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The concepts which have traditionally been useful in understanding the effects of the electron-phonon
interaction in optical spectroscopy are based on insights obtained within the infinite-electronic-band approxi-
mation and no longer apply in finite-band metals. Impurity and phonon contributions to electron scattering are
not additive and the apparent strength of the coupling to the phonon degrees of freedom is substantially
reduced with increased elastic scattering. The optical mass renormalization changes sign with increasing
frequency and the optical scattering rate never reaches its high-frequency quasiparticle value, which itself is
also reduced below its infinite-band value.
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I. INTRODUCTION

Many of the physical insights that have guided the inter-
pretation of data on effects of the electron-phonon interaction
in metals are based on an infinite-band model with a constant
featureless electronic density of states �EDOS�.1 In the 1980s
there appeared several studies, mainly motivated by the
physics of the A15 compounds, which took account of en-
ergy dependence in the EDOS around the chemical
potential.2–4 Band structure calculations for the A15 com-
pounds showed peaks in the EDOS with variations on the
energy scale of 50 meV. A variety of experiments also
showed sensitivity of properties to disorder. For example,
disordered Mo3Ge has a higher value of superconducting
critical temperature than its crystalline counterpart. This is
naturally explained if the chemical potential in ordered me-
tallic Mo3Ge falls in a valley of the EDOS. Radiation dam-
age then fills this valley and leads to an increase in EDOS at
the Fermi energy and a higher value of Tc.

More recently several authors have considered a different
but related effect, namely, a finite band.5–8 One experimental
realization of this situation is the fulleride compounds M3C60
�M is an alkali metal�, where band structure calculations9

show a narrow band with the width W of the order of 1 eV,
while the phonon spectrum extends up to about 200 meV in
some cases. Physical consequences brought about by the fi-
nite band can be studied in the frame of a simplified
�particle-hole symmetric� model with a constant N0 with a
cut off applied at ±W /2 where W is the bandwidth related to
N0 by N0=1/W. A somewhat surprising result of such studies
is that, even for rather wide bands �W of order a few eV�
certain aspects associated with the effect of the electron-
phonon interaction are profoundly modified as compared to
the corresponding infinite-band behavior. For example, in an
infinite band with constant electronic density of states, the
electron-phonon interaction leaves N0��� unaltered and no
phonon structure appears in the dressed normal-state EDOS.
To see phonon structure it is necessary to go to the supercon-
ducting state which develops a gap and consequently a non-

constant EDOS. However, if a cutoff is applied to the con-
stant N0���, then phonon structure appears in the dressed
quasiparticle density of states as it does in the superconduct-
ing state and also in any case when EDOS is nonconstant
around the Fermi energy. The phonon structure which ap-
pears in the dressed EDOS is surprisingly significant in mag-
nitude even for modest value of the electron-phonon mass
renormalization parameter �. Mathematically the self-energy
must be solved for self-consistently when a finite-band cutoff
is introduced. This contrasts with the infinite-band case
where the bare Green’s function can be employed in the self-
energy expression.10 Self-consistency leads to a smearing of
the band edge region as well as a widening of the band. As
the total number of states in the electronic density of state
must remain constant, this transfer of spectral weight to
higher energies beyond the bare EDOS cutoff implies that it
must correspondingly be reduced at smaller energies and the
details of this reduction depend significantly on the phonon
energy scale and coupling strength to the various phonon
modes. The effect of widening of a finite electronic band due
to the electron-phonon interaction has been observed and
discussed previously by Liechtenstein et al.11 in the context
of fulleride compounds.

There are many qualitative changes in electron-phonon
renormalization effects which have their origin in finite
bands. For example the real part of the electronic self-energy
�1��� for ��0 is everywhere negative in an infinite band
and decays to zero beyond a few times the maximum phonon
energy, which we denote �D. Thus the electronic effective
mass is always increased by the electron-phonon interaction
and returns to its bare mass value from above at a few times
�D. By contrast for a finite band, as described in Ref. 5,
�1��� changes sign as � increases and the renormalized
mass at high � can actually be smaller than the bare band
mass. This is an example of qualitative change brought about
in the electronic self-energy by finite-band effects. Others are
described in the recent paper of Cappelluti and Pietronero,5

who also considered the effect of impurities.
In this paper we consider optical properties with particular

emphasis on the combined effect of temperature and impu-
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rity scattering in a finite-band electron-phonon system. In
Sec. II we provide a brief summary of the formalism needed
to compute the electron self-energy � vs � for a system of
electrons coupled both to phonons and to impurities. We also
present analytic formulas which apply in the non-self-
consistent approximation. They will prove useful for inter-
pretation of the numerical results. The optical conductivity
without vertex corrections follows from the Kubo formula
for the current-current correlation function. The optical self-
energy, or the memory function, is introduced and related to
the complex optical conductivity ����. We summarize some
known approximate but analytic formulas for the optical
scattering rate and effective mass renormalization which
have been found useful in past studies related to infinite
�very wide� electronic bands. These formulas appropriately
modified in the context of finite bands are applied to obtain a
description of the non-self-consistent approximation, which
provide insight into the various features found in numerical
solution of the full equations. Two models for the electron-
phonon spectral density �2F��� are introduced. For definite-
ness both are based on the specific phonon spectrum of
K3C60. One consists of three � functions suitably chosen to
mimic the real spectrum while the other one uses truncated
Lorentzians instead of � functions to help understand the
modification brought about when the extended nature of real
spectra is accounted for. In Sec. III we describe results for
the case of a rather wide band and the three-�-function
model for �2F��� with a modest value of �=0.71. We start
with a discussion of the dressed electronic density of states
with emphasis on temperature and impurity effects. Then the
memory function is analyzed and compared with the quasi-
particle self-energy; the differences arising from finite-band
effects are emphasized. In Sec. IV we present the results for
an extended electron-phonon spectrum, increasing the spec-
tral � and decreasing the width of the band. Section V is our
conclusions.

II. FORMALISM

A. The electronic self-energy and the renormalized EDOS

The central quantity of our problem is the electronic self-
energy ��z�=�1�z�+ i�2�z�. It is calculated from the Migdal
equations formulated in the mixed real-imaginary axis
representation:5,12

��z� = 	
�z� + T �
m=−�

+�

��z − i�m�
�i�m�

+ �
0

�

d� �2F�����f�� − z� + n����
�z − ��

+ �f�� + z� + n����
�z + ��� , �1�

��z� = �
0

�

d� �2F���
2�

�2 − z2 , �2�


�z� = �
−�

�

d�
N0���
N0�0�

1

z − � − ��z�
, �3�

where �m=
T�2m−1�, m�Z are the fermionic Matsubara
frequencies, and f��� and n��� are the Fermi and Bose dis-
tribution functions, respectively. The electron-phonon inter-
action is specified in terms of the electron-phonon spectral
function �2F��� �the Eliashberg function�. The parameter 	,
which has the meaning of an impurity scattering rate, speci-
fies the strength of the interaction with impurities. The vari-
able z in Eqs. �1�–�3� can assume arbitrary complex values.
Description of spectroscopic experiments requires knowl-
edge of the retarded electronic self-energy at real frequen-
cies, which corresponds to solutions with z=�+i0+. A fast
and stable numerical procedure for this purpose was pro-
posed by Marsiglio et al.12 It starts with computing the so-
lutions for ��z� on the imaginary axis, at z= i�m, where Eq.
�1� is simpler. Then, the function 
�i�m� is used to set up an
iterative procedure to find ���+ i0+� just above the real axis.

The quantity N0��� appearing in Eq. �3� is the bare EDOS.
In this paper we use for it the following simple model:

N0��� = N0��W/2 − 	�	� , �4�

where W is the bare bandwidth and ��x� is the step function.
The constant N0 is fixed by normalization: N0=1/W. In this
paper we retain particle-hole symmetry for simplicity, with
the chemical potential at the center of the band �=0. In the
clean case it was shown7 that the main characteristic features
appearing in the electronic self-energy and the memory func-
tion due to the finite bandwidth do not depend significantly
on details of the bare electronic band.

The renormalized density of electronic states, or density
of states for quasiparticles, is defined by

N��� = �
−�

+�

d� N0���A��,�� . �5�

Here

A��,�� = − Im Gret��,��/
 �6�

is the electronic spectral density and the retarded Green’s
function Gret�� ,�� is defined by the relation

�Gret��,���−1 
 ��G0��,z��−1 − ��z��z=�+i0+ �7�

with G0�� ,z�=1/ �z−�� being the free-electron Green’s func-
tion. The renormalized quasiparticle can be expressed in
terms of the function 
=
1+ i
2 of Eq. �3� as follows:
N��� /N0�0�=−
2��� /
.

The renormalized density of states N��� is a very impor-
tant quantity. It features various signatures of the interaction
of electrons with phonons and impurities. Note that in the
infinite-electronic-band approximation with flat bare EDOS
the renormalized EDOS N��� remains constant and does not
carry any physical information. In the present context of a
finite band, N��� for the electron-phonon system has been
studied recently by Doğan and Marsiglio6 at T=0 and by
Knigavko and Carbotte7 at finite temperatures. Below we
emphasize the analysis of the combined effect of both
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phonons and impurities. We find that knowledge of the fea-
tures of the renormalized EDOS helps to understand better
the behavior of the other spectroscopic quantities such as the
memory functions, which are related to the optical response.
The renormalized EDOS N��� itself is a measurable quantity
and can be directly probed by tunneling spectroscopy or
angle-integrated photoemission spectroscopy.13–15 The accu-
racy of the latter technique has increased dramatically in re-
cent years and properties of both new and traditional mate-
rials have been scrutinized. It has been argued in Ref. 8 that
normal-state boson structure should be detectable in such
experiments for metals with electronic bandwidth of order a
few eV.

Let us return to the electronic self-energy. For the purpose
of the following discussion we present the general Eq. �1� for
the values of the argument just above the real axis, namely,
z=�+ i0+ and at temperature T=0 �note that henceforth we
will use the real axis variable, such as �, as shorthand for
�+ i0+�. Separating the real and imaginary parts of � we
obtain the following expressions:

�1��� = 	P�
−�

� d��

� − ��

N����
N0�0�

+ 2�P�
0

�

d��
N����
N0�0� �0

�

d�
�2F���

�2 − ��� + ��2 ,

�8�

�2��� = − 
�	
N���
N0�0�

+ �
0

�

d��2F���
N�� − ��

N0�0� � , �9�

where the symbol P in Eq. �8� means that in the divergent
integrals over �� the Cauchy principal value has to be taken.
Note that the self-consistent nature of this equations is now
masked. On the right-hand sides of Eqs. �8� and �9� the self-
energy enters only via the renormalized EDOS N���.

The quasiparticle mass renormalization is defined by the
relation

�qp
�ef f� = − lim

�→0
d�1���/d� . �10�

From Eq. �8� we find that it is given by

�qp
�ef f� = 	P�

−�

� d�

�

N����
N0�0�

+ 2�
0

�

d� �2F����
0

� d�

�� + ��2

N���
N0�0�

, �11�

where N����
dN��� /d� is the derivative of the renormal-
ized EDOS. For an infinite band with a constant N��� we
recover the known result. The second term on the right-hand
side of Eq. �11� reduces to �=2
0

�d� �2F��� /�, the usual
expression for the mass renormalization due to electron-
phonon interaction, while the first term, which represents the
effect of the elastic scattering from impurities, vanishes. In
the case of an energy-dependent EDOS impurities produce a
finite contribution to the quasiparticle mass renormalization.
Our subsequent numerical analysis shows that for a finite

band N���� is a decreasing function of � for ��0 in large
intervals, which become especially substantial if �D�W �re-
member that N�−��=N��� because we consider the half-
filling case�. This makes the impurity contribution to �qp

�ef f�

negative and opposite in sign to the phonon contribution.
Therefore, in a finite electronic band the increased elastic
scattering results in the apparent decrease of the magnitude
of the electron-phonon interaction, as specified by �qp

�ef f�.
In this paper we solve the self-consistent equations for the

self-energy numerically. To better understand the trends ob-
served in our numerical results it is helpful to have analytic,
though maybe not exact, expressions for the self-energy. We
found that a useful approximation is to replace the renormal-
ized EDOS N��� in Eqs. �8�, �9�, and �11� with the bare
EDOS N0���, given in the model we consider by a constant
equal to N0�0� with cutoff at the bare band edge W /2 �see
Eq. �4��. This approximation amounts to disregarding the
self-consistency, while keeping track of the finite width of
the band. It is expected, and we confirm this in the following
section, that this approximation is good at small frequencies
� as long as the characteristic phonon frequency is much
smaller than the bandwidth W. Moreover, this non-self-
consistent approximation allows us to obtain a simple esti-
mate for the characteristic frequency �̄qp of a finite elec-
tronic band, when the real part of the self-energy �1���
changes sign. Deficiencies of the non-self-consistent ap-
proximation are discussed later. The non-self-consistent re-
sults have the form

�1
�ns���� = 	 ln�� + W/2

� − W/2
�

+ �
0

�

d� �2F���ln�� − �

� + �

� + W/2 + �

� − W/2 − �
� ,

�12�

�2
�ns���� = − 
�	��W/2 − 	�	�

+ �
0

�

d� �2F�����W/2 − 	� − �	�� , �13�

�qp
�ns� = − 2

	

W/2
+ 2�

0

�

d�
�2F���

�

1

1 + �/�W/2�
. �14�

These equations, while not exact, reduce to the well-known
infinite-band results in the limit W→� and show the modi-
fications brought about by a finite band. Note in particular
that when no impurities are present the mass renormalization
is always reduced over its infinite-band value and that the
quasiparticle scattering rate �qp

−1���
−2�2��+ i0+� drops to
zero for ��W /2+�D instead of remaining constant as in the
infinite-band case �we recall that �D denotes the maximum
phonon frequency in �2F����.

B. Optical response

For characterization of the optical response the quantity of
interest is the memory function, which is the optical coun-
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terpart of the self-energy. The memory function M���
=M1���+ iM2��� appears explicitly in the following expres-
sion for the complex optical conductivity ����=�1���
+ i�2���:

���� =
2S




1

M��� − i�
, �15�

which is also called in the literature the extended Drude
formula.16–20 In this equation S is the optical sum defined by
the integral

S = �
0

+�

�1���d� . �16�

For the infinite and flat electronic band it was shown by
Allen21 that in the limit �→0 the memory function and the
self-energy are closely related, namely, M1�0�=−2�2�0� and
M2�0�=�1�0�. This is one of the reasons why the real part of
the memory function can be identified as the optical scatter-
ing rate, M1���
�op

−1���. On the other hand, the imaginary
part of the memory function is usually related to the
frequency-dependent optical mass renormalization, M2���

−��op���. The memory function can easily be found if the
conductivity is known. Indeed from Eq. �15� it follows that

�op
−1��� =

2S




�1���
�1

2��� + �2
2���

, �17�

− ��op��� = � −
2S




�2���
�1

2��� + �2
2���

�18�

and these are the relations that we used in our numerical
work presented below.

The optical conductivity was obtained using linear re-
sponse theory, neglecting vertex corrections. The details
were described previously elsewhere,7 and here we just write
down the expression for the real part of the conductivity:

�1��� =
2
e2

�2 �
−�

+�

d� Nv����
−�

�

d��A��,���

�A��,�� + ��
f���� − f��� + ��

�
, �19�

and point out that the corresponding imaginary part was
computed as the Hilbert transform of the real part, based on
the Kramers-Kronig relations. In Eq. �19� Nv���
N0���v�

2

where v�
2 is the square of the group velocity, averaged over

the Brillouin zone, defined for a general dispersion in Ref.
22. In the following discussion of the optical response and in
the numerical calculations of this paper we assume that the
system is isotropic and use for v�

2 the expression v�
2

= �2�2 /mD���W /2�+��, derived from the quadratic disper-
sion of free electrons with lower band edge at �=−W /2 �D is
the number of spatial dimensions, m the free electron mass�.
It is useful to introduce the optical effective mass renormal-
ization as

�op
�ef f� = �op�� = 0� , �20�

which is the quantity to be compared with the quasiparticle
effective mass renormalization �qp

�ef f� of Eq. �10�. We will see
that complete numerical results indicate that these two quan-
tities are not the same in a finite band. Another important
quantity that we will discuss below is the optical scattering
rate at the Fermi level, �op

−1��=0�.
As we have done for the self-energy it is helpful in un-

derstanding the complete numerical results, which will be
presented in the following sections, to have simple although
approximate analytic expressions for the optical quantities
with which to compare. It is not feasible to obtain a simple
accurate expression for the optical scattering rate in the gen-
eral case, and even our model of bare EDOS with sharp
cutoffs �see Eq. �4�� does not provide enough simplifications
for this purpose. We decided therefore to make use of the
existing expressions, valid for the infinite band. Historically,
based on second-order perturbation theory for the electron-
phonon system Allen23 was the first to provide such an equa-
tion valid at zero temperature in the infinite-flat-band case. A
generalization to finite temperature was made by Shulga et
al.24 using a very different method which starts with the
Kubo formula and makes approximations to get the same
result as Allen when the T→0 limit is taken. On the other
hand Mitrović and Fiorucci25 and Mitrović and Perkowitz26

have generalized Allen’s original work to include the possi-
bility of an energy-dependent electronic density of states.
They considered only zero temperature. Very recently
Sharapov and Carbotte27 have provided a finite-temperature
extension based on the Kubo formula. Such formulas have
also been used recently in analysis of data29,30 and in com-
parison with more complete approaches.31,32 The formulas
for the optical effective mass and scattering rate that are
suitable for our forthcoming discussion are those for T=0.
They are given in Refs. 25 and 26 and here we reproduce
them for the reader’s convenience:

�op��� =
2	

�2 P�
0

�

d��
N����
N0�0�

ln� ��2

��2 − �2�
+

2

�2�
0

�

d� �2F���P�
0

�

d��
N����
N0�0�

�ln� ��� + ��2

��� + ��2 − �2� , �21�

�op
−1��� =

2
	

�
�

0

�

d��
N����
N0�0�

+
2


�
�

0

�

d� �2F����
0

�−�

d��
N����
N0�0�

, �22�

where the symbol P means, as usual, that the �� integrals are
calculated as the principal Cauchy values. In the above equa-
tions N��� is the renormalized EDOS that fully incorporates
the self-consistent electronic self-energy. To grasp the finite-
band effects in the memory function we intend to replace
N��� with the bare EDOS N0��� from Eq. �4�, similarly to
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our approach to the derivation of Eqs. �12� and �13� for the
non-self-consistent self-energy. Note, however, that in order
to arrive at Eqs. �21� and �22� it is necessary to assume25 that
Nv��� is constant and extends to infinity, i.e., no cutoff is
applied to it. This means that after the proposed replacement
effectively only finite-band effects originating in the self-
energy are included in the optical quantities and the resulting
approximate formulas are not expected to be quantitatively
correct for all frequencies �. Nevertheless we found that
such analytical expressions are very useful at ��W /2. They
read

�op��� =
2	

�
�ln�W/2 − �

W/2 + �
� −

W/2

�
ln�1 − � �

W/2
�2��

+
2

�
�

0

�

d� �2F����ln�� − � − W/2

� + � + W/2

� + �

� − �
�

−
�

�
ln� �2

�2 − �2

�2 − �� + W/2�2

�� + W/2�2 �
+

W/2

�
ln� �� + W/2�2

�2 − �� + W/2�2�� , �23�

�op
−1��� = 2
	���W/2 − �� +

W/2

�
��� − W/2��

+
2


�
�

0

�

d� �2F������ − ����� − ��

��„W/2 − �� − ��… + W/2��� − � − W/2�� .

�24�

In particular, Eq. �23� is used below to obtain a reasonable
estimate for the characteristic frequency �̄op at which the
imaginary part of the memory function changes sign.

III. RESULTS DUE TO A BAND CUTOFF

Motivated by the electron-phonon interaction in the ful-
leride compound K3C60, we use a three-frequency model for
the electron-phonon spectral function:

�2F��� = ��
i=1

3
�ili

2
��� − �i� �25�

with �i=1
3 l1=1. The interaction strength a is defined as the

area under the �2F��� curve. The mass enhancement param-
eter � is given by Eq. �2� with z=0. We set �=0.71 with l1
=0.3, l2=0.2, l3=0.5, and �1 :�2 :�3=0.04:0.09:0.19 eV.28

This model has a=43.8 meV and �ln=102.5 meV, where �ln
is the logarithmic frequency,1 a convenient parameter to
quantify the phonon energy scale. For the forthcoming dis-
cussion we set W=2.5 eV, which leads to a small value for
the adiabatic parameter �ln / �W /2�=0.082. For the model of
Eq. �25�, the non-self-consistent approximation to the self-
energy given by Eqs. �12�–�14� becomes

�1
�ns���� = 	 ln�� + W/2

� − W/2
�

+ ��
i=1

3
�ili

2
ln�� − �i

� + �i

� + W/2 + �i

� − W/2 − �i
� , �26�

�2
�ns���� = − 
�	��W/2 − 	�	� + ��

i=1

3
�ili

2

���	�	 − �i���W/2 − 	�	 + �i�� , �27�

�qp
�ns� = − 2

	

W/2
+ ��

i=1

3
li

1 + �i/�W/2�
. �28�

For the parameters chosen the non-self-consistent mass
renormalization is 0.63 in the clean case to be compared with
�=0.71.

We begin by reviewing effects of the electron-phonon in-
teraction due to a finite bandwidth which are seen in the
EDOS. Some of the features have been studied previously in
Refs. 6–8. Here we want to emphasize impurity effects and
give the comparison between non-self-consistent and fully
self-consistent results. In Fig. 1 �top frame� we show the
frequency dependence of the renormalized quasiparticle den-
sity of states N��� based on the three-frequency model of Eq.
�25� with �=0.71 and a half bandwidth W /2=1.25 eV.
These parameters are by no means extreme yet the deviations
from the infinite-band case �N���=1 for all �� are substan-
tial. First, note that a three-step phonon structure is clearly
seen at small � in the lower-temperature curves. The top set
of four curves �solid� are for 	=0, no residual scattering, and
the four lower curves �dashed� are for 	=22.2 meV or a
residual scattering rate of 140 meV for the chosen value of
W. The temperatures are T=14.5, 72.5, 145, and 435 K. For
the 435 K curve the thermal smearing is large but not for the
others. As the impurity scattering rate is increased the band-
width increases but the phonon structures do not smear ap-
preciably. Instead their relative amplitude is slightly attenu-
ated. Identifying the three low-frequency plateaus in N���
we plot, in the bottom frame of Fig. 1, their heights �solid
stars, squares, triangles, refer to the left vertical axis� as a
function of 	 and compare with the value of EDOS at �
=0 �solid diamonds, refer to the left vertical axis�. All are
reduced in magnitude with increasing 	 but the difference
between the height of the third plateau and N��=0� is
changed much less. At the same time the band broadens by
about 25% �open diamonds, refer to the right vertical axis�
with the �edge given by the right-hand scale in units of W /2
�see heavy solid line in Fig. 6 for a plot of N��� vs � over a
larger energy scale which shows the band edge�. The pla-
teaus just described do not exist in an infinite band. This also
holds true for the substantial temperature dependence of
N��=0� seen in the top frame of Fig. 1 as well as the thermal
smearing of the phonon structure.

The main features of renormalized �T=0� quasiparticle
density of states just described can be understood qualita-
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tively and even semiquantitatively in the context of the non-
self-consistent approach. Recall �see Eq. �5�� that the renor-
malized EDOS is

N��� = −
N0�0�



�

−W/2

W/2

d�
�2���

�� − �1��� − ��2 + �2���2 .

�29�

We first note from Eq. �13� that in the clean case the imagi-
nary part of the self-energy is zero for ���1, the first pho-
non energy in the model for �2F��� of Eq. �25�. Hence the
Lorentzian in Eq. �29� becomes a � function and as a result
N��� /N0=1. Once ���1 but still ���2 the imaginary part
of the self-energy becomes 
a1 �with ai=�li�i /2�. If the
integral in Eq. �29� were not cut off at W /2 but instead
extended to infinity we would again get N��� /N0=1 and
consequently the dressed density of states would remain un-
affected by the electron-phonon interaction. But the finite-
band cutoff reduces the value of the integral in Eq. �29� by
2a1 / �W /2�, i.e., by missing area under the Lorentzian be-
yond W /2. �As � increases the integrand is no longer sym-
metric between positive and negative � regions but we ig-
nore this for our rough estimate so that 2a1 / �W /2� is an
upper limit.� As � increases the ai add until we come to the

end of �2F���, i.e., �=�3 in our three-�-function model. At
this frequency our rough estimate for the reduction in N���
is 10% while the numerical calculations give 7.5% �see the
bottom frame of Fig. 1�. This difference is due in part to the
application of self-consistency and to our overestimate of the
missing area under the Lorentzian of Eq. �29�. When impu-
rities are added, a constant �-independent term is added to
the imaginary part of the self-energy and so in the non-self-
consistent approximation N��� would now be reduced by
2	 / �W /2� at all frequencies. This expectation is in qualita-
tive and even semi quantitative agreement with the results
presented in the bottom frame of Fig. 1. While self-
consistency effects are on the whole small, they are respon-
sible for the fact that the lines in the bottom frame of Fig. 1
are not quite linear in 	 and also not quite parallel to each
other. At much higher energies beyond the phonon structure
N��� drops to zero as most of the Lorenzian in the integral of
Eq. �29� falls outside of the range of integration. This occurs
for two reasons. First, the Lorenzian becomes centered out-
side the range of integration and, second, its width becomes
small. Recall that according to Eq. �13� �2��+ i0+� is zero
for ��W /2+�D in the non-self-consistent model �pure
limit�.

Finally we return to the top frame of Fig. 1 and consider
more closely temperature effects. To make our main point it
is sufficient to consider the T=435 K curves and the value of
N��� at �=0. At any finite temperature the imaginary part of
the self-energy just above the real axis is given by the
expression2–4

− �2��� = 
	
N���
N0�0�

+ 
�
0

�

d� �2F���

��N�� − ��
N0�0�

�n��� + f�� − ���

+
N�� + ��

N0�0�
�n��� + f�� + ���� , �30�

which follows from Eqs. �1�–�3�, and its �→0 limit is

2
	�ef f� 
 − 2�2�� = 0� = 2
	
N�0�
N0�0�

+ 2
�
0

�

d�
2�2F���
sinh��/T�

N���
N0�0�

. �31�

The presence of this scattering rate will lead to a drop in
N��� of Eq. �29� by approximately 2	�ef f� / �W /2�, or about
0.015 for these values of parameters, coming from the inelas-
tic scattering which is in semiquantitative agreement with the
numerical data. Also note the nonlinearity in these equations.
As 	 increases, for example, N��=0� decreases and thus the
impurity contribution to 	�ef f� of Eq. �31� also decreases. As
temperature is increased the inelastic contribution to 	�ef f�

also increases and this further reduces N��=0� and conse-
quently the effect of the impurity scattering. The two pro-
cesses are no longer independent.

Of primary interest in this paper is the memory function
of Eqs. �17� and �18� also referred to as optical self-energy.

FIG. 1. Top frame: dressed density of states N��� vs � for the
�2F��� model of Eq. �25� with �=0.71 and the bare bandwidth of
W=2.5 eV. Impurity parameters are 	=0 �solid� and 22.2 meV
�dashed�. In each group the temperatures are 14.5, 72.5, 145, and
435 K �from top to bottom�. Bottom frame: impurity dependence of
various characteristic features of renormalized density of states
N��� at low temperature T=14.5 K. Left vertical axis: dependence
of phonon plateau height �stars, squares, triangles� on impurity pa-
rameter 	 compared with N���=0 vs 	 dependence �diamonds�.
Right vertical axis: �edge vs 	.
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In the top frame of Fig. 2 the optical scattering rate �op
−1���

�solid� is compared with the quasiparticle scattering �qp
−1���

�dashed� given by −2�2���, while in the bottom frame
��op��� and −�1��� are compared. The parameters are the
same as for Fig. 1 but only results for 	=22.2 meV are pre-
sented. Many features of these curves are worth notice. First,
the three phonon steps in the quasiparticle scattering rate
�dashed�, which are clearly seen in the three lower-
temperature curves, are essentially wiped out for T=435 K
�uppermost curve�. For this high temperature the inelastic
scattering due to collisions with thermally exited phonons
has substantially increased the value of �qp

−1 at �=0 above the
residual scattering. It has also lead to a qualitative change in
behavior at larger �. By contrast, the phonon structures in
the optical scattering rate at low temperature are kinks rather
than steps and therefore more difficult to identify. Their tem-
perature evolution is however very similar. Complementary
to Fig. 2, in the top frame of Fig. 3 we compare the fre-
quency dependence of optical �solid curves� and quasiparti-
cle �dashed curves� scattering rates for several increasing
values of the impurity parameter 	. Shown are the results for
	=0, 67, 133 meV �from the bottom to top� at the lowest
temperature considered T=14.5 K. In the top frame of Fig. 4
we show similar plots for the real part of the quasiparticle
self-energy �dashed� compared with ��op��� �solid curves�.

Note that, even for the lowest temperature considered in
Fig. 2, the residual scattering in both quasiparticle and opti-
cal quantities are not exactly equal to their infinite-band val-
ues at zero temperature, which would be 2
	. In both cases
it is smaller and also �op

−1��=0���qp
−1��=0�. This difference

between a finite and an infinite band is further emphasized in
the middle frame of Fig. 3 where we have plotted �op

−1��
=0� �dashed curve� and �qp

−1��=0� �solid curve�, as functions
of 	 and compared with 2
	 �dotted curve�. The three
curves agree in the pure limit 	=0 but the deviation between

FIG. 2. Top frame: the optical scattering rate �op
−1��� vs � �solid�

compared with the quasiparticle scattering rate �qp
−1��� vs �

�dashed� for 	=22.2 meV. Temperature is T=14.5, 72.5, 145, and
425 K from top to bottom at �=0. The bare bandwidth is W
=2.5 eV. Bottom frame: ��op��� �solid� compared with negative of
quasiparticle self-energy −�1��� �dashed� for the same parameters
as in the top frame.

FIG. 3. Top frame: comparison of frequency dependence of op-
tical �solid� and quasiparticle �dashed� scattering rates at tempera-
ture T=14.5 K. Impurity parameter 	=0, 67, and 133 meV �from
bottom to top at �=0�. Middle frame: optical �dashed� and quasi-
particle �solid� scattering rates at �=0 vs 	; dotted line shows
linear dependence 2
	 for reference. Bottom frame: Maximum
value of optical �dashed� and quasiparticle �solid� scattering rates vs
	; dotted line shows linear dependence 2
�a+	� for reference.
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these quantities increases as 	 increases. The order remains,
with the optical scattering rate less than the quasiparticle
one, less than the infinite-band value 2
	. This behavior can
easily be understood from the impurity contribution to the

imaginary part of the self-energy of Eq. �30�. As we have
described before and emphasize again, when 	 increases
N�0� decreases so that 2
	N�0� /N0 is less than 2
	.
The corresponding reduction in N�0� /N0 is roughly equal to
�1−2	 / �W /2�� which for 	=100 meV is about 16% in good
agreement with the solid curve of the middle frame of Fig. 3
which gives the reduction in the quasiparticle scattering rate
as the impurity 	 is increased. Note that the dashed curve for
the corresponding optical quantity is even lower than the
quasiparticle one. This result comes from a full Kubo for-
mula calculation of the conductivity and is not captured by
the simplified formula of Eq. �24� for �op

−1��=0� which is
2
	N�0� /N0, the same as for quasiparticles. Note also that,
as temperature is increased and inelastic processes begin to
contribute to the scattering at �=0, �qp

−1��=0� can become
smaller than �op

−1��=0� but this order is reversed as � is
increased �see T=435 K curve of Fig. 2�.

Finally we note that for higher temperatures the inelastic
contribution to 	�ef f� of Eq. �31� takes the form

	�ef f��T� � �2�
0

�

d�
�2F���

�

N���
N0�0��T . �32�

This linear in temperature law is well known and the coeffi-
cient in the square brackets would give the spectral lambda
��� for the infinite band case. For a finite band it is reduced
as N��� /N0�0�� is less then one for all �. We point out that
as the range of �2F���, which is zero beyond �D, is well
below �W/2� impurities and temperature will reduce the
value of the proportionality coefficient in Eq. �32� below its
	=0,T=0 effective value.

A second feature of the scattering rates shown in the up-
per panel of Fig. 3, which needs to be emphasized, are their
maximum values as a function of �. In the infinite band case
both the quasiparticle and optical scattering rates would rise
to the same asymptotic value at large � which would be
2
a+2
	 at T=0. This expectation is modified by the finite
band cutoff. In the bottom frame of Fig. 3 we have plotted
the maximum of ��−1����max for optical �dashed� and quasi-
particle �solid� scattering rates as functions of 	 and com-
pared with 2
a+2
	 �dotted�. As can be seen from the top
frame of Fig. 3 the maximum in the quasiparticle rate occurs
at a frequency immediately above the third phonon step. For
the optical rate it occurs instead at much higher values of �.
For the pure case the frequency of the maximum in the solid
curve indeed falls beyond the bare band edge and is set not
by the value of the maximum phonon energy, but rather by
the value of the band edge itself. Also its maximum value is
considerably smaller than its quasiparticle counterpart �by
about 25%�. The deviation between the two further increases
with increasing impurity parameter 	. This difference be-
tween finite and infinite band results has important implica-
tions for the analysis of experimental data. Now the maxi-
mum in �op

−1��� cannot be used as a reliable estimate of the
total area under the Eliashberg function �2F���, often used
as a measure of the electron-phonon interaction strength.
This is also the case for the quasiparticle rate although the
differences are not as substantial. Note that the upper dashed
curve in the top panel of Fig. 3, which gives the quasiparticle

FIG. 4. Top frame: comparison of frequency dependence of the
negative of the real part of quasiparticle self-energy −�1��� �dashed
curves� and corresponding memory function ��op��� �solid curves�
at temperature T=14.5 K. Impurity parameter 	=0, 67, and
133 meV �from top to bottom�. Middle panel: Frequency of zero
crossing �̄ vs 	 for �1��� �filled boxes� and �op��� �open boxes�.
Complete numerical results �solid curves� are compared with non-
self-consistent estimates based on the full �2F��� of Eq. �25� �dot-
ted curves� and an appropriate Einstein oscillator spectrum �dashed
curves�. Bottom frame: Complete numerical results for optical
�dashed� and quasiparticle �solid� effective mass renormalization of
Eqs. �20� and �10� vs 	. Dotted line refers to the input �=0.71.
Dash-dotted curve shows the non-self-consistent estimate of Eq.
�28�, equal for quasiparticle and optical cases.
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scattering rate for 	=133 meV, shows no flat region above
�D as it has already started to drop due to band edge effects.
In fact, this is why it never reaches its infinite-band maxi-
mum. Such band edge effects are even more substantial for
the optical scattering rate which peaks only as �→� in the
infinite-band case. In our non-self-consistent model of Eq.
�24� the maximum in �op

−1��� will occur at W /2+�D. At this
point it will have a value of approximately 2
a�1
−�ln / �W /2��. This represents a roughly 15% reduction over
its infinite-band value in reasonable agreement with the nu-
merical data of the lower frame of Fig. 3.

The main feature of the curves shown in Figs. 2 and 3
�top frames� that we have just described can be understood
approximately from the non-self-consistent formulas given
in the previous section. Starting with the top frame of Fig. 3
the three sharp steps in �qp

−1��� and the extended nearly flat
region beyond are captured in Eq. �13� as is the cutoff at
higher energies beyond �=W /2+�D with �D being the
maximum phonon energy �see Fig. 3, top frame�, while the
exact energy where �qp

−1��� starts dropping to zero is not cap-
tured since it is due to self-consistency that was not included.
Similarly, Eq. �24� allows us to understand the main differ-
ences between quasiparticle �dashed curves� and optical
�solid curves� scattering rates. The optical scattering rate
does not jump abruptly to a value of 2
a1 at �=�1 as �qp

−1���
does but rather grows out of zero gradually as 2
a1�1
−�1 /�� for frequencies in the range �1����2. Additional
contributions enter at �2 and �3. On the other hand, for �
�W /2+�D the optical scattering rate �op

−1��� does not fall off
sharply but decreases towards zero as 1/� �see Fig. 3, top
frame�. In the numerical self-consistent calculations it goes
faster than this and then vanishes exponentially,7 but this is
not captured by Eq. �24�.

Next, we return to the bottom panel of Fig. 2 to discuss
the real part of the quasiparticle self-energy �1��� �the nega-
tive of it is shown by dashed curves� and its optical counter-
part ��op��� �solid curves�. Perhaps the most striking feature
of the real part of the self-energy as a function of frequency
is that it changes sign with increasing �, as noted in the work
of Cappelluti and Pietronero.5 In this paper we find that the
corresponding memory function �or optical self-energy� also
has a “zero crossing” in a finite band. We observe that the
frequency of the zero crossing �̄ is larger in the optics �about
0.5 for the parameters in this figure� than for the quasiparti-
cle self-energy �less than 0.3�. While the quasiparticle cross-
ing is nearly independent of temperature in the case shown,
the optical one is not, dropping below 0.44 at T=425 K.

In the top frame of Fig. 4 we show additional results for
three impurity contents, namely, 	=0, 67, 133 meV. The
zero crossing in the memory function shifts progressively to
lower frequency with increasing 	, and the magnitude of the
maximum value of ��op��� at low � decreases correspond-
ingly. For quasiparticles �dashed curves� the trend is the
same. For even higher values of 	 than shown in Fig. 4
�op��� can become very small at small � and even be nega-
tive for all �positive� frequencies. The results of our complete
self-consistent numerical calculations on the zero crossing
frequency �̄ vs 	 dependence are summarized in the middle
panel of Fig. 4 by solid curves with either open symbols
�optics� or filled symbols �self-energy�.

The appearance of the phenomenon of “zero crossing”
can be qualitatively understood with the help of the expres-
sion for the non-self-consistent self-energy Eq. �12� and
memory function Eq. �23� at T=0. A crude but reasonable
estimate can be obtained in both cases using the Einstein
model for the electron-phonon spectral function: �2F���
=A���−�E� with �E chosen to be a characteristic frequency
of the spectrum, for example �ln. For �1��� and in the case
�E , �̄�W /2 �but arbitrary 	 and A� an explicit expression
for the solution for the frequency of zero crossing �̄ can be
found:

�̄qp =��E�W/2�
1 + 	/A

, �33�

where the subscript qp means “quasiparticle,” i.e., pertinent
to the self-energy. It is shown in the middle panel of Fig. 4
by the dashed curve with filled boxes. For an infinite band
�̄qp shifts to infinity and ceases to exist, as expected. Note
that �̄qp, given by this formula, become smaller as the impu-
rity parameter 	 increases. This behavior explains the trend
seen in the complete numerical results �solid curve with
filled boxes�. Note that the Einstein mode non-self-consistent
estimate of the zero-crossing frequency produces an under-
estimate of the complete numerical result.

Similarly, for �op��� we use the non-self-consistent ex-
pression Eq. �23� with the Einstein mode �2F��� and in the
limit �E , �̄op�W /2 obtain the following simple equation for
�̄op:

�̄op
2

�̄qp
2 = 2 + ln

�̄op
2

�E
2 , �34�

which shows that �̄op��2�̄qp with logarithmic accuracy.
The resulting dependence of �̄op on 	 is shown by dashed
curve with open boxes. Again, the general trend of the com-
plete numerical result dependence on 	 �solid curve with
open boxes� is obtained, but in this case of the optical mass
renormalization the Einstein mode non-self-consistent esti-
mate produces an overestimate of the exact �̄op.

The results of attempts to improve the non-self-consistent
estimate for the zero crossing frequency by including the full
electron-phonon spectral function �2F��� of Eq. �25� are
given by dotted curves. The improvement is significant in the
case of the self-energy �dotted curve with solid boxes�. This
demonstrates that �̄qp depends on the shape of the spectrum
quite strongly and is not influenced much by the self-
consistency. But this improvement came at a price: we do not
have a simple formula now. In the case of the optical mass
renormalization, inclusion of the full spectrum �dotted curve
with open boxes� does not bring improvements for �̄op, it
even makes the estimate worse as compared to the Einstein
mode spectrum. This reminds us again of the restricted quan-
titative power of Eqs. �23� and �24�, as was discussed previ-
ously in Sec. II B. These formulas nevertheless provide a
valuable qualitative guidance to the complete numerical re-
sults, when used properly.

It is clear from Eqs. �33� and �34� that the zero-crossing
frequency contains information on the boson energy scale
involved in the scattering process. Even though it is a slight
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digression from the present discussion we would like to point
out a possible application of this finding. In their recent work
on optical conductivity in high-Tc cuprates Hwang, Timusk,
and Gu33 indeed have found a change in sign of the optical
self-energy �not shown in their plots�. The frequency at
which this occurs varies from compound to compound but is
of the order 6000 cm−1 for their optimum and overdoped
samples and smaller, of order 4000–5000 cm−1, in under-
doped samples. In recent work Markiewicz et al.34 estimated
that the typical bandwidth in the oxides is of the order
1.0–2.0 eV for the dressed band, with bare band structure
results typically a factor of 2 larger. This would indicate from
the present work a boson exchange energy well above
150 meV. This is much larger than �ln for a phonon mecha-
nism and is consistent instead with spin fluctuations or mar-
ginal Fermi liquid model.35

Finally, turning to the position of the peaks in ��op��� we
note that in the infinite-band case it would fall at about �2�3
for the model �2F��� of Eq. �25�. Here finite-band effects
have shifted it down by 15% in the pure case. On the other
hand, including 	 has little effect on the peak’s position as
can be seen in Fig. 4, top frame.

Another important characteristic of the curves in the top
frame of Fig. 4 is the slope at �=0. For the infinite band case
it would give the mass enhancement parameter �. In the case
of a finite electronic band this parameter can no longer be
directly read off the slopes because they are changed. Denot-
ing these by �qp

�ef f� and �op
�ef f� in the cases of self-energy and

memory function, respectively �see Eq. �10� for example�,
we find that they are no longer equal to each other and are
sensitive to impurity content, as can be seen in the top frame
of Fig. 4 where we plot ��op��� and −�1��� vs � for three
impurity contents, namely, 	=0, 67, 133 meV, for a low
temperature T=14.5 K. They also depend on temperature as
shown in the bottom frame of Fig. 2, but this is not qualita-
tively different from the infinite-band case. The dependence
of the two ��ef f� on impurity parameter 	 for this temperature
�with the other parameters the same as for Fig. 1� is detailed
in the bottom frame of Fig. 4. The dotted line shows the
input �=0.71 for reference. Both optical �dashed� and qua-
siparticle �solid� mass renormalization decrease substantially
with increasing 	 and the former quantity is always smaller.
Note that in the non-self-consistent case Eq. �14� applies to
both �qp

�ef f� and �op
�ef f�. This dependence is also shown by the

long dash-dotted curve for comparison. While in the pure
case it agrees well with the exact result for the quasiparticles,
it deviates substantially from the exact optical curve. As 	
increases the deviations increase although the trend is prop-
erly given. This difference described goes beyond the ap-
proximations that we used to obtain Eq. �28� from the exact
expression of Eq. �18� based on the Kubo formula for the
optical conductivity. These approximations are clearly not
very accurate but because the resulting formulas are quite
simple and analytic they are nevertheless useful.

In the top frame of Fig. 5 we show results for the real part
of the conductivity �1��� vs � at temperature T=14.5 K.
Optical conductivity is measured in units of

e2 / �2Dm�W /2��. Six values of impurity parameters are
used, namely, 	=44.4,66.6,88.8,111.0,133.1,221.9 meV.

There are several features of these curves that are different
from corresponding infinite-band results. Perhaps the most
obvious is that the total optical spectral weight S, defined in
Eq. �16�, is no longer independent of temperature and impu-
rity content. �Temperature dependence is discussed in our
previous paper.36� The dependence of S on 	 is shown by the
solid curve in the middle frame of Fig. 5. The optical spectral
weight is measured in units of 
e2 / �2Dm�, such that in the
infinite-band case S=1/2. Because residual and inelastic
scattering is no longer strictly additive in finite bands, the
impurity parameter 	 cannot be directly obtained from opti-

FIG. 5. Top frame: real part of optical conductivity �1��� vs �
for 	=44, 67, 89, 111, 133, and 222 meV �from top to bottom at
�=0�. Middle frame: dependence of the optical sum S of Eq. �16�
on 2
	 �solid� and on �op

−1��=0� �dashed�. Bottom frame: depen-
dence of dc resistivity �=1/�1��=0� on 2
	 �solid� and on
�op

−1��=0� �dashed�. Dotted curve is the infinite-band result. Tem-
perature is T=14.5 K for all frames.
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cal conductivity experiment. Therefore, we also plot S vs
�op

−1��=0� �dashed curve�, a parameter that is measurable.
While there is a small difference between the two plots, both
show that the total optical spectral weight is reduced as 	 is
increased. Another important property of the conductivity
�1��� from Fig. 5, top frame, which needs to be commented
upon, is its dc value, or its inverse 1/�1��=0�, the resistiv-
ity. This quantity is plotted in the bottom frame of Fig. 5
where it is seen to increase with 	 �solid curve�. This is also
the case when plotted with respect to �op

−1��=0� �dashed
curve�, and the dependence is not quite linear as would be
expected in an infinite band �dotted line�.

The behavior of the solid curve can be understood from
the formula for the resistivity: ��T�= �
 / �2S���op

−1��=0�.
While, as we have seen in a previous section, the approxi-
mate analytic formulas that can be obtained for the optical
quantities are not as accurate as for the self-energy, neverthe-
less they can be quite helpful in providing insight into the
complete numerical results. Sharapov and Carbotte27 give the
following expressions for inelastic and impurity contribu-
tions, respectively:

�op,phon
−1 �� → 0� = 4
�

0

�

d� �2F���

��
−�

+�

d�
N���
N0�0�

�n��� + f�� − ����−
� f���

��
� ,

�35�

�op,imp
−1 �� → 0� = 2
	�

−�

+�

d�
N���
N0�0��−

� f���
��

� . �36�

Besides the explicit thermal factor appearing in these equa-
tions, the temperature also enters through the renormalized
DOS factor N��� which also depends on the phonon �2F���
and on 	, in contrast to the infinite-band case. Independent
of the details, because the N��� factor is everywhere smaller
than its infinite-band value of 1, the resistivity is always
reduced below its infinite-band value. This reduction in-
crease with increasing value of 	 as we see in the lower
frame of Fig. 5 and is also increased with increasing tem-
perature. At low temperatures the appropriate measure of the
decrease in the impurity term of Eq. �36� is the value of N�0�
while for the inelastic term it depends on N��� with �
within the phonon range.

IV. VERY NARROW BANDS

The case considered so far corresponds to a rather broad
band as compared with the phonon energy. Nevertheless we
found important qualitative changes from the infinite-band
case. Band structure calculations37 for K3C60, as an example,
give a half bandwidth of about 250 meV which is now com-
parable to the energy of the maximum phonon energy of
190 meV in our model electron-phonon spectral density. For
such cases Kostur and Mitrović38 and later Pietronero,
Strässler, and Grimaldi39 have considered the effect of vertex
corrections and a generalization of the Eliashberg equations

which goes beyond the Midgal theorem. The specific case of
the Pauli susceptibility was considered by Cappelluti, Grim-
aldi, and Pietronero.40 In more recent work, Cappelluti and
Pietronero5 recognized that it was the effect of a finite band
that primarily accounted for some of the qualitative differ-
ences found in their previous work and proceeded to include
only these as a first step in understanding self-energy renor-
malization. Here we follow their lead, but consider instead
optical properties.

In this section we wish to accomplish three goals. First,
we want to understand differences that arise when very nar-
row bands are involved as compared with relatively wide
ones. Second, we want to compare a case with a larger value
of � and finally we replace the three-�-function model for
�2F��� with a more realistic extended spectrum. We con-
sider a model with three truncated Lorentzians:

�2F��� = R����
i=1

3
1

2

� �i

�� − �i�2 + �1
2 −

�i


i
2 + �i

2�
���
i − 	� − �i	� , �37�

where �i, the centers of the peaks, are the same as in Eq.
�25�. For each peak the parameter �i controls the half-width,
while the full spread is equal to 2
i. The rescaling factor
R��� is inserted to guarantee a chosen value of �. Truncated
Lorentzians are often used in the literature to introduce a
smearing of the simple Einstein mode spectrum. For our nu-
merical work we picked �i=0.2�i and 
i=0.6�i. In this case
the peaks are wide and overlapping. The spectrum of Eq.
�37� has the characteristic logarithmic1 frequency of �ln
=96 meV.

While, to set the parameters used here, we consider what
might be reasonable for K3C60, i.e., we chose W /2
=250 meV and an effective � of about 1, we do not imply
that our calculations can be applied directly to this specific
system. Other complications such as the effect of Coulomb
interactions41 may need to be included as well. For example
the small Drude peak seen in the experiments of Degiorgi et
al.42,43 which has a width of about 10–20 meV and a weight
representing only about 10–20 % of the total spectral weight
is not understood in our work. On the other hand qualitative
features of the memory function vs frequency dependence,
such as the observed zero in its real part, are captured.

In Fig. 6 we present a series of results for the dressed
quasiparticle density of states N��� /N0 as a function of en-
ergy �. The heavy solid curve shows previous results for a
rather wide band W /2=1.25 eV on a broader scale for the
three-�-function model of Eq. �25� with �=0.71 and 	
=22 meV at low temperature T=1.25 K. It is to be compared
with the other curves all of which are for a band that is five
times narrower, namely, W /2=250 meV. While for the wider
band significant phonon structures are limited to an energy
region well below the bare band cutoff at � / �W /2�=1, for
the narrower band they dominate the shape of N��� /N0 even
beyond � / �W /2�=2. No particular signature associated with
the bare band edge remains. This is distinct from the heavy
continuous curve which shows a smooth drop off at a new
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easily distinguishable renormalized band edge energy in-
creased somewhat over its bare value and smeared by the
interactions.

All thin solid curves in Fig. 6 are for the three-�-function
model of �2F��� with �=0.71 at low temperature �T
=1.25 K�. The impurity parameter is 	=4.4,13.3, and
39.9 meV �from top to bottom�. The dashed curve corre-
spond to the extended spectrum of Eq. �37� with �=0.71 and
�=5 meV at low temperature �T=2.15 K�. The two sharp
steplike drops at � / �W /2��0.40 present in the �-function
case are now almost completely smeared out. The sharp
spikelike minimum at the energy of the maximum phonon
energy � / �W /2�=0.76 ��=190 meV� and the near vertical
drop at twice this energy seen in the solid curves are gone in
the dashed curve as is the distinct multiphonon structure at
higher energies. The plateaulike region at 0.8�� / �W /2�
�1.3 �for � between 190 and 390 meV� in the solid curves
becomes a shoulder in the dashed curve.

The modification of the renormalized density of states de-
pends on the mass renormalization parameter �. To demon-
strate this we present in Fig. 6 the result for the same ex-
tended spectrum of Eq. �37� and the same impurity
parameter 	=4.4 meV but with �=2 �the dotted curve�.
Now the low-temperature step at � / �W /2�=0.16 becomes
visible and a deep and wide minimum develops in the fre-
quency region of the most strongly coupled part of the
electron-phonon spectral density centered at � / �W /2�=0.76.
Additionally, the multiphonon processes become stronger,
which is manifested by appearance of the maximum at
� / �W /2��1.4 in the dotted curve in place of the shoulder in
the dashed curve. Finally, the renormalized band edge has
been shifted to much higher frequency and is not visible in
Fig. 6.

Returning to the light continuous curves we note that,
compared to the wide band case of the previous section, the
phonon steps are now significantly reduced in magnitude as
the impurity scattering is increased. For example, compare
the bottom curve for 	=39.9 meV to the top one for 	
=4.4 meV. These reductions go beyond the non-self-
consistent approximation and demonstrate that the self-

consistency becomes more important as the bare bandwidth
is reduced. The near additivity of electron-phonon and impu-
rity contributions is lost. While for the curve corresponding
to the purest case, the non-self-consistent approximation pre-
dicts well the size of the first step, it is not as good for the
second and the third step is quite off. This is expected as in
this case we are already not so far from the bare band edge
and the self-consistency becomes essential.

Note that at �=0 for the bottom light solid line with 	
=39.9 meV, N�0� /N0�0.77 in the numerical work. The non-
self-consistent estimate �1−2	 / �W /2���0.68 which is con-
siderable smaller. However, self-consistency has actually re-
duced the impurity scattering rate below its infinite-band
value of 2
	 because it is equal to 2
	N�0� and N�0� /N0�0�
is smaller than 1. Accounting for its 23% reduction elimi-
nates much of the difference described above. A similar
semiquantitative argument can be made to understand the
reduction in phonon step size as 	 increases when the simple
non-self-consistent estimate begins to fail. Finally, we note
the crossing of the light solid curves around � / �W /2��0.8
and the increase in density of states in the tails beyond
� / �W /2�=1.5 as the impurity scattering is increased.

In Fig. 7 we turn to the memory function �solid lines�
which is compared with the quasiparticle self-energy �dotted
lines� for several cases. We present results for �=0.71 �black
curves� and for �=2.0 �gray curves� and for two different
impurity contents 	=5 and 25 meV calculated with the
model of the extended �2F��� of Eq. �37�. As expected both
quasiparticle and optical scattering rates rise to a higher
maximum value when � is larger, but the increase is not
linear. This is followed by a drop toward zero as � gets large
instead of saturating at a common value of 2
a+2
	 as
discussed previously. The intercept of �op

−1��� and �qp
−1��� at

�=0 is related to the elastic impurity scattering as the tem-
perature for the figure is small T=2.15 K. For �qp

−1 it does not
depend on the value of � but for �op

−1 it does. This can be seen
most clearly in the top set of curves for which 	=25 meV
but is noticeable in the lower set with 	=5 meV. When � is
larger �op

−1 at �=0 is smaller. This effect results from the
Kubo formula and is not captured in any of our approximate
analytic formulas. As previously noted �op

−1��=0���qp
−1��

=0��2
	.
For �=2 the maximum value of �qp

−1��� �see gray dotted
curves in the top panel of Fig. 7� occurs at a frequency
slightly below � / �W /2�=1 and is almost the same for the
	=5 meV and 	=25 meV. Although we have increased the
impurity scattering we have not gained in maximum quasi-
particle scattering. In an infinite band it would have risen
from 3.22 to 3.72 for the parameters used. This effect is due
to the self-consistency. Both elastic and inelastic scattering
involve not just �2F��� and 	, respectively, but also the
self-consistent value of the dressed quasiparticle density of
states N��� /N0 which becomes reduced as 	 is increased.
This in turn reduces both elastic and inelastic scattering rates
leading, in case considered, to a saturation of the maximum
in �qp

−1���. For 	=5 meV the rate is about 34% lower than its
infinite-band value and for 	=25 meV it is about 43% lower.
A similar situation holds for the case when �=0.71 �black
dotted curves� although in that case the maximum quasipar-

FIG. 6. Frequency dependence of the renormalized density of
states N��� /N0 for a very narrow band with W /2=250 meV �thin
curves� with the parameters described in detail in the text. The
heavy curve refers to N��� /N0 with W /2=1.25 eV for comparison.
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ticle scattering does increase slightly with increasing 	, for
	=5 meV it is 26% below its infinite band value and for 	
=25 meV it is 40% below. Turning next to the optical scat-
tering rates �solid curves in Fig. 7, top frame�, we note first
that they peak at a higher frequency than do the correspond-
ing quasiparticle rates. Also they are considerably smaller in
magnitude, approximately 0.95 and 0.8 for 	=25 and
5 meV, respectively, for the case �=2.

In the bottom frame of Fig. 7 we compare our results for
the negative real part of the electronic self-energy −�1���
�dotted curves� with the corresponding optical quantity
��op��� �solid curves� of Eq. �18�, which is the negative of
the imaginary part of the memory function M��� defined in
Eq. �15�. It is quite clear that the optical masses �slopes at
�=0 for solid curves� are in all cases considerably smaller
than the quasiparticle masses �slopes at �=0 for dotted
curves�. As an example, for �=2 the quasiparticle mass at
	=5 meV is 1.1 as compared to 0.70 for the optical mass,
while at 	=25 meV we have 0.75 and 0.35, respectively.
Using the non-self-consistent formula Eq. �28� gives for both
masses �=2 ��=0.71�, 1.1 �0.39�, and 0.94 �0.21� for 	
=5 meV and 	=25 meV, respectively. For the pure case the
agreement for the quasiparticle mass is good but this is no

longer the case for 	=25 meV. Also for the purer case con-
sidered on Fig. 7 the zero crossing of quasiparticle and opti-
cal mass renormalization function can be understood quali-
tatively with Eqs. �12� and �23� but these simple estimates
begin to fail for higher values of 	.

Finally, we comment on the reflectivity data of Degiorgi
et al.42,43 on K3C60. They did not analyze their data to extract
optical scattering rate �op

−1��� and mass renormalization
��op���. Nevertheless we infer from the data presented three
qualitative features. The value of �op

−1��� at �=0 which gives
a measure of the residual scattering is of order 160 meV.
This large value is incompatible with the observed small
Drude peak in �1��� of width 20 meV which contains about
12% of the total optical spectral weight. Second, at �
�500 meV the scattering rate has increased to approxi-
mately 500 meV which implies an inelastic contribution of
360 meV. Such a rise is much larger than can be achieved in
the model of Fig. 6 and would indicate that the bare band-
width is somewhat larger than present band structure calcu-
lations predict and that the spectral � defined by the input
electron-phonon spectral function �2F��� is even larger than
2. Third, ��op��� changes sign at approximately 220 meV
after which it plunges toward large negative values. This
feature can be taken as the hallmark of finite-band effects as
it does not occur in infinite-band theories. While such a zero
crossing occurs naturally in our calculations and is generic, it
is not clear that a set of microscopic parameters chosen to
reproduce the features of the scattering rate �op

−1��� would
also accurately produce the position of the zero in the optical
mass. We did not attempt such a combined fit as it would
require a value of � which appears to be rather large.

V. CONCLUSIONS

In an electronic system with a constant bare electronic
density of states N0 the application of a finite-band cutoff
profoundly modifies the electron-phonon renormalization ef-
fects. In the infinite-band case the dressed quasiparticle den-
sity of states N��� remains equal to N0 and is independent of
impurity scattering and temperature. A self-consistent solu-
tion for the self-energy in a finite band shows that N���
acquires low-energy structure on the scale of the phonon
energies. The band edge becomes smeared and the band ex-
tends beyond the original bare cutoff. This extension of the
band to higher energies is accompanied by a compensating
reduction of spectral weight below the bare cutoff. Equally
importantly N��� is affected by impurity scattering and by
temperature. N��=0� is reduced in both cases. On the other
hand, while temperature rapidly smears out the phonon struc-
ture, impurities mainly reduce its amplitude.

The emphasis of previous works was on the effects of
temperature and impurity scattering on the electron self-
energy ����, which is the quantity that determines quasipar-
ticle properties. Here we have extended these works to opti-
cal properties and considered characteristic features of the
memory function. For the infinite-band case elastic impurity
scattering just adds a constant amount �2
	� to the quasipar-
ticle inelastic scattering rate, but in our case, because of the

FIG. 7. Top panel: Comparison of optical �solid curves� and
quasiparticle �dotted curves� scattering rates. Bottom panel: Com-
parison of minus the real part of the self-energy �dotted� with the
corresponding optical quantity ��op��� �solid�. The mass renormal-
ization is �=2.0 �gray curves� and �=0.71 �black curves�. In all
cases there are two sets of curves corresponding to impurity param-
eter 	=5 and 25 meV. The extended �2F��� of Eq. �37� was used.
The half bandwidth W /2=250 meV, temperature T=2.15 K.
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application of self-consistency, they no longer add. Even at
�=0 we find that �op

−1��qp
−1�2
	. The well-known result

that, at high energies, both optical and quasiparticle scatter-
ing rates due to phonons become equal and saturate at a
value 2
a �with a the area under the electron-phonon spec-
tral density� no longer holds. While the maximum in �qp

−1 can
come close in value to 2
a+2
	, the corresponding optical
quantity �op

−1 is much smaller in magnitude. Its maximum
value increases with increasing a but this increase is sublin-
ear. A similar situation holds when 	 is increased. At yet
higher energies both scattering rates go to zero because of
the finite band.

The known result that the real part of the quasiparticle
self-energy is unaffected by the impurity scattering no longer
holds and this has an impact as well on the optical mass
renormalization. The quasiparticle and optical effective mass
renormalization at �=0 now differ from each other, neither
is equal to � and both depend on impurity scattering. The
real part of the self-energy changes sign with increasing en-
ergy as does ��op���. The energy at which the zero crossing
occurs is set by the phonon energy scale and can depend both
on temperature and impurity content. It is larger for optics
than it is for the self-energy in many cases but not always.
The optical spectral weight, i.e., the area under the absorp-
tive part of the optical conductivity, varies with temperature
and with impurity scattering. The elastic and inelastic contri-
butions to dc resistivity are no longer additive.

All these effects were found to be significant in magnitude
even when a rather modest value of mass enhancement pa-
rameter �=0.71 is used with a bandwidth of 2.5 eV. While a
three-�-function �2F��� was used to emphasize boson struc-

ture with maximum phonon energy of 190 meV, a broader
spectrum was also considered. This softened phonon struc-
tures but did not eliminate them. Of course, for simple met-
als such as Pb, the bandwidth is much wider than considered
above and the maximum phonon energy is also an order of
magnitude smaller, so that in this case the infinite-band ap-
proximation is appropriate and the finite-band corrections
found in this paper would be negligible. We have found that
increasing the value of � to 2 increases boson structure but
the increase is not linear in the value of �. Also, decreasing
the value of W to 500 meV, a value suggested by band struc-
ture calculations in the alkali-metal-doped C60, leads to a
new regime in which important modifications due to the
electron-phonon interaction dominate at all energies and no
easily identifiable trace of the underlying bare electronic
band cutoff remains.

While all these conclusions are based on numerical solu-
tion of the self-consistent equations for the self-energy and
the Kubo formula for the conductivity, we have also derived
more transparent analytical formulas evaluated in a non-self-
consistent approximation. These simple formulas are not al-
ways accurate but give considerable insight into complete
numerical results obtained and prove valuable in the analysis
of optical data in finite-band metals.
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