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In this paper an analytical theory for arbitrary one-dimensional periodic media is presented. The analysis
relies on the mathematical properties of Hill’s equation. It is shown that the position of the band gaps can be
obtained by quite simple expressions. As a special case, a one-dimensional multilayered medium �conventional
photonic crystal� is studied. An exact formula for the location of the gap edges is derived for an infinite number
of gaps, for both polarizations, at arbitrary angle of incidence. The gap closing conditions and the difference
between the even- and the odd-numbered gaps are obtained. An extension for periodic structures with an
arbitrary number of different layers is also presented. This method can be useful for the design of photonic
crystal devices.
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I. INTRODUCTION

Photonic-band-gap materials have been intensively inves-
tigated during the last ten years both experimentally and
theoretically.1–6 For the most part, the theoretical works were
numerical3,6 or included approximate analytical
calculations.1,2 However, exact analytical expressions for
such parameters like the gap location, the gap width, and the
position of the gap closing points �the points where gap
width vanishes� for all gaps are still not available. Having
these analytical expressions is a significant advantage which
allows us to understand the behavior of the system, to sim-
plify the calculations and alleviate the design of photonic
crystal. In this paper, we focus on an exact analytical inves-
tigation of one-dimensional photonic crystals, with no sim-
plifying assumptions, and show that the position of band
gaps and the gap closing conditions for an infinite number of
gaps can be obtained by quite simple analytical formulas.

The one-dimensional periodic problem is usually solved
by using the transfer matrix method7,8 or the plane wave
expansion method.3,6 In this paper, however, we present a
different mathematical approach, which relies on the math-
ematical properties of Hill’s equation,9–12 and provide a dif-
ferent insight into the problem. Using this formalism we get
some interesting conclusions that have not been reported pre-
viously to our knowledge.

A linear second-order differential equation of the form
u�+a�x�u=0, where a�x� is a periodic function of x, is
known as an equation of the Hill type.9–12 This equation was
first introduced and investigated by Hill in his study of the
motion of the moon in 1877. Since then Hill’s equation has
appeared in many applications and has been the subject of
numerous analytic studies.9–12 Here we apply the theory of
Hill’s equation to study the properties of photonic crystals.

First we demonstrate the analysis for an arbitrary periodic
medium, with n�x� being an arbitrary periodic refractive in-
dex. We find the conditions for the gap edges and explain the
difference between even and odd gaps.

Next, we examine a special case, namely, an ordinary
one-dimensional photonic crystal, which is made of a peri-
odic multilayer medium. We show the equivalence between

the present analysis and the transfer matrix method by get-
ting the same dispersion relation. The dispersion relation that
has been derived for infinite layered medium using the trans-
fer matrix method7,8,4 is

K��,�� =
1

L
cos−1�A + D

2
� , �1�

where A and D are the diagonal elements of a 2�2 transla-
tion matrix, L is the length of a period, and K is a Bloch
wave number. The expressions for A and D, for the I-layered
periodic structure, are given in Appendix A. The frequencies
at band-gap edges are usually found by setting cos�KL�
� ±1 in Eq. �1� and solving the transcendental equation nu-
merically. However, some analytical calculations are pos-
sible. The derivation of the expression for the edges of the
first band gap was published previously.1,2

In our paper we present the extended formula for the fre-
quencies of gap edges and gap width for an infinite number
of gaps, for both TE polarization �where the electric field is
perpendicular to the plane of incidence� and TM polarization
�the electric field is parallel to the plane of incidence� at
arbitrary angle of incidence. We show that our formula in-
cludes the expressions that have been derived earlier.

It is well known that the gap width of one-dimensional
photonic crystals strongly depends on the incident angle of
light. Moreover, it is sensitive to polarization, leading to a
polarization-dependent gap. For some angles, the gap width
vanishes and the gap closes. Finding these closing points �the
angle and the frequency� for both TE and TM polarizations is
an important issue, which will allow us to design photonic
crystals for suitable applications. For example, knowing
these closing points helps to create an omnidirectional reflec-
tor, operating in several distinct frequency ranges by use of
only a single photonic crystal.15,16 Usually, these closing
points are found graphically, using the band structure
diagram.4,5 In this paper, however, we provide the exact
mathematical criterion for gap closing points as a conse-
quence of the presented analysis. We also prove mathemati-
cally that the first band gap never closes for the TE wave and
has only one closing point for the TM wave, at the Brewster
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angle. This important property of one-dimensional photonic
crystals has been observed earlier5 and used to construct the
omnidirectional reflector.4 Here we provide the analytical
verification of this behavior.

II. THEORETICAL BACKGROUND

We consider an infinite periodic one-dimensional material
in the x-z plane, with periodicity in the x direction and ho-
mogeneity in z and y. Assuming a plane wave, the wave
vector is k=kxx̂+kzẑ �per definition we take ky =0�. In order
to study the properties of electromagnetic waves in this
structure we should solve Maxwell’s equations, which re-
duce to the two-dimensional wave equation

�2E�x,z,t�
�x2 +

�2E�x,z,t�
�z2 =

n2�x�
c2

�2E�x,z,t�
�t2 �2�

assuming a dependence of

E�x,z,t� = E�x�exp�ikzz�exp�− i�t� , �3�

we obtain the Helmoltz equation, which is a type of Hill’s
equation:9–12

d2E�x�
dx2 + �n2�x�

�2

c2 − kz
2�E�x� = 0 �4�

where the refractive index n�x� is a periodic real-valued
function with period L, namely, n�x+L�=n�x�.

Let E1�x� and E2�x� be two different solutions of �4� sat-
isfying the initial conditions

E1�x = 0� = 1,

E1��x = 0� = 0, �5a�

E2�x = 0� = 0,

E2��x = 0� = 1. �5b�

These solutions are called normalized solutions of �4�. The
general solution of �4� for any given boundary conditions
E�x=0�=C1 and E��x=0�=C2 can be expressed in the
form9–11

E�x� = C1E1�x� + C2E2�x� �6�

where C1 and C2 are arbitrary chosen constants.
Employing the Floquet-Bloch theorem, for the solutions

in a periodic structure, we obtain3,6,8

E�x + L� = E�x�exp�iKL� �7�

where K is the Bloch wave number.
Therefore, we look for the solutions of Eq. �4� that have

the form

E�x + L� = pE�x� ,

E��x + L� = pE��x� , �8�

where for convenience we denote

p = exp�iKL� . �9�

By substituting Eq. �6� in condition �8� we get a set of ho-
mogeneous equations for C1 and C2, which can have a solu-
tion only if its determinant vanishes for every value of x. In
particular, for x=0, we obtain

�E1�L� − p E2�L�
E1��L� E2��L� − p

� = 0. �10�

Since the expression E1�x�E2��x�−E1��x�E2�x� is the Wronsk-
ian of the differential equation, we find that it is constant
and, from the initial conditions, we find that its value is equal
to unity. Thus, using E1�L�E2��L�−E1��L�E2�L�=1, the deter-
minantal equation for p becomes

p2 − F��,kz�p + 1 = 0 �11�

where

F��,kz� = E1��,kz,L� + E2���,kz,L� . �12�

Note that kz depends on � and the function F�� ,kz� depends
only on the values and derivatives of normalized solutions
�E1�x� and E2�x�� in x=L. Because the coefficients of Eq. �4�
are real, the function F�� ,kz�, called the Hill’s determinant,
always remains real.12

Equation �11� is a characteristic equation for the differen-
tial equation �4�. If p1 and p2 are two roots of this equation,
then p1p2=1 and p1+ p2=F�� ,kz�.The roots of Eq. �11� are
given by

p1,2 =
F��,kz� ± 	F��,kz�2 − 4

2
. �13�

If Eq. �11� has two different roots, there are two different
solutions of �4� with the same boundary conditions, namely,

E�x� and Ẽ�x�, which satisfy

E�x + L� = p1E�x� ,

Ẽ�x + L� = p2Ẽ�x� . �14�

Now we examine three regions, for various choices of � and
kz, for which 
F�� ,kz�
�2, 
F�� ,kz�
�2, and 
F�� ,kz�
=2.

�I� If 
F�� ,kz�
�2, for some fixed � and kz, then both p1

and p2 are complex conjugates of unit magnitude �see Eq.
�13��. Therefore we have p1,2=e±iKL, where K is real.9–11

Thus, for any values of � and kz that satisfy F
�� ,kz�
�2 we
get an allowed propagating solution that takes the form of
the Bloch wave.

�II� If 
F�� ,kz�
�2, then both p1 and p2 are real and since
p1p2=1, one of them �say p1� is greater than unity and the
other �say p2� is smaller than unity. Employing Eq. �14� we
get E�x+nL�= p1

nE�x�, and therefore E�x� is unbounded, not

an allowed solution. On the other hand, Ẽ�x+nL�= p2
nẼ�x�;

therefore Ẽ�x� is a decaying function. Thus, the values of �
that satisfy 
F�� ,kz�
�2 correspond to the decaying solu-
tions of Eq. �4� and constitute the region that we call the
band gap. Here p1,2=exp�±iKL�, where K is a complex num-
ber.
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�III� The most interesting region consists of values of �
for which 
F�� ,kz�
=2. This is a boundary between the re-
gions I and II; therefore this is a condition for the gap edges.
In this case we have two different solutions of Eq. �11�,
which are both double roots. For F�� ,kz�=2 we have p1

= p2=1; therefore K=2�m /L, where m is an integer. For
F�� ,kz�=−2 we have p1= p2=−1, where K= �2m+1�� /L.
Employing Eq. �14� we find that when F�� ,kz�=2, the elec-
tric field has a period L, i.e., E�x+L�=E�x�, whereas for
F�� ,kz�=−2, the electric field satisfies E�x+L�=−E�x�.

In order to obtain more information about the gap edges
we find the values of � for which F�� ,kz�= ±2 and therefore
p1,2= ±1.

We consider Eq. �4� with initial conditions �5� and two
different boundary conditions, obtained from Eq. �8�:

E�0� = E�L� ,

E��0� = E��L�
for p1 = p2 = 1 �15�

and

E�0� = − E�L� ,

E��0� = − E��L�
for p1 = p2 = − 1. �16�

The values of � which satisfy �15� we call the edges of the
even gap, whereas the values of � which satisfy �16� are the
edges of the odd gap. There are an infinite number9–11 of real
values of �, which satisfy both Eqs. �4�, �5� and Eq. �15� or
�16�. We let �m be all these values for m=0,1 ,2 ,3 , . . . and as
explained above they correspond to the band-gap edges. It is
clear that for �0=0 Eq. �4� has a simple solution E�x�=1.
The values of � that correspond to the even gaps �F�� ,kz�
=2� for a given propagation angle are

0 = �0 � �2
− � �2

+ � �4
− � �4

+
¯ � �2m

− � �2m
+ � ¯

�17�

and the values that correspond to the odd gaps �F�� ,kz�=
−2� are

�1
− � �1

+ � �3
− � �3

+ � ¯ � �2m+1
− � �2m+1

+ � ¯ .

�18�

These values occur in the order

0 = �0 � �1
− � �1

+ � �2
− � �2

+ � �3
− � �3

+ � �4
− � �4

+ � ¯ .

�19�

The values �m
2 /c2 are called characteristic values. That the

characteristic values of Hill’s equations are arranged in such
a sequence is well known in mathematics and called the os-
cillation theorem.9–11

If � lies in any of the intervals ��m
− ,�m

+ � �m
=0,1 ,2 ,3 , . . . � we obtain that Eq. �4� has only forbidden
�not propagating� solutions �
F�� ,kz�
�2�. These intervals
are the band gaps. If � lies in any complementary intervals
��m−1

+ ,�m
− �, we have propagating allowed solutions

�
F�� ,kz�
�2�; these intervals are called passbands.
Thus, the values of �m

± , which are solutions of the equa-
tion F�� ,kz�= ±2, correspond to band-gap edges, so that �m

−

is the initial point of the m gap and �m
+ is the end point of the

m gap. The order of the values of �m
± for some given propa-

gation angle is shown schematically in Fig. 1.
The equality signs in �17�–�19� show that some of the

gaps may be absent, whereas the passbands can never disap-
pear. The gap number m will be absent if �m

− =�m
+ �see for

example �3
± in Fig. 1�; this special case will be considered

later below.
The above analysis is valid for every real-valued arbitrary

periodic refractive index n�x�. In photonic crystals we are
usually interested in functions n�x� which are piecewise con-
stant. In these particular cases a simple expression for values
of �m

± can be found.
As a special case we consider the alternating dielectric

regions of indices n1 and n2 which have width a and b with
L=a+b the lattice period. However, the presented formalism
can be extended for periodic layered media with more than
two different layers �see Appendix A� and thus can be used
as an approximation for graded-index periodic structures.

We consider

FIG. 1. Schematic description of the normalized gap edges �n
±

as function of the normalized Bloch wave number K.

FIG. 2. Electromagnetic wave propagation in a one-dimensional
photonic crystal for TE and TM polarizations.
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n�x� = �n1, 0 � x � a ,

n2, a � x � L ,
� �20�

as is shown in Fig. 2.
First, we consider the TE modes of this structure. The

electric field E�x� is in the y direction and satisfies �4�. The
solutions of Eq. �4� in any layer are combinations of sin�x�

and cos�x�. Therefore, the functions E1�x� and E2�x� of elec-
tric field which solve Eq. �4� and satisfy the conditions �5�
are also linear combinations of sin�x� and cos�x�. The bound-
ary conditions for the TE mode require continuity of the
electric field �both E1�x� and E2�x�� and its derivative at the
interface. Therefore

E1�x,�� = cos�k1x� , 0 � x � a ,

cos�k1a�cos�k2�x − a�� −
k1

k2
sin�k1a�sin�k2�x − a�� , a � x � L , �

E2�x,�� = 
sin�k1x�

k1
, 0 � x � a ,

sin�k1a�
k1

cos�k2�x − a�� + cos�k1a�
sin�k2�x − a��

k2
, a � x � L ,� �21�

where k1,2=	�n1,2� /c�2−kz
2=n1,2� cos �1,2 /c and �1,2 are

propagation ray angles in each layer n1,2 �see Fig. 2�. The
constants in �21� were chosen to satisfy conditions �5� and
the continuity conditions of the TE mode. The solutions with
other initial conditions can be expressed as

E�x,�� = C1E1�x,�� + C2E2�x,�� . �22�

We are interested now in finding the function F�� ,kz�. By
using �21�, we obtain

F��,kz� = B cos��

c
	� + �2 − B�cos��

c

� �23�

where

B = 1 +
1

2
�n1 cos �1

n2 cos �2
+

n2 cos �2

n1 cos �1
� �24�

and

	 = n1a cos �1 + n2b cos �2,


 = n1a cos �1 − n2b cos �2. �25�

The propagation angles �1 and �2 in Eqs. �24� and �25� are
related to each other by Snell’s law. Note that by using the
property of the roots of Eq. �11�, p1+ p2=F�� ,kz�, and sub-
stituting the definitions of F�� ,kz� from Eq. �23� and p1,2

=e±iKL, we get the same dispersion relation that is obtained
using the transfer matrix approach �see Eq. �1��. Here, we get
this expression as a special case from the more general
analysis.

Following the previous discussion, the values �m
± , which

are the band-gap edges, satisfy F��m
± ,kz�= ±2, that is,

B cos��m
±

c
	� + �2 − B�cos��m

±

c

� = ± 2. �26�

Equation �26� can be solved by applying the Rouche
theorem.13,14 The solution has the form

�m
± =

c

	
�m� ± 2rm

± �, m = 1,2,3 . . . , �27�

where 0�rm
± �� /2 is different for even and odd gaps and

found from

sin r2s
± = �sin




	
�s� ± r2s

± ��	B − 2

B
for s = 1,2, . . .

�28�

and

sin r2s+1
± = �cos




	
�s� +

�

2
± r2s+1

± ��	B − 2

B

for s = 0,1,2, . . . . �29�

These are results for TE polarization. To find the solution for
TM polarization, we use the fact that the function n�x� is
piecewise constant. Therefore, we should solve the Helmoltz
equation �4� with conditions �5� for the magnetic field H, in
a manner similar to �21� and choose the constants that satisfy
the continuity conditions for the magnetic field and its de-
rivative. Thus, we get the same expression for the gap edges,
but with B defined in a different way, namely,

BTM = 1 +
1

2
�n2 cos �1

n1 cos �2
+

n1 cos �2

n2 cos �1
� . �30�

Note that for m=1, Eq. �27� provides the expression that was
obtained in Ref. 1 for the first band gap. Our formula, how-
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ever, includes an infinite number of band gaps. Although the
above expression gives rm

± in implicit form it can be easily
found using, for example, the bisection method. Because rm

±

is bounded between 0 and � /2 it can easily be applied. In
addition, some analytical expressions can be found to ap-
proximate �28� and �29�, using simplifying assumptions.1,2

However, for some particular cases the values of �m
± for the

gap edges can be found explicitly as pointed out in Sec. IV.
The extension of Eqs. �27�–�29� for an arbitrary number of
layers per period is presented in Appendix A.

III. APPLICATIONS AND DISCUSSION

Even in their implicit form, expressions �27�–�30� are
quite useful. First, these formulas significantly simplify the
calculations of band-gap structures. For example, it helps to
plot the projected band structure diagram in a much easier
way. The projected band structure is used to investigate pho-
tonic crystals for arbitrary directions of propagation.4,5 Ex-
amples of such structures are shown in Figs. 3 and 4. The
figures show normalized frequency as a function of propa-

FIG. 3. The normalized band frequencies as
function of the propagation angle �1, for the first
six bands for a one-dimensional photonic crystal,
with n1=1.5 and n2=3.5 and layer widths a and b
such that a /b=8/3. The right panel is for TE po-
larization, whereas the left panel is for TM polar-
ization. Vertical dotted lines are for the maximum
internal angle, assuming n0=1 and for some gap
closing points.

FIG. 4. Projected band structure of the first
six bands. The photonic crystal parameters are
the same as in Fig. 3.
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gating angle �1 �Fig. 3� or as a function of tangential com-
ponent of the wave vector �Fig. 4�. To plot these diagrams we
need just to find the boundaries between the allowed �dark�
regions and the gaps �bright regions�, using expressions
�27�–�29�, and by scanning the angle from 0 to 90°. Thus, the
gaps are between lines �m

− ��1� and �m
+ ��1�, and the propagat-

ing electromagnetic waves are between lines �m−1
+ ��1� and

�m
− ��1� �see Fig. 3�. Figure 4 is obtained from Fig. 3, using

kz=�n1 sin �1 /c=�n2 sin �2 /c.
Another important application of the expressions

�27�–�29� is the ability to calculate the extent of the gap.
From Eq. �27� we find the expression for the gap width:

��m = �m
+ − �m

− =
2c

	
�rm

+ + rm
− �, m = 1,2,3 . . . . �31�

It is obvious that when rm
+ =rm

− =0, ��m vanishes and the gap
has zero width; it is defined as the “empty gap” or gap clos-
ing. The gap closing point can be found from band structure
diagrams, like Figs. 3 and 4. These points are marked by a1

M

for the first TM gap, a2
M ,b2

M for the second TM gap, a3
M ,b3

M

for the third TM gap and so on, whereas a2
E is for the second

TE, a3
E for the third TE, and so on.

In contrast, the conditions for gap closing are easily de-
rived from �28� and �29�, without using these plots �for deri-
vation see Appendixes B and C�. The resulting conditions are
presented below.

�i� The condition for gap closing for both TE and TM
waves is as follows. If for some angles �1 in layer n1 and �2
in layer n2, we have

n1a�cos �1�l = n2b�cos �2�q �32�

where l and q are integers, then all gaps numbered i�q+ l�,
i=1,2 ,3. . ., have zero width for these angles. We say that at
these points the gap closes. For example, if n1a cos �1
=2n2b cos �2, every gap number 3i closes �i=1,2 ,3 . . . � at
these angles and if n1a cos �1=n2b cos �2 every gap number
2i, namely, every even gap, closes at these angles.

Note that the relation between �1 and �2 in Eq. �32� is
defined by Snell’s law. In addition, the condition �32� is the
same for both TE and TM polarizations, because �32� does
not depend on B, which is the only parameter that distin-
guishes between two polarizations. Therefore, these gap
closing points are identical for both polarizations.

�ii� For the TM wave, however, there is an additional
condition for gap closing:

tan �1 =
n2

n1
. �33�

It corresponds to the Brewster angle.5,7 At this point there is
no reflection of TM waves and therefore there is no band
gap. The Brewster angle condition �33� can be directly de-
rived from Eqs. �27�–�30� �see Appendix C for details�.

Next, we find the expression for closed gap frequency of
gap number m by setting rm

± =0 in Eq. �27�:

�m
± =

c�m

	
. �34�

Another interesting conclusion from the gap closing condi-
tions �i� and �ii� is that the first TE gap never closes, whereas
the first TM gap has only one closing point, at the Brewster
angle. �It can be proved by setting m=0 and r1

±=0 in Eq. �26�
and noting that there is no solution to this equation for TE
polarization and only one solution for TM polarization. The
TM closing point corresponds to BTM =0, which is exactly
the Brewster angle condition as explained in Appendix C�.
This important property of the first band gap, which allows
omnidirectional reflection, has been demonstrated earlier,4,5

but has not been explained mathematically. Here this prop-
erty is obtained as a consequence of conditions �i� and �ii�.

Note also that the higher gaps commonly do not have this
property. However, by the proper design we can prevent
band gap closing also for the higher-order gaps.

The presented analysis and the derived expressions are
valid for infinite photonic crystals. However, it can be also
used to approximate the finite structure. The reflectivity
spectrum of finite multilayers tends to the reflectivity spec-
trum of the infinite multilayer exponentially with the number
of periods N. Thus, if N is sufficiently large, the equations
developed for an infinite system can be used as a good ap-
proximation for a finite structure as well.

In this case Eqs. �24�, �25�, �30�, and �32� can be ex-
pressed in terms of �0, the incident angle, and n0, the refrac-
tive index of ambient medium, using Snell’s law:

n0 sin �0 = n1 sin �1 = n2 sin �2. �35�

From Snell’s law we can see that the propagating angle �2 is
restricted to the range 0��2�sin−1�n1 /n2�, assuming n1

�n2, and if we are considering the finite structure, the propa-
gating angle �1 is restricted to the range 0��1
�sin−1�n0 /n1�. The upper boundaries of these ranges, the
light lines, are depicted in Figs. 3 and 4.

As a numerical example we consider a one-dimensional
photonic crystal with refractive indices n1=1.5 and n2=3.5
and layers width a and b, respectively, such that a /b=8/3.
The refractive indices are chosen close to ones of SiO2 and
Si. Both Figs. 3 and 4 show projected band diagrams of this
photonic crystal. The dotted lines are for the maximum in-
ternal angle �the light line�, assuming n0=1 and for the gap
closing points. To verify our conclusions �i� and �ii�, we ex-
amine every gap closing point in either Fig. 3 or Fig. 4 and
find which condition every point corresponds to.

As we expected, the first TE gap never closes and the first
TM gap has one closing point a1

M, corresponding to �1
=66.8° �see Fig. 3�. This is exactly the Brewster angle de-
fined by �B=tan−1�n2 /n1�. The second gap has zero width at
a2

E for TE polarization and at a2
M for TM polarization, both at

�1=31.5°. In this case n1a cos �1=n2b cos �2, which is ex-
actly the first condition for zero width gap with l=q=1, and
as was indicated earlier it is identical for both polarizations.
Moreover, from the first condition it follows that if ��2=0,
then every even gap closes exactly at the same angle. See,
for example, a4

E, a4
M and a6

E, a6
M, all corresponding to the

same �1=31.5°. Next, we examine b2
M. This is also a Brew-
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ster angle point just like a1
M. The other points that match the

Brewster angle condition are b3
M and b4

M �see Fig. 3�. At all
these points the TM polarization can not be reflected; there-
fore the gap closes. In the third band gap there are two ad-
ditional points a3

E and a3
M, at �1=66.3°, that give

2n1a cos �1=n2b cos �2. That is, these points satisfy the first
condition for gap closing with l=2 and q=1. In this particu-
lar case the condition states that every gap number 3i will
have a zero width at this angle, for i=1,2 ,3. . ..

We observe that for higher-order gaps there are more clos-
ing points. If for a given angle there is a closing point, there
is an infinite number of closing points at this angle due to the
higher gaps.

IV. SOME SPECIAL CASES

As was mentioned before, for some special cases the �m
±

can be found explicitly. In this section we point out some of
these cases.

The simplest solution is obtained if 
=0 or from �25� if

n1a cos �1 = n2b cos �2. �36�

Employing Eqs. �27�–�29� we obtain the expression for even-
gap edges:

�2s
± =

2�cs

	
, s = 1,2,3 . . . , �37�

whereas for odd-gap edges

�2s+1
± = c

�2s + 1�� ± 2 sin−1 	B − 2

B

	
, s = 0,1,2,3 . . . .

�38�

Hence, the width of all even gaps is zero and the width of all
odd gaps is constant �independent of s� and given by

��2s+1 =
4c

	
sin−1 	B − 2

B
. �39�

Note that for the normal propagation in a quarter-wave stack,
�k1a=k2b=� /2�, the condition �36� holds; therefore every
even gap in a quarter-wave stack will be closed for �=0 and
the width of odd gaps is given by Eq. �39�. The expression
for the width of the first gap for a quarter-wave stack is
presented also in Refs. 1 and 8 for �=0, and in Refs. 4 and 5
for arbitrary angles. All these expressions are included in Eq.
�39�.

A simple expression for the gap edges can also be derived
if 
 /	 is a rational number. For example if 
=	 /2, which
corresponds to n1a cos �1=3n2b cos �2, then the even-gap
edges are located at

�4s
± =

4�s

	
c ,

�4s+2
± = c

�4s + 2�� ± 2 cos−1��2 + B�/2B�
	

, �40�

whereas the odd-gap edges are located at

�4s+1
± = c

�4s + 1�� ± 2 sin−1 d±

	
,

�4s+3
± = c

�4s + 3�� ± 2 sin−1 d±

	
, �41�

where d±= ± �B−2±	�B−2�2+8B�B−2�� /4B, 0�d±�� /2.
As indicated in the previous section, the width of gaps of
order m=4s vanishes for s=1,2 ,3. . ..

V. CONCLUSIONS

In this paper we presented a study of one-dimensional
band-gap materials using a mathematical formalism based on
the analysis of Hill’s equation. We derived the exact formula
of the gap edge’s location for an infinite number of gaps, for
both TE and TM polarizations at arbitrary angle of incidence.
In addition, the formula for the gap width was derived and
the gap closing conditions were given for an infinite number
of gaps. We also proved mathematically that the first band
gap never closes for TE polarization and has only one clos-
ing point for TM polarization, at the Brewster angle.

This simple analysis and the derived expressions may be
useful for the design of photonic crystal devices, as well as
for the understanding of their properties.
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APPENDIX A: EXTENSION FOR THE PERIODIC
STRUCTURE WITH ARBITRARY NUMBER OF

DIFFERENT LAYERS

We consider a periodic structure of I layers per period:

n�x� = 
n1, 0 = a0 � x � a1,

n2, a1 � x � a2,

]

nI, aI−1 � x � aI = L
� �A1�

where L is a the period, namely, n�x+L�=n�x�, ni is the
refractive index of the layer number i, and i=1, . . . , I. Using
the technique explained in Sec. II, we find the same disper-
sion relation that is obtained for the two-layered structure
�see Eq. �1��.

However, for I layers A and D are defined by

A = �AI
�1� + kIBI

�2��cos�kIdI� ,

D = �BI
�1� − kIAI

�2��sin�kIdI� , �A2�

where ki=	�ni� /c�2−kz
2=ni� cos �i /c, �i is the propagation

angle in the layer number i, and di is the width of the layer
number i, defined by di=ai−ai−1. Note that a0=0 and aI=L.
The coefficients AI

�1,2� and BI
�1,2� are found recursively:
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Ai
�1,2� = Ai−1

�1,2� cos�ki−1di−1� + Bi−1
�1,2� sin�ki−1di−1� �TE,TM� ,

Bi
�1,2� = −

ki−1

ki
�Ai−1

�1,2� sin�ki−1di−1� − Bi−1
�1,2� cos�ki−1di−1�� �TE� ,

Bi
�1,2� = −

ni
2ki−1

ni−1
2 ki

�Ai−1
�1,2� sin�ki−1di−1� − Bi−1

�1,2� cos�ki−1di−1�� �TM� ,

A1
�1� = 1, B1

�2� = 1/k1, B1
�1� = A1

�2� = 0 �TE,TM� . �A3�

In the same way we obtain the expression for band-gap edges of the gap number m

�m
± =

c�m� ± 2rm
± �

�i=1

I
�idi

, m = 1,2,3 . . . , �A4�

where �i=ni cos �i. As before, the function rm
± is different for even and odd gaps. For even gaps it is found from

0 = C1 sin2 r2s
± + �

j=1

I

C2
j sin2�− � jdj + �i�j

I
�idi

�i=1

I
�idi

��s ± r2s
± ��

+ �
j,h

j�h

I

C3
jh sin2�− � jdj − �hdh + �i�j�h

I
�idi

�i=1

I
�idi

��s ± r2s
± �� + ¯ + CI+1 sin2 r2s

± , �A5�

whereas for odd gaps the rm
± is found from

0 = C1 sin2 r2s+1
± + �

j=1

I

C2
j cos2�− � jdj + �i�j

I
�idi

�i=1

I
�idi

��s + �/2 ± r2s+1
± ��

+ �
j,h

j�h

I

C3
jh cos2�− � jdj − �hdh + �i�j�h

I
�idi

�i=1

I
�idi

��s + �/2 ± r2s+1
± �� + ¯ + CI+1 sin2 r2s+1

± , �A6�

where

C1 = CI+1 = �0.5�I−2 + �
i,p

i�p

I

Bip + �
i,p,l,q

i�p�l�q

I

Biplq + �
i�p�l�q�j�n

I

Bijnlpq + ¯ ,

C2
j = CI

j = �0.5�I−2 + �
i,p

i�p

I

�− 1�	ij�− 1�	pjBip + �
i,p,l,q

i�p�l�q

I

�− 1�	ij�− 1�	pj�− 1�	lj�− 1�	qjBiplq + ¯ ,

C3
jh = CI−1

jh = �0.5�I−2 + �
i,p

i�p

I

�− 1�	ij�− 1�	pj�− 1�	ih�− 1�	phBip + ¯ ,

] �A7�

and

	ij = �1, i = j ,

0, i � j .
� �A8�

The constants in �A7� are defined as follows:
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Bij = ��1/2�I−1��i/� j + � j/�i� �TE� ,

�1/2�I−1�ni
2�i/nj

2� j + nj
2� j/ni

2�i� �TM� ,
� �A9�

Bij,. . .,lm = �1/2�I−1��i, . . . ,�l/� j, . . . ,�m + � j, . . . ,�m/�i, . . . ,�l� �TE� ,

�1/2�I−1� ni
2�i

nj
2� j

¯

nl
2�l

nm
2 �m

+
nj

2� j

ni
2�i

¯

nm
2 �m

nl
2�l

� �TM� . � �A10�

APPENDIX B: DERIVATION OF GAP CLOSING
CONDITIONS

We want to find the solution of Eqs. �28� and �29� with the
requirement rm

± =0.
In order that even gaps will vanish

0 = sin�s�
/	�, s = 1,2, . . . . �B1�

This equation gives two solutions, namely, 
=0 and 
 /	
= �q− l� / �q+ l�, where q and l are integers. Using the defini-
tions for 
 and 	 �Eq. �25��, we obtain the first solution
corresponding to condition �32�, given in the text with l=q
=1. The second solution corresponds to condition �32� with
l ,q1.

Next, to find the condition for odd-gap closing, one
should solve the equation

0 = cos



	
�s� + �/2�, s = 0,1,2, . . . . �B2�

The solution is 
 /	= �q− l� / �q+ l�, where q+ l and q− l are
both odd. This condition is also equivalent to the first condi-
tion �i� of the gap closing.

APPENDIX C: DERIVATION OF THE BREWSTER ANGLE
CONDITION

From Eqs. �28� and �29� we see that an additional condi-
tion for rm

± =0 is B−2=0. For the TE mode, the solution of
this equation does not exist. For the TM mode, however, this
condition gives

k1

k2
=

n1
2

n2
2 . �C1�

After setting the expressions for k1=n1� cos �1 /c and k2
=n2� cos �2 /c, we get

cos �1

cos �2
=

n1

n2
. �C2�

Applying Snell’s law gives �1+�2=90� and therefore tan �1
=n2 /n1=tan �B.
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