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We study the edge-channel transport of electrons in a high-mobility Si/SiGe two-dimensional electron
system in the quantum Hall regime. By selectively populating the spin-resolved edge channels, we observe
suppression of the scattering between two edge channels with spin-up and spin-down. In contrast, when the
Zeeman splitting of the spin-resolved levels is enlarged with tilting magnetic field direction, the spin orienta-
tions of both the relevant edge channels are switched to spin-down, and the inter-edge-channel scattering is
strongly promoted. The evident spin dependence of the adiabatic edge-channel transport is an individual
feature in silicon-based two-dimensional electron systems, originating from a weak spin-orbit interaction.
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Characteristic features such as the valley degree of
freedom,1 a metal-insulator transition at zero field,2 and a
significant anisotropy of magnetotransport properties in the
quantum Hall regime3 have been discovered for silicon-
based two-dimensional electron gas �2DEG� systems in sili-
con metal-oxide-semiconductor field-effect transistors
�MOSFETs� and Si/SiGe heterostructures. For these sys-
tems, the quantum Hall �QH� effects and their related physics
at the Landau-level crossing, which is so-called coincidence,
have been explored in tilted magnetic fields so far.3–7 Re-
cently, the manipulation of the valley degree of freedom by
changing the gate-bias voltage to tune the coincidence con-
dition was further exploited in SiO2/Si/SiO2 quantum
wells.8

In a single-particle picture, the Zeeman splitting ��Ez�
depends on the total magnetic field �Btotal�, while the cyclo-
tron energy, ��c, depends on the perpendicular component
�B�� of Btotal. Thus, when we apply the parallel component
�B�� in addition to the B� with tilting an external magnetic
field direction � between the direction of an applied magnetic
field and the direction normal to the 2DEG plane, the �Ez of
the spin-resolved levels can be enlarged, giving rise to a
crossover of the Landau levels at a certain � as schematically
illustrated in Fig. 1�a�. Using the tilted magnetic fields, we
can determine the effective g-factor �g*�,4–6 and one deduces
that the value of g* is concerned with carrier density for
Si/SiGe heterostructures.6 Also, it was indicated that an ex-
change interaction between different Landau levels is en-
hanced under the coincidence condition, showing an over-
shoot of the Hall resistance4 at the filling factor of �=3 and
transition peaks with unexpectedly huge resistance in the
Shubnikov–de Haas �SdH� oscillations.5–7

Though the edge-channel picture is crucial to understand
the electronic transport in QH systems,9,10 few studies of the
edge-channel transport have been reported for the silicon-
based 2DEG systems. More than ten years ago, a preliminary
work using Si-MOSFETs with mobility below 2.0 m2/V s

was demonstrated,11 but a collective view of the edge-
channel transport has not been established because of the low
mobility of Si-MOSFETs. Owing to development of high-
quality Si/SiGe heterostructures,12 however, the mobility
value increases up to �50 m2/V s,12,4 in consequence, the
fractional QH effect can be explored13 and a possibility of
spin-based quantum computing applications was indicated.14

Using these high-quality Si/SiGe heterostructures, we can
elucidate the edge-channel transport controlled by tuning the
coincidence condition: At the filling factor of �=4, the edge
channels with spin-down 0 ↓ and spin-up 0↑ are presented in
��c��Ez while the edge channels with spin-down 0↓ and
spin-down 1↓ are formed in ��c��Ez, as shown in Fig.
1�b�.

In this Rapid Communication, we report on the observa-
tion of the spin-dependent edge-channel transport in a high-

FIG. 1. �a� Energy diagrams of Landau levels between N=0 and
N=1 for ��c��Ez �left� and ��c��Ez �right�. The Fermi level
EF is located at the filling factor of �=4. The valley splittings ��V�
are also depicted. �b� Edge channel dispersions for ��c��Ez �left�
and ��c��Ez �right� for �=4 �a two-channel case�. The spin ori-
entation of the relevant edge channels switches from �0↓, 0↑� to
�0↓, 1↓� through the coincidence angle.

PHYSICAL REVIEW B 73, 121304�R� �2006�

RAPID COMMUNICATIONS

1098-0121/2006/73�12�/121304�4�/$23.00 ©2006 The American Physical Society121304-1

http://dx.doi.org/10.1103/PhysRevB.73.121304


mobility Si/SiGe heterostructure in the QH regime. By se-
lectively populating the spin-resolved edge channels, the
Hall resistance deviates largely from the quantized value,
indicating the first observation of the adiabatic edge-channel
transport of electrons in the Si/SiGe heterostructure. The
inter-edge-channel �IEC� scattering is strongly suppressed
over macroscopic distance between �0↓, 0↑� edge channels
while that is significantly promoted between �0↓, 1↓� edge
channels. The spin dependence clearly observed is a charac-
teristic property of silicon-based QH systems, being due to a
small contribution of the spin-orbit interaction to the spin-
flip IEC scattering.

A high-mobility Si/Si0.75Ge0.25 heterostructure studied
was grown by molecular-beam epitaxy on the strained-
relaxed Si0.75Ge0.25 buffer layer smoothed by chemical me-
chanical polishing.15 The wafer has the electron mobility of
20 m2/V s and the electron density of 1.35	1015 m−2 at
0.3 K. For transport measurements, the wafer was patterned
into 100-
m-wide Hall bars with four alloyed AuSb ohmic
contacts and two front gates �G1 and G2� crossing the chan-
nel as depicted in Fig. 2�a�. The front gate structure is com-
posed of a 100-nm-thick SiO2 insulating layer grown by
plasma enhanced chemical vapor deposition below 400 °C,
followed by 2.5-nm-thick Ti/200-nm-thick Au layer depos-
ited by electron-beam evaporation. The distance of the edge
region in the Hall bar between the two gates is Ledge
=10 
m. The filling factors of Landau levels in the bulk
region and under the front gate, �B and �G, are controlled by
adjusting the magnetic field B and the gate-bias voltage VG.
Transport measurements were basically performed using
standard lock-in techniques �18 Hz� with an alternating cur-
rent of 1.0 nA in a 3He– 4He dilution refrigerator. The SdH
oscillations were observed evidently and the longitudinal re-
sistance �Rxx� showed the plateau corresponding to zero re-
sistance at �=1,2, and 4.

To examine the edge-channel transport, we focus on the
IEC scattering for a two-channel case as shown in Fig.
2�b�.16 We hereafter define the electrochemical potentials of
the source and the drain reservoirs as 
S and 
D, respec-
tively. When �B=4 and �G=2, the outer channel passes
through the two front gates �G1 and G2� while the inner
channel is reflected by the gates. Here, the value of VG for
�G=2 was determined experimentally by the measurements
of Rxx versus VG.10,17,19–21 As a consequence, the electro-
chemical potential of the outer channel �
S� is different from

that of the inner channel �
D� at Ledge shown in Fig. 2�b�. For
2DEG in AlGaAs/GaAs heterostructures, many experimen-
tal and theoretical studies of the edge-channel transport have
been reported,10,17–25in which the IEC scattering is sup-
pressed over macroscopic distance, resulting in a deviation
of the Hall resistance �Rxy� from the quantized value at the
QH regime. On the basis of the Landauer-Büttiker
formalism,26 the adiabatic transport in spin-resolved edge
channels18 at �B=4 is likely to indicate Rxy =h /2e2 while the
nonadiabatic edge-channel transport shows the quantized
value h /4e2 in the case of 2DEG in Si/SiGe heterostructures.

Figure 3�a� displays Rxy as a function of VG1 for �B=4
�B=2.01 T� and �G2=2 �VG2=−1.10 V� at 23 mK. When
VG1 is reduced down to about −0.70 V, a deviation of Rxy
from 0.25 h /e2 ��Rxy� can be seen, and then Rxy reaches 0.46
h /e2 at VG1=−1.10 V. Taking the relationship of �Rxy
=exp�−Ledge/Leq��h /4e2�,10 where Leq is the equilibration
length corresponding to the distance over which electrons are
traveling adiabatically, we roughly find Leq�57 
m at
23 mK, being even larger than that of the high-mobility
2DEG in AlGaAs/GaAs heterostructures.20 We also observe
the evident temperature dependence of Rxy as shown in Fig.
3�b�, in which �Rxy decreases with increasing temperature.
This means that the IEC scattering is accelerated and Leq
shrinks due to the increase in temperature. The results pre-
sented are the first experimental data associated with the
edge-channel transport of high-mobility Si/SiGe heterostruc-
tures.

In Fig. 4�a�, we show the plots of Rxy versus B� �Rxy
−B� curve� at around �B=4 for various � in detail, where
B�=Btotal cos �. In 66.5����67.5�, the plateau in the QH
regime of �B=4 becomes unclear, which is general behavior
of Rxy under around coincidence condition.7 Consequently,
we can approximately regard the coincidence angle of the
first Landau-level crossing of our sample as �=66.5�. We
also confirmed the coincidence in the vicinity of �=66.5� in
Rxx−B� curves. Assuming the effective mass m*=0.19 m0,
where m0 is the free electron mass, we can deduce g*=4.2,
being consistent with previous studies.4–6,27 At the coinci-
dence angle ��=66.5��, the spin orientations of the relevant
edge channels are transferred from �0↓, 0↑� to �0↓, 1↓�: the
edge-channel transport in ��66.0� or in ��68.0� arises
from �0↓, 0↑� or �0↓, 1↓� edge channels, respectively.

FIG. 2. �a� A schematic illustration of the Hall bar sample. �b�
The enlarged figure of Ledge region for a two-channel case. The
arrows indicate the direction of electron drift in the edge channels.

FIG. 3. Rxy as a function of VG1 at ��B,�G2�= �4,2� at 23 mK.
�b� Temperature dependence of Rxy at ��B,�G1 ,�G2�= �4,2 ,2�.
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To get insight into the spin dependence of the edge-
channel transport in the Si/SiGe heterostructure, we examine
Rxy as a function of � systematically at ��B,�G1 ,�G2�
= �4,2 ,2�, and summarize the dependence of Rxy on B�,
where B� =Btotal sin �, at 28 mK in Figs. 4�b� and 4�c�. A
deviation of Rxy from 0.25 h /e2 expresses suppression of the
IEC scattering. We find that the value of Rxy is nearly con-
stant, i.e., 0.42 h /e2�Rxy �0.46 h /e2, in ��66.0� �B�

�4.47 T�, whereas Rxy is markedly reduced at around the
coincidence angle �=66.5� �B� �4.59 T�, and then the value
of Rxy is settled down to Rxy �0.25 h /e2 in ��71.5� �B�

�5.5 T�. Komiyama et al.10 have reported that a spatial
separation ��X� between edge channels affects the IEC scat-
tering for 2DEG in AlGaAs/GaAs heterostructures with m*

=0.067 m0 and g*=−0.44. In general, if �Ez is enhanced by
increasing �, �X between spin-resolved edge channels in-
creases and the IEC scattering is suppressed due to the re-
duction in the overlap of electron wave functions.10 How-
ever, the above interpretation cannot be applied to the data in
Figs. 4�b� and 4�c�.

In order to explain the above feature, we attempt to ap-
proximately calculate �X.10,20,21 Here, we use a parabolic-
type confining potential with the confinement frequency of
1.7	1012 s−1, m*=0.19 m0, and g*=4.2. For �=0�, �Ez
�=g*
BB, where 
B is Bohr’s magneton� of 0.4 meV indi-
cates �X�47.5 Å at 2.01 T for the sample used. With in-
creasing �, �Ez is enlarged but the related �X is always
smaller than 145 Å, which is the maximum value of �X
derived from the Landau gap ���c� of 1.22 meV.10,20,21

Since the magnetic length lc=�� / �eB� is �180 Å, a strong
mixing of the wave functions of electrons between edge
channels can be deduced irrespective of �. Hence we con-
clude that the wave functions of electrons between edge
channels usually overlap for the high-mobility Si/SiGe het-
erostructure used. This feature basically originates from the
fact that m* of Si/SiGe heterostructures is large relative to
that of AlGaAs/GaAs heterostructures by a factor of 3. We
also note that the edge-channel transport is ascribed to the
spin orientation of the relevant edge channels either �0↓, 0↑�
or �0↓, 1↓�: we can see the long Leq in �0↓, 0↑� while a
considerably shorter Leq is found in �0↓, 1↓�.

For 2DEG in AlGaAs/GaAs heterostructures, Müller et
al.20 explained that Leq of electrons in spin-resolved edge

channels is inversely proportional to the spinor overlap,
�
↓

†�ki�
↑�kf��2, where i and f denote the initial and final states
in the scattering process of electrons. The spinor overlap
can be written as 
↓

†�ki�
↑�kf�� �g*
BB����k / 	�g*
BB�2

+�2�2�k�2
, where �k=kf −ki and � is the spin-orbit cou-
pling constant.20,24,25 They suggested that large values of
Leq�100 
m in spin-resolved edge channels can be inter-
preted by the small spinor overlap.20,24 We also obtain the
long Leq�57 
m between �0↓, 0↑� edge channels, implying
the small spinor overlap, although the wave functions of
electrons between edge channels are strongly mixed for the
2DEG in Si/SiGe heterostructure used, as mentioned in the
previous paragraph. In this regard, we infer that a small con-
tribution of the spin-orbit interaction, derived from the inver-
sion symmetry of a unit cell of Si crystal, causes the small
spinor overlap of the above equation, and leads to suppres-
sion of the IEC scattering with spin-flips. On the other hand,
we judge that the IEC scattering between �0↓, 1↓� edge chan-
nels without spin-flips is accelerated due to the overlap of the

FIG. 4. �a� Plots of Rxy vs B�

for various � at around �B=4 at
28 mK. Rxy −B� curves include an
offset by 0.05 h /e2 for each curve.
�b� and �c� Rxy as a function of B�

at 28 mK for ��B,�G1 ,�G2�
= �4,2 ,2�. The arrows illustrated
represent the spin orientation of
the relevant edge channels in each
B� range.

FIG. 5. Rxy� vs Idc for different � at 28 mK for ��B,�G1 ,�G2�
= �4,2 ,2�. The data traces of Rxy� include an offset by 0.1 h /e2 for
each curve, and the major ticks are presented at every 0.1 h /e2.
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wave functions of electrons. Although the effect of the
hyperfine interaction between electron and nuclear spins is
also predicted, we can rule out it because 95.33% of nuclear
isotopes �28Si and 30Si� in Si has no nuclear moment.

We finally refer to the IEC scattering controlled by Idc. At
��B,�G1 ,�G2�= �4,2 ,2�, when the positive direct current,
Idc�0 �
S�
D�, is applied between inner �
D� and outer
�
S� edge channels, the IEC scattering from outer to inner
occurs markedly, while the IEC scattering from inner to outer
becomes significant in Idc�0 �
S�
D�. Thus, the dif-
ferential Hall resistance, Rxy� =�Vxy /�I, as a function of Idc
�Rxy� − Idc curve� shows characteristic nonlinearity.10,18,28,29

Figure 5 shows Rxy� − Idc curve for various applied magnetic
field directions �. For �=0�, a marked nonlinear feature is
seen in Idc� ±40 nA and the symmetry of the Rxy� − Idc curve
is comparatively maintained in that regime. In contrast, the
IEC scattering is promoted and Rxy� becomes 0.25 h /e2 in
Idc� ±50 nA. With � increased, the symmetric shape of the
Rxy� − Idc curve is broken and the shift of the nonlinear region
toward Idc�0 is observed. For 2DEG in AlGaAs/GaAs het-
erostructures, nonlinear features shown in Rxy� − Idc curves are
explained by the rearrangement of edge channels due to un-
equal edge-channel population.10,18,28,29 On the other hand,

for 2DEG in the Si/SiGe heterostructure we use, the above
Idc dependence of Rxy� cannot be interpreted by this explana-
tion. The cause of this asymmetric feature is still unclear but
the Rxy� − Idc curves vary systematically with increasing � un-
der around the coincidence condition, strongly supporting
that these Idc dependences of Rxy� are associated with the spin
dependence of the edge-channel transport described. There-
fore, this should be considered to be a peculiar property of
the 2DEG in Si/SiGe heterostructures.

In summary, we have studied the edge-channel transport
in the high-mobility 2DEG in a Si/SiGe heterostructure in
the QH regime. We observed the spin-dependent edge-
channel transport at around the Landau-level crossing in
tilted magnetic fields. The evident spin dependence is due to
a small contribution of the spin-orbit interaction in Si to the
spin-flip IEC scattering.
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