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We propose a mechanism whereby a finite correlation length associated with the periodicity of the crystalline
lattice gives rise to incoherent Bragg reflection of quasiparticles. This introduces an additional effective scat-
tering rate �hot

−1 �kF� that selectively damps quantum oscillations originating from orbits that are the product of
Bragg reflection. The model is applied to the dimerization in �-�BEDT-TTF�2Cu�NCS�2 where we show that
�hot

−1 �kF� is strongly dependent on the Fermi momentum kF, being concentrated at “hot spots” located on the
Brillouin zone boundary.
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Strongly anisotropic scattering processes have been pro-
posed as an important factor in determining the unconven-
tional physical properties of a variety of strongly correlated
electron systems, including high-temperature
superconductors,1 organic conductors,2,3 and heavy-fermion
antiferromagnets.4 In three-dimensional �3D� metals, mag-
netic quantum oscillation experiments can provide a means
for probing such anisotropies directly. When a magnetic field
H is applied in a given direction, only the extremal cyclotron
orbits in momentum space orthogonal to H contribute sig-
nificantly to the oscillation amplitude, enabling H
orientation-dependent studies to selectively study different
parts of the Fermi surface. Since the effective mass m*�kF�
and quasiparticle scattering rate �−1�kF� vary over the Fermi
surface, quantum oscillation experiments can enable their or-
bital averages �m*= eB � 2� �dt� �m*�kF�dk� and �−1

= eB � 2�m* ��−1�kF�dt� to be determined as a function of
the orientation of H, where B��0�H� and kF is the Fermi
momentum.

Such studies have been successfully applied to cubic ma-
terials with near-spherical Fermi surfaces, enabling detailed
maps of m*�kF� and �−1�kF� to be extracted.4–6 However,
many of the more strongly correlated superconductors of in-
terest today have layered electronic structures1,2,7,8 yielding
Fermi surfaces that are highly 2D. While “hot spots” in
which correlations are enhanced due to spin fluctuations
have been predicted in both high-temperature
superconductors1 and organic conductors,3 their 2D geom-
etry prohibits a direct observation. The absence of closed
extremal orbits when H is oriented within the layers implies
that H orientation-dependent quantum oscillation studies
cannot be used to extract information on the anisotropy of
m*�kF� and �−1�kF� within the layers. The finding of an al-
ternative means to verify �or falsify� the existence of hot
spots could have a decisive impact on attempts to identify
the appropriate theories for superconductivity.

In this paper we propose that magnetic breakdown �MB�,
in which the magnetic field facilitates the tunneling of qua-

siparticles through band gaps, may provide an alternative
means for probing the existence of hot spots. We consider the
analogous case of incoherent Bragg reflection �IBR�, which
can cause �−1�kF� to be strongly concentrated at the
Brillouin zone boundary as depicted in Fig. 1.
�-�BEDT-TTF�2Cu�NCS�2 has the ideal Fermi surface
topology7 to test the possibility of phase decoherence of qua-
siparticles undergoing Bragg reflection in a weakly disor-
dered crystalline lattice. IBR selectively dephases quasipar-
ticles on the � orbit in Fig. 1 undergoing Bragg reflection as
opposed to those for which MB facilitates tunneling across
the band gap 2	g. MB enables quasiparticles on the MB 

orbit to follow the dotted lines near the Brillouin zone
boundary in Fig. 1, causing them to be no longer affected by
Bragg reflection. To explain the experimentally observed

FIG. 1. �Color online� A schematic of the Fermi surface of �
-�BEDT-TTF�2Cu�NCS�2 before �dotted lines� and after �solid
lines� its reconstruction due to Bragg reflection at the Brillouin zone
boundary. The red dots indicate the proposed positions of hot spots
at the Brillouin zone boundary.
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large ratio ��
−1 /�


−1 of the total orbitally averaged effective
scattering rates for the two orbits, we develop a model for an
“effective” scattering rate �hot

−1 �kF� due to IBR.
The experiments are conducted on five single crystals of

�-�BEDT-TTF�2Cu�NCS�2 obtained from three different
crystal growth facilities, each crystal being of comparable
volume �0.1 mm3�.9 When placed in the coil of a tunnel di-
ode oscillator �TDO� circuit, the crystal’s finite in-plane re-
sistivity causes a perturbation of its inductance, leading to a
shift 	f in resonance frequency.10 Figure 2 shows raw data
obtained for all five samples in pulsed and static magnetic
fields. To ensure that estimates of m* and �−1 are independent
of the measurement technique, comparisons are made with
data obtained using conventional four-wire resistance meth-
ods. In all cases, the respective quantum oscillation frequen-
cies F��600 T and F
�3900 T and effective masses m�

*

�3.5me and m

* �7.0me for the � and 
 orbits are found to

be the same to within experimental uncertainty, confirming
that all samples are of the same �-�BEDT-TTF�2Cu�NCS�2

phase.
Figure 3 compares “Dingle plots”19 for the � and 
 orbits

in which the oscillatory component of the in-plane resistivity
�determined by Fourier analysis� is renormalized by the av-

erage background �nonoscillatory� magnetoresistance20 and
then subsequently divided by the thermal damping factor
R�T�=X / sinh X �where X=2�2m*kBT /�eB, inserting values
for m�

* and m

*�. The logarithm of the remaining amplitudes

have field dependences11–17

ln A��B� = C� + � ln B − �m�
*��

−1/eB + ln�1 − e−B0/B� ,

ln A
�B� = C
 + � ln B − ��m

*�


−1/e + 2B0�/B , �1�

where �=0 for Shubnikov–de Haas oscillations in a near
ideal 2D layered metal14 and C� and C
 are constants. B0
=�m


*	g
2 /�eEF sin 2 is the characteristic MB field,19 where

2	g is the band gap due to dimerization �which should be
sample independent�, EF=�eF
 /m


* is the Fermi energy, and
2 is the angle of Bragg reflection. Fits of Eq. �1� to such
Dingle plots yield B0, ��

−1, and �

−1.

While there exists a broad consensus regarding m�
* and

m

* , estimates of B0 vary considerably throughout the

literature,11–17 yielding B0=40±6 T when including all prior
estimates obtained using �=0 as for a 2D metal. The large
error reveals the difficulty associated with obtaining a con-
vergence in B0 far from the ideal MB experimental condition
B�B0. We encounter a similar lack of convergence on fitting
Eq. �1� to the �-frequency Dingle plots in Fig. 3, yielding
B0=45±22 T, 38±8 T, and 45±59 T for samples A1, A2,
and L1, respectively, or a culminated value of 39±7 T. In the
case of samples T1 and T2, fits do not converge owing to the
relatively short range in magnetic field over which oscilla-
tions are observed. To make allowance for the large error
bars in B0, we therefore plot ��

−1 and �

−1 for a wide range of

B0 �0�B0�60 T� in Fig. 4�a�.
Information on the anisotropy of ��kF� can be extracted

because the quasiparticles on the � and 
 orbits traverse
different trajectories in k space in Fig. 1. This enables us to
resolve different average rates �1

−1 and �2
−1 for quasiparticles

on the quasi-1D and quasi-2D Fermi surface sections,
respectively. If we choose to neglect the gap by setting
	g→0, consideration of the proportionate times t1=2��m


*

−m�
*� /eB and t2=2�m�

* /eB� t1 spent by the quasiparticles
on each section yields ��

−1=�2
−1 and �


−1= �t1�1
−1+ t2�2

−1� / �t1

+ t2����1
−1+�2

−1� /2. Hence

��
−1

�

−1 =

2�2
−1

�1
−1 + �2

−1 � 2. �2�

It is quite clear that no degree of anisotropy of ��kF� can
explain values of the ratio ��

−1 /�

−1 in Fig. 4�b� that exceed 2.

If we attempt to extract �2
−1 /�1

−1 �dashed line in Fig. 4�b��
from the five-sample averaged ��

−1 /�

−1 �solid line�, we find

that �2
−1 /�1

−1 becomes asymptotic for B0�30 T: i.e., there is
no viable �2

−1 /�1
−1 solution for any of the fitted estimates of

B0 that assume a 2D Fermi surface.13–17

If B0�30 T, as the fits suggest, only by considering a
finite 	g can we explain ��

−1 /�

−1�2. The opening of such a

gap enables quasiparticles on the � and 
 orbits to take
slightly different paths in the vicinity of the Brillouin zone
boundary in Fig. 1. A strong enhancement of ��kF� at the
points represented by red spots in Fig. 1 can only contribute

FIG. 2. Examples of the shift in the TDO frequency due to the
sample’s finite resistivity, displayed for five different samples T1
and T2, grown in Tsukuba, A1 and A2 grown in Argonne and L1
grown in London.

FIG. 3. Dingle plots of ln A� and ln A
 versus 1/B having cor-
rected for R�T� and renormalized the amplitude of the quantum
oscillations by the background magnetoresistance, together with fits
to Eq. �1� shown for B0=38 T �see text�.
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to ��
−1 because only these quasiparticles are modified by

Bragg reflection. On introducing an additional hot spot scat-
tering rate �hot

−1 that contributes only to the orbitally averaged
scattering time of the � orbit, we can revise Eq. �2� so that it
becomes

��
−1

�

−1 �

2��2
−1 + �hot

−1 �
�1

−1 + �2
−1 , �3�

which can now assume any value.18

We propose IBR as the mechanism that can lead to the
additional �hot

−1 �kF� in the vicinity of the Brillouin zone
boundary. The standard theory of Bragg reflection assumes
the crystalline potential responsible for the gap to remain
periodic over all space.19 In real materials, however, the lat-
tice is subject to imperfections due to dislocations, cracks,
and voids that cause the periodicities over long distances to
become uncorrelated. This leads to a loss of coherence of the
Bloch waves over similar distances, leading to finite mean
free paths � and scattering times � in accordance with the
standard semiclassical description. In addition to being sub-
jected to conventional pointlike scattering processes, quasi-
particles with large momentum vectors that suffer diffraction
from the lattice will also be subjected to an uncertainty in
their momentum of order 	�k=� /2� upon undergoing Bragg
reflection, where � represents the finite correlation length
of the lattice periodicity of interest. In the case of
�-�BEDT-TTF�2Cu�NCS�2, it is the dimerization along the c
axis that causes Bragg reflection. Its characteristic vector K
= �0,2� /c ,0� intersects the large free-electron-like 
 hole
orbit, leading to the opening of 2	g and the formation of the
� orbit in Fig. 1.

One can conveniently treat the dephasing of quasiparticles
in a semiclassical picture by considering an imaginary con-
tribution to the Onsager phase and/or k-space area. In the
case of IBR, 	�k introduces an imaginary contribution

Im�a�� =
ik�

�
�4�

to the cross-sectional area of the � orbit in k space, such that
a�=Re�a��+Im�a��, where i=	−1 and Re�a�� is its usual
area �i.e., as in the limit �−1→0� which has roughly the
shape of a lens with a major axis length 2k��0.52 2� /b
�1/2.6 Å−1.17 The imaginary contribution to the Onsager
phase �� due to IBR becomes

� Im����
�t

= 
 �

eB
� � Im�a��

�t
�

i

2�hot�kF�
, �5�

enabling us to introduce an effective scattering rate �hot
−1 �kF�.

On calculating its orbital average, we obtain

�hot
−1 =

eB

2�m�
*  dt

�hot�kF�
=

�k�

��m�
* . �6�

Should �1
−1��2

−1 in Eq. �3�, then B0�39 T yields �hot
−1 ���

−1

−�

−1�0.5�1012 s−1 for the best samples, corresponding to

2��3000 Å�180c, which is of comparable magnitude to
the mean free path �=�k
�
 /m


* �2000 Å for normal colli-
sion processes that account for most of attenuation of the
quantum oscillations originating from the 
 orbit, suggesting
that � and � probably originate from common defects in the
lattice.

In order to show that �hot
−1 is concentrated at hot spots, it is

necessary to calculate the full dependence of �hot
−1 �kF� on kF.

According to the Fermi-surface model in Fig. 1, the free
electron-like hole quasiparticle orbits intersect each other ap-
proximately at right angles upon their translation by K. It is
therefore convenient to model the local dispersion in the vi-
cinity of the Brillouin zone boundary by two orthogonal
bands of the form

��k� =
�v


	2
�kx ± 
ky +

i

4�
�� , �7�

represented by dotted lines in Fig. 5�a� �for the limit �−1

→0�. Here, they are defined with respect to kx=0 and ky
=0 at the point of intersection, where i /2� is the difference in

FIG. 4. �a� Scattering rates determined from
Fig. 3 as a function of B0. �b� The ratio ��

−1 /�

−1 as

a function of B0. The dashed line represents
�2

−1 /�1
−1 estimated using Eq. �2�. �c� Plot of

��� /�
�2 with the solid lines representing
��� /�
�2±� to estimate the value of B0 �dotted
line� where convergence occurs.

FIG. 5. �a� A plot of the Fermi surface topology in the vicinity
of the Brillouin zone boundary as a consequence of Bragg reflec-
tion. �b� A plot of the calculated ratio �hot

−1 �kF� /�hot
−1 according to the

model as a function of the momentum vector ky parallel to K.
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ky between them due to the effect of a finite correlation
length. Hybridization yields

��k� =
�v


	2
�kx ±	
ky +

i

4�
�2

+ Kg
2� , �8�

where Kg
−1=�v
 /	2	g�35 Å for B0�39 T. The hybridized

bands are represented by solid lines in Fig. 5�a� �again, for
the limit �−1→0�. Action of the Lorentz force ��k /�t=evF
�B on quasiparticles moving at a velocity vF�k�
=�−1�k��k� in a magnetic field yields

kF�t� � �±	�
 eBv


	2�
�t +

i

4�
�2

+ Kg
2,
 eBv


	2�
�t,0� .

�9�
The time evolution of the k-space area is approximately
given by � Im�a�� /�t���kF� Im�kF�� /�t where kF

��k
 /	2,k
 /	2,0� is the Fermi momentum vector and k


�	2k�. On evaluating Im�kF� from Eq. �9� in the limit
�eBv
 /	2��t�4�Kg

2, insertion of � Im�a�� /�t into Eq. �5�
yields, after some manipulation,

1

�hot�kF�
�

�

4

k��Kg
2 − 1/16�2�

�ky
2 + Kg

2 − 1/16�2�3/2

1

�hot
. �10�

Figure 5�b� shows the dependence of �hot
−1 �kF� on ky according

to Eq. �10�, revealing that �70 and 90% of the scattering
intensity occur within �ky��Kg and �ky��2Kg, respectively.
This shows quite clearly that the bulk of the “attenuation”
occurs close to the Brillouin zone boundary.

In summary, we propose a mechanism whereby a finite
correlation length � of the weakly disordered crystalline lat-
tice in �-�BEDT-TTF�2Cu�NCS�2 causes incoherent Bragg
reflection of quasiparticles at the Brillouin zone boundary.
This introduces an additional effective scattering rate �hot

−1 �kF�
that selectively damps quantum oscillations originating from
the � orbits in �-�BEDT-TTF�2Cu�NCS�2. This can cause
the ratio of the orbitally averaged scattering rates ��

−1 /�

−1 to

exceed 2. Model calculations show that �hot
−1 �kF� is strongly

dependent on the Fermi momentum kF, being concentrated at
hot spots located on the Brillouin zone boundary. IBR may
therefore explain a number of unusual experimental results
in disordered �-phase salts in which oscillations from the 

MB orbit are clearly observed in quantum oscillation experi-
ments, but where those from the � orbit are vanishingly
small or absent.21,22
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