n0�L� and E0�L�
in the saturation region. One can show that such effects limit
the response by the value of the order of eUa

2 /T, where T is
the temperature.

Let us now discuss the resonant case. In this case, the
detection amplitude has maxima, when the radiation fre-
quency is equal to fundamental plasma frequency and its
harmonics �see Eq. �59��. The resonant behavior is due to
excitations of the plasma waves in the channel of the tran-
sistor by the electric field of the incident electromagnetic
radiation.3,9 We have shown that the resonant response might
be strongly modified by so small current that the electron
concentration in the channel is still homogeneous. Our main
prediction is the decreasing of the effective resonant line-
width with the increasing current. As the velocity of the elec-
tron flow in the channel increases, the lower becomes the
decrement of damping of plasma waves �see Eq. �60��. This
effective decrement, but not the electron-phonon or electron-
impurity scattering, determines decay of the plasma oscilla-
tions in the channel of a FET. Physically, this decrease is due

to approaching to the threshold of the plasma wave instabil-
ity. Indeed, the second term in Eq. �60� responsible for de-
crease of damping is caused by the difference of the plasma
wave velocity in the direction of the electron flow and oppo-
site to the direction of the electron flow. This difference leads
to the amplification of the plasma wave amplitude when re-
flected from the drain side of the channel.3 As the velocity of
the flow increased, the amplification leads to the plasma
wave instability.3 At some critical current value, correspond-
ing to the condition vd=L /2�, the width of the resonant re-
sponse corresponding to the fundamental frequency would
turn to zero, and the response at the fundamental frequency
turns to infinity. This indicates the onset of plasma waves
generation. In other words, the electric current shifts the sys-
tem towards the threshold of the plasma wave instability
predicted in Ref. 3. The extreme sensitivity of the detector in
this current range is analogous to a sharp increase of sensi-
tivity for different physical systems near the phase transition
point.

VII. CONCLUSIONS

To conclude, we have considered the effect of the source-
to-drain current on the terahertz detection by FET. In the
nonresonant case, such a current sharply increases the detec-
tor response. In the resonant case, the current is predicted to
decrease the resonance width. At a certain value of the cur-
rent, this width should become zero. This value coincides
with the threshold current for plasma waves generation. The
theory of the nonresonant detection is in a reasonable agree-
ment with experiment for positive values of the gate voltage
swing.
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APPENDIX

Here we generalize Eq. �40� to take into account finite
temperature effects. As a starting point we use the following
expression for electron concentration in the channel34

n�x� =
CT�

e2 ln�1 + exp
 eU

�T
�	 , �A1�

where T is the temperature and ��2 is the so-called ideality
factor. Equation �6� is obtained from Eq. �A1� by taking a
limit T→0�.

The response should be calculated from the equation
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�n

�t
− 	

�2�

�x2 = 0, �A2�

with the boundary conditions jd=−	�� /�x at x=L and U
=Ug+Uacos �t at x=0. Here �=�0

Un�U��dU�. The calcula-
tions, quite analogous to ones presented in Sec. III B, yield

�U�L� = Ua
2� ,

where coefficient � is expressed via properties of the station-
ary voltage-current curve

� =
��n�U�/�U��U=Ug

4n�U��U=Ug−U*
. �A3�

Here U* is a voltage drop across the gated region for Ua
=0. Using Eq. �A1� we find

� �n�U�
�U

	
U=Ug

=
C

e

eeUg/�T

1 + eeUg/�T . �A4�

As a result, we get the following expression for detector
response:

�U�L� =
eUa

2

4�T�1 + exp�− eUg/�T��


1

ln�1 + exp�e�Ug − U*�/�T��
. �A5�

This equation reduces to Eq. �40� for T→0. Indeed, taking
the limit T→0 in Eq. �A5� we get

�U�L� =
Ua

2

4�Ug − U*�
. �A6�

At T=0, the stationary I-V curve is given by Eq. �14�, yield-
ing

U* = Ug −�Ug
2 −

2Ljd

	C
.

Substituting U* in Eq. �A6� we restore Eq. �40�. For T�0,
the value of U* can be extracted from experimental Id−Vds
curves �Fig. 1�a�� with account for the fact that U* is not
equal to measured voltage across sample Vds because of fi-
nite voltage drop on the serial resistances of source and
drain. The response as a function of Id is plotted on the Fig.
2 for different values of Vgs.
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