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We study the coarsening of two-dimensional �2D� vacancy islands on a crystal surface by atomic-scale
kinetic Monte Carlo simulations on an ensemble of meandering islands. The Brownian motion of islands is due
to the motion of atoms within the islands, with the escape of atoms from islands prohibited by the presence of
a step edge barrier. We find that the diffusion of individual islands and their size distribution qualitatively
change for large bond energies or low temperatures, when the islands develop straight edges �facets�. The
island diffusion coefficient becomes size independent and the size distribution becomes monotonously decreas-
ing. The results of the kinetic Monte Carlo simulations are supported by numerical solutions of the Smolu-
chowski equations. We derive the kernel of the Smoluchowski equations for the 2D case taking into account
the screening effects and find that the screening essentially alters the island size distribution.

DOI: 10.1103/PhysRevB.73.115425 PACS number�s�: 81.10.Aj, 05.10.Ln, 68.43.Jk, 81.15.�z

I. INTRODUCTION

Two-dimensional �2D� islands that form on a crystal sur-
face during epitaxial growth bring the crystal in a nonequi-
librium state. When the mean island size increases �keeping
the total number of atoms in all islands conserved�, the den-
sity of surface steps decreases and hence the energy of the
crystal is reduced. The controlled use of surface coarsening
kinetics may provide a way for the fabrication of certain
desired nanostructures. The coarsening process known for
more than a century is Ostwald ripening.1–3 In this process,
larger islands grow at the expense of smaller ones, which
shrink by emitting atoms. Relatively recently, scanning tun-
neling microscopy �STM� studies of metal surfaces4–15 have
revealed another coarsening process. The 2D islands perform
a Brownian motion on the surface and merge when they
touch one another. This process is called dynamic coales-
cence, to distinguish it from static coalescence that takes
place during deposition, when all islands grow simulta-
neously and merge when they touch due to their size in-
crease. The diffusion of islands is due to the motion of atoms
inside them or along their periphery. Even islands consisting
of hundreds or thousands of atoms possess notably large dif-
fusion coefficients.

Dynamic coalescence becomes the dominant coarsening
process when the detachment of atoms from the islands is
prohibited. Otherwise, Ostwald ripening is a more effective
coarsening mechanism. For adatom islands, the 2D island
diffusion and shape equilibration during a merger proceeds
by to atom diffusion along the island perimeter. Theoretical
analysis16–18 predicts a power law dependence of the island
diffusion coefficient on its size

Dk � lk
−�. �1�

Here, k is the number of atoms in the island, and lk is its
linear size, lk=�k. The periphery diffusion is characterized

by the exponent �=3. The power law �1� was confirmed in
many kinetic Monte Carlo �kMC� simulations.19–27 However,
the exponent � was found to depend on temperature. Further
kMC simulations28,29 show that the facetting of the islands at
low temperatures or large bond energies qualitatively alters
the island shape equilibration kinetics.

For advacancy islands, the detachment of atoms is pre-
vented by a step edge barrier that does not allow the atoms to
escape onto a higher terrace. Besides atom diffusion along
the island periphery, the island diffusion can be driven by
detachment of atoms from the island edge with subsequent
correlated or uncorrelated reattachment. These latter pro-
cesses are governed by the Gibbs-Thomson relation for the
equilibrium atom density at the curved step edges bounding
the islands. Detachment of atoms from the island edge with
subsequent correlated reattachment results in an exponent
�=2 in Eq. �1�, while uncorrelated detachment and attach-
ment leads to �=1.16–18 Thus, these exponents, just as the
exponents characteristic to the Ostwald ripening process,2,3

rely on the Gibbs-Thomson formula and, in this sense, do not
distinguish between liquid and crystalline islands. The expo-
nent � is believed to be a temperature independent quantity
characteristic for each diffusion mechanism. On the other
hand, the facetting of the islands at low temperatures or large
bond energies influence the kinetics of adatom islands.28,29

Concerning advacancy islands, Van Siclen noted16 that the
diffusion coefficient of facetted vacancy islands should not
depend on the island size. Our aim in the present paper is to
study the diffusion of facetted vacancy islands and the coars-
ening kinetics driven by their dynamic coalescence.

During coarsening, the average island size L�t�= �lk� in-
creases in time and the island size distribution shifts to larger
sizes. If the diffusion coefficient Dk follows the power de-
pendence �1� on the size, the kinetics of the island size dis-
tribution obeys kinetic scaling: the distribution does not
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change if the size scales by L�t�, i.e., the size distribution is
described by a time-independent function F�lk /L�. Moreover,
one can show21,30 that the time dependence of the mean is-
land size follows a power law, L� t�, with the exponent

� = 1/�2 + �� �2�

related to the exponent � of the diffusion coefficient.
Once the island size dependence of the diffusion coeffi-

cient is established, the coarsening kinetics can be studied
with another kind of kMC simulations, with whole islands
�rather than atoms� taken as unit objects.30–32 The time scale
of the coarsening process studied in this way is much larger
than the characteristic time of the individual coalescence and
reshaping events, so that the latter events are treated as in-
stantaneous.

The time evolution of the island size distribution can also
be described by the Smoluchowski equations. In these equa-
tions, a merger of two islands containing i and j atoms pro-
ceeds with a rate Kij that can be established for various types
of island motion. Knowing the size dependence of the colli-
sion rate, one can obtain the time evolution of the island size
distribution.

The aim of the present work is to study the coalescence of
facetted 2D islands. We perform kMC simulations on an en-
semble of islands and obtain the time evolution of their mean
size and distribution directly in the atomic-scale model. In
contrast to previous simulations, we consider larger bond
energies, so that the islands develop facets joined by rounded
corners. As a reference, we also perform simulations for
smaller bond energies. In that case, the islands are rounded
and the kinetics are in qualitative agreement with the previ-
ous studies, with some notable differences that we discuss.

The simulations allow us to obtain size dependencies of
the island diffusion coefficient within the same kMC model.
We find that the diffusion coefficient of the facetted island
does not depend on its size. The island size distribution is
found to be substantially different from the case of rounded
islands.

We numerically solve the Smoluchowski equations to ob-
tain the island size distributions, using the island diffusion
coefficients that we find in the atomistic kMC simulations.
We derive the kernel of the Smoluchowski equations that
takes into account the screening effects. We find that the
screening is especially important in the 2D case and qualita-
tively changes the island size distribution.

II. KINETIC MONTE CARLO SIMULATIONS

A. Coalescence of islands

Out of the two competing coarsening mechanisms, Ost-
wald ripening and dynamic coalescence, Ostwald ripening is
more effective if the exchange of atoms between islands is
not prohibited. In the case when the loss of atoms by the
island is restricted, the motion of atoms within the island or
along its periphery causes Brownian motion of the island.
The coarsening proceeds due to the dynamic coalescence of
the islands. The conditions for dynamic coalescence are
naturally met for vacancy islands in the presence of a step

edge barrier. The adatoms move within the pit but cannot
escape it to the higher terrace. We perform kMC simulations
starting with a coverage of 0.9 monolayer �ML� of randomly
deposited atoms. They nucleate vacancy islands of 0.1 ML
coverage, and we follow their kinetics.

We use the common bond-counting ansatz33,34 for the
rates of different atomic motions. The system is described by
a single bond energy Eb, so that the rate of an elementary
atom jumps from the initial state with n neighbors to a final
state is equal to � exp�−nEb /kBT�, where T is temperature
and kB is the Boltzmann constant. In our simulations, the
final state is any unoccupied neighboring site on the same
level. Jumps to a higher level are prohibited by imposing
an infinite step edge barrier. The prefactor � is �=�0 exp
�−ED /kBT�, where ED is the surface diffusion energy and
�0=1013 s−1 is the frequency of atomic vibrations. The fre-
quency � establishes the time scale of the problem and does
not influence the results in any other respect. Thus, the ki-
netics of the system depend on only one parameter, the ratio
Eb /kBT. We set T=400 K and perform kMC simulations
with two bond energies Eb=0.2 and 0.4 eV, so that the ratio
Eb /kBT=5.8 and 11.6. We take the surface diffusion energy
ED=0.2 eV in the case Eb=0.2 eV and ED=0 in the case
Eb=0.4 eV, just with the aim to bring both simulations to
comparable time scales. This choice does not influence re-
sults in any other respect. We use the common variable-time
algorithm35,36 of kMC simulations, which is especially effec-
tive at large bond energies. The numbers of vacancies in the
islands are calculated using the algorithm of Ref. 37. We
have used a 500�500 square mesh with periodic boundary
conditions for simulations with the bond energy 0.2 eV, and
a 300�300 mesh for simulations with the bond energy
0.4 eV. The simulation runs were repeated 30 times to obtain
sufficient statistics of the island size distribution.

Figures 1�a� and 1�b� present typical intermediate states in
the time evolution of the system for bond energies of 0.2 eV
and 0.4 eV. One can see a qualitative difference in the
shapes of the individual vacancy islands in these two images.
In the case of the larger bond energy, the islands reveal facets
rounded at the corners, corresponding to the equilibrium
shape of 2D crystals at a given temperature.38 In contrast, in
the case of the smaller bond energy the islands are rounded.
Following the time sequence of the images, we find that the
islands randomly move on the surface and merge if they
touch each other. Figures 1�c� and 1�d� show a sequence of
snapshots in a fixed window cut out of the simulated mesh.
The behavior of the islands is similar to what is observed in
the STM experiments. In the case of smaller bond energy,
some density of individual vacancies is present in addition to
the vacancy islands. Emission of a vacancy is a possible,
albeit rare, event in our model. It is possible in the presence
of the infinite step edge barrier since it involves the motion
of atoms within the layer. When calculating the island size
distributions and the mean island sizes, these single vacan-
cies are excluded.

Figures 2�a� and 2�b� present the time evolution of the
mean linear size of the islands L�t�. The kMC results are
shown by circles, while the continuous lines are solutions of
the Smoluchowski equations, described in the following sec-
tion. We define the linear size of an island as the square root
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of the number k of vacancies in it, lk=�k, and find the mean
size L= �lk� by averaging over the island size distribution. In
the case of facetted islands, Eb=0.4 eV, the mean island size
follows a power law, L�t�� t� with the exponent �=0.47. The
behavior in the case of rounded islands, Eb=0.2 eV, is more
complicated. An apparent time exponent � is size dependent:
it decreases from about 0.36 for a mean island size of 10 to

approximately 0.29 for an island size of 50. We postpone
further analysis and the comparison with the numerical solu-
tion of the Smoluchowski equations �shown by lines in Figs.
2�a� and 2�b�� to Sec. IV.

The island size distributions are substantially different for
the two bond energies under investigation, see Figs. 2�c� and
2�d�. The distribution of rounded islands at Eb=0.2 eV is
peaked at the mean island size. The contribution of indi-
vidual vacancies is not shown, since the vacancies are ex-
cluded when calculating the mean size, as discussed above.
For facetted islands, the kMC calculations give a broad mo-
notonously decreasing distribution, Fig. 2�d�, in contrast to
the peaked distribution for rounded islands in Fig. 2�c�. Fur-
ther analysis of the kMC simulations is given in Sec. IV,
using the simulations of individual island diffusion presented
below.

B. Brownian motion of individual islands

With the aim to understand the behavior of the ensemble
of islands, we perform kMC simulations of the Brownian
motion of individual islands in the framework of the same
model. We put a single island consisting of a given number
of vacancies k and record the position of its center of mass
rk�t�. The initial shape of the island does not play a role,
since the shape equilibration proceeds much faster than the
island motion. The vacancy islands move due to the motion
of atoms inside them, in particular, by detachment of an atom
from the island perimeter, its diffusion in the island, and
subsequent reattachment at another place. Figure 3 shows
typical trajectories of the centers of mass of islands of the
same size, l=30, for the two energies under consideration.
The trajectory for the smaller bond energy Eb=0.2 eV, Fig.
3�a�, is common for Brownian motion. In the case of a larger
bond energy Eb=0.4 eV, Fig. 3�b�, the trajectory consists of
discrete jumps with extended fluctuations of the mass center
position after each jump. The jumps are rare events. They
occur when an atomic row at a facet erodes by emitting
atoms that build an atomic row at another facet and advance
the island. The fluctuations are due to detachments of atoms
from rounded corners with subsequent attachments to other
corners, without moving the facets.

The mean-square displacements of the center of mass,
averaged over time intervals much larger than the jumps in
Fig. 3�b�, depend linearly on time, indicating the Brownian
character of the motion. We obtain the diffusion coefficients
Dk from the averages ��rk�t+�t�−rk�t��2�=4Dk�t. In the

FIG. 1. Snapshots of the simulated cells for bond energies Eb

=0.2 eV �a� and 0.4 eV �b�, at temperature T=400 K. Vacancy is-
lands at coverage 0.1 are simulated on a 500�500 grid in �a� and
300�300 grid in �b�. The islands are rounded in �a� and facetted in
�b�. Brownian motion and collisions of islands are shown in �c,d�.

FIG. 2. Time evolution of the mean size of vacancy islands for
bond energies Eb=0.2 eV �a� and 0.4 eV �b�, and the respective
island size distributions �c,d�. Circles in �a,b� and bars in �c,d� rep-
resent the results of kinetic Monte Carlo simulations. Full lines are
the solutions of the Smoluchowski equations. The size distributions
in �c,d� are taken at the time moments marked in �a,b�.

FIG. 3. Trajectories of the mass centers of islands of linear size
l=30 for bond energies Eb=0.2 eV �a� and 0.4 eV �b�. The length
of the scale mark is equal to the mesh period of the simulation
lattice.
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case of the bond energy Eb=0.2 eV, we take care of the
detachment of vacancies from the island. The simulation run
is interrupted if detachment take place, and a new run is
started. In the case of the bond energy Eb=0.4 eV, the de-
tachment is negligible. An average over 50 runs is taken to
have a good accuracy in the determination of Dk.

Figures 4�a� and 4�b� present the size dependence of the
diffusion coefficient for the two bond energies under consid-
eration. As above, we use the case of rounded islands at Eb
=0.2 eV as a reference. The diffusion coefficient of large
rounded islands, Fig. 4�a�, exhibits the Dk� lk

−2 dependence
characteristic for correlated detachment and reattachment of
atoms. This is the dependence described theoretically16–18

and observed in kMC simulations21,23–25,39 and STM
experiments.6,9,11,13,15

The diffusion coefficient deviates from the power law for
small islands. Such a deviation, to smaller values for vacancy
islands23,39 and to larger values for adatom islands,22,24 has
also been observed in the previous kMC simulations. The
deviation can be explained40 by recalling that the power law
dependence �1� is obtained by taking the Gibbs-Thomson
chemical potential proportional to the curvature of the island
perimeter, �k=2a2	 /kBTlk. Here lk /2 is the island radius, a2

is the area per atom, and 	 is the line tension, in our model
	=Eb /a. This expression for the chemical potential is the
first term in the expansion of the Gibbs-Thomson potential
�k=exp�
2a2	 /kBTlk� applicable when the curvature is
small enough. The two signs correspond to adatom and va-
cancy islands, respectively. If this condition is not fulfilled,
one can consider an effective size-dependent exponent40 �
=�0±2a2	 /kBTlk, where �0 is the limiting value for large
islands, that depends on the diffusion mechanism. A charac-
teristic length obtained by requiring that the argument of the
exponential function is equal to 1 is, for the conditions of
Fig. 4�a�, lk /a=2Eb /kBT=11.6. It agrees well with the kMC
results in Fig. 4�a�. We find that the size dependence of the
diffusion coefficient is well interpolated by the formula Dk
=D0 / �1+ �lk / l0�2�, or equivalently

Dk = D0/�1 + k/k0� . �3�

The corresponding curve calculated with the value k0=234
obtained by a fit is shown in Fig. 4�a� together with the kMC
results.

The size dependence of the island diffusion coefficient in
the case of facetted islands is completely different, see Fig.
4�b�. The diffusion coefficient Dk does not decrease with
increasing island size. Rather, it tends to a constant. For
smaller islands, we find notable variations of Dk. These
variations are not random and are much larger than a statis-
tical error in determination of Dk for a given island size. The
insert in Fig. 4�b� magnifies a small size range that we ex-
plored in detail. The diffusion coefficient systematically in-
creases and decreases, depending on the exact number of
vacancies in a cluster. In this insert, the diffusion coefficient
is plotted as a function of the number of vacancies in the
cluster, k= l2. The variation of Dk is obviously correlated
with the possibility to form a rectangular island with the
sizes of integer length �10�10, 10�11, etc.�. These varia-
tions are not relevant for our study of the kinetics of an
ensemble of islands of different sizes and we take Dk as
constant in further analysis. Thus, the facet erosion starts at a
corner and its probability does not depend on the island size,
which leads to a size-independent diffusion coefficient.16 The
case of a constant diffusion coefficient is described by Eq.
�1� with �=0, and hence Eq. �2� gives the time exponent of
the mean island size �=1/2. This is in agreement with the
kMC results, Fig. 2�b�, which give �=0.47.

III. SOLUTION OF THE SMOLUCHOWSKI EQUATIONS

A. Numerical solution method

The kinetics of an ensemble of islands that diffuse on the
surface and irreversibly merge as they touch each other can
be described by the set of Smoluchowski equations30–32,41

dnk/dt =
1

2 �
i+j=k

Kijninj − nk�
j=1

�

Kjknj . �4�

Here nj is the number of islands containing j units �vacancies
in our case� per unit area. The first term on the right-hand
side describes the formation of islands of size k by the coa-
lescence of pairs of smaller islands and the second term rep-
resents the removal of islands of size k by coalescence with
islands of all other sizes.

In the case of a general kernel Kij, the Smoluchowski
equations �4� have to be solved numerically. This is not
trivial, since one has to solve a system of tens of thousands
of coupled nonlinear ordinary differential equations. Con-
ventional finite difference and finite element methods can be
used,42,43 however they often face the dimension problem,
and hence have to introduce additional a priori assumptions
about the tail of the size distribution for large clusters and the
structure of the coagulation coefficients.

The Monte Carlo methods developed for solving the
Smoluchowski equations are free of such assumptions.44,45

Moreover, these methods adopt well to complicated kernels
and inhomogeneous problems �i.e., when the kernel depends
on time or spatial variables�.45,46 In this stochastic simulation
approach, the system of particles is considered as a jump
Markov process, which starts from the initial size distribu-
tion nk�0� and changes its state at random times, when col-
lisions of any two particles happen. The random time has an

FIG. 4. Island size dependence of the diffusion coefficient for
bond energies Eb=0.2 eV �a� and 0.4 eV �b�. The insert in �b� mag-
nifies a small size interval. Note that the insert shows the diffusion
coefficient versus the number of atoms in an island, while in the
other plots the linear island size is used.
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exponential distribution with a parameter depending on the
current state of the Markov chain. The collision between two
clusters of size i and size j is simulated as a random event,
according to a probability distribution which is proportional
to the coagulation kernel Kij.

Here we formulate the simplest version of the stochastic
algorithm for solving the Smoluchowski equations.44,45 To
obtain probabilities, we define a constant Kmax that is larger
than max	Kij
 over the current size distribution. Then, given
the state of the system at time tk, its state at time tk+1 is
evaluated as follows.

�1� Simulate a random time interval �t according to the
exponential distribution p���= exp�−��, and calculate
tk+1= tk+�t. Here

 =
N�N − 1�

2N0
Kmax, �5�

N0 is the initial number of particles, N�t� is the current num-
ber of particles, and N�N−1� /2 is the number of pairs of
particles. Hence, �t is given by �t=−�1/�ln r, where r is a
random number uniformly distributed on �0,1�. In practice,
when the value of N is large, the parameter  is also large,
the time step is quite small, and it is reasonable to take sim-
ply �t=1/.

�2� Take a pair of particles on random, and let i and j be
the numbers of atoms in them.

�3� With the probability pij =Kij /Kmax the particles i and j
coagulate, i.e., the numbers ni and nj are decreased by one,
the number ni+j is increased by one, and the total number of
particles N is decreased by one. Otherwise �i.e., with the
probability 1− pij� the state of the system is not changed.
Then, go to the next time step of the system evaluation.

When the number of clusters N decreases to say 50% of
the initial number of simulated clusters, we enrich the statis-
tics by doubling the system. It means that a copy of the
current system is added to the particle system. Accordingly,
N0 and N are increased by a factor of 2. After this point, the
system evolves further as described above. We start the
simulations by taking all particles as monomers. Hence, the
initial concentration in the Smoluchowski equations is in-
creased by a factor �−1 with respect to the physical param-
eter. Here � is the initial concentration of monomers �surface
coverage�. Equations �4� are preserved if the time t is multi-
plied with �. Therefore, after the simulations are completed,
we return to the physical time by transforming t→ t /�.

It can be shown that the process converges in a probabi-
listic sense to the solution of the Smoluchowski
equations.45,47 A large number of numerical experiments con-
firm the convergence of the method for various coagulation
kernels used in practice. When using this algorithm, colli-
sions with small probabilities pij are realized very rarely. The
simulations can be essentially accelerated48 by dividing the
set of possible collisions into subsets, each subset containing
collisions with close probabilities. Then, the value Kmax is
determined separately for each subset and becomes close to
the relevant values of Kij. We use the advanced algorithm in
the simulations presented below.

B. Brownian kernel for two-dimensional problem

The kernel Kij describes the rate at which two clusters,
containing i and j atoms respectively, meet to form a single
cluster containing i+ j atoms. In the case of Brownian mo-
tion, the original calculation was given by Smoluchowski41

for the three-dimensional problem. This calculation is usu-
ally generalized to a d-dimensional problem and then applied
to d=2, which gives the simple result Kij =2��Di+Dj�.43,49

However, this calculation is valid for d�2, since it is based
on the steady-state solution of the diffusion equation that
approaches a constant limit �as 1/rd−2� for r→�. The solu-
tion of the 2D diffusion equation behaves as ln r, which re-
sults in a divergence that has to be removed.

In more detail, the rate of reaction of a cluster of size i
with the clusters of size j in the case of Brownian motion is
given by the radial diffusion current of imers to the jmer and
jmers to the imer, J=Ji+Jj. The current Jj is given by Jj
=Dj�cj /�r. Here cj�r� is the concentration of jmers at a dis-
tance r from the imer. The concentration field is described by
the steady-state diffusion equation �2cj =0, with two bound-
ary conditions. First, cj�r�=0 at r=Ri+Rj meaning that jmers
disappear by reaction when they reach the surface of imer.
The second boundary condition imposed in the three-
dimensional case is cj���=nj, the mean concentration of
jmers. This second condition cannot be directly applied in
the two-dimensional case, since cj�r� diverges at infinity.

The solution of the two-dimensional problem can be
found in an “effective medium” approach50 where the con-
centration field is self-consistently screened by surrounding
clusters. The radial flux of jmers is given by50

Jj�r� = DjnjK�r/�� , �6�

where � is a screening length defined below, the function
K�x� is defined as

K�x� = 2�xK1�x�/K0�x� , �7�

K0�x� and K1�x� are modified Bessel functions. Then, the
coalescence kernel is

Kij = �Di + Dj�K�Ri + Rj

�
� . �8�

The �time dependent� screening length � is defined by the
self-consistency constraint as50

�−1 = 
0

�

K�r/��n�r,t�dr . �9�

The problem is highly nonlinear: to find the coagulation
coefficient, we have to know the size distribution n�r , t�. In
our calculations, we obtain the screening length � at each
time step by solving Eq. �9� for the actual size distribution,
and then evaluate the coagulation kernel �8�. We find that the
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screening length is fairly insensitive to the shape of the size
distribution. The quantity �r� /�, where �r� is the mean size,
as a function of the coverage is presented in Fig. 4 of Ref. 50
for some particular island size distribution. We find that the
use of this plot, instead of solving Eq. �9�, already gives a
reasonable accuracy for the island distribution and kinetics.
In this approximation, one writes the argument in the form
r /�= �r / �r����r� /�� and uses the value �r� /� taken from Ref.
50 for a given coverage.

Figure 5 compares the numerical solution of the Smolu-
chowski equations with the screening-corrected kernel �8�,
where the diffusion coefficients are taken size independent,
and the solution obtained with the common approximation
Kij =2��Di+Dj�, where the diffusion coefficients are also
size independent. Figure 5�a� shows that the screening cor-
rection of the kernel has rather little effect on the time de-
pendence of the mean island size: the time exponent be-
comes 0.49, to be compared with 1/2 for the constant kernel
case. In contrast, the kernel correction substantially changes
the island size distribution, Fig. 5�b�. The constant kernel
allows analytical solution of the Smoluchowski equation and
gives rise to a self-similar size distribution presented below,
Eq. �11�. This distribution, shown in Fig. 5�b�, is peaked at
the mean island size. The screening-corrected kernel gives
rise to a monotonously decreasing distribution. The distribu-
tion changes at the initial stages of coarsening and then
reaches a self-similar form with a large fraction of small
islands. This distribution is in a good agreement with the
results of our atomistic kMC simulations, as compared in
Fig. 2�d�.

Figure 6 explores the effect of screening for the size-
dependent diffusion coefficients �3�. Similarly to the case of

the constant diffusion coefficient presented in Fig. 5, the
screening has little effect on the time dependence of the
mean island size L�t�. Both curves in Fig. 6�a�, with and
without screening, tend to the t1/4 asymptotic for the linear
island sizes much larger than �k0 in Eq. �3�. In this limit, the
diffusion coefficients Dk=D0k0 /k give rise to the scaling
laws �1� and �2� with the exponents �=2 and �=1/4. The
island size distributions calculated for the diffusion coeffi-
cients �3�, Fig. 6�b�, also evolve at large times to the limiting
distribution corresponding to the case of homogeneous dif-
fusion coefficients. This behavior agrees with the results of
Kandel51 who showed that, in the case of kinetic scaling, the
size distribution evolves into a universal dynamically se-
lected distribution. The short-time distribution is forgotten on
long times. The evolution of the size distribution on interme-
diate times, Fig. 6�b�, is in a good agreement with the results
of out kMC simulations, Fig. 2�d�.

For smaller island sizes, the result for the diffusion coef-
ficients �3� notably deviates from that limit. The mean island
size reveals a markedly larger time exponent up to a size of
about 50. This is in a good agreement with our kMC simu-
lations of the coalescence, Fig. 2�a�, where apparent time
exponents larger than 1/4 are observed in the size interval
available for the atomistic simulations. Numerical solutions
of the Smoluchowski equations allow us to extend the analy-
sis to much larger sizes and we find that the asymptotic t1/4

law is finally reached. Figure 2�a� also shows that a conclu-
sion regarding the coalescence mechanism, drawn in experi-
ments from a quite limited island size range, may be errone-
ous.

The effect of screening qualitatively modifies the size dis-
tribution at the initial stages of coalescence. Similarly to the
case of constant diffusion coefficient, it results in the in-
crease of the fraction of small islands. This is in a good
agreement with the results of our kMC calculations, Fig.
2�d�. When the mean island size exceeds about 30, the effect
of screening diminishes.

C. Analytical solutions

The case of a constant kernel allows an analytical solution
of the Smoluchowski equations. We found in Sec. II B that
the facetting of the islands gives rise to constant �size inde-
pendent� diffusion coefficients. Hence, if the screening effect
is ignored and the common approximation Kij =2��Di+Dj�

FIG. 5. Time dependence of the mean island size �a� and distri-
bution functions �b� obtained by numerical solution of the Smolu-
chowski equations for the screening-corrected kernel �8� with the
size-independent diffusion coefficients Dj and for a constant kernel
Kij =2��Di+Dj�.

FIG. 6. Time dependence of the mean island
size �a� and distribution functions �b� obtained by
numerical solution of the Smoluchowski equa-
tions for the diffusion coefficient Dk=D0 / �1
+k /k0� and by the approximate formula �11�.
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is used, an analytical formula to compare with the atomistic
kMC simulations can be obtained.

The solution for constant kernel was obtained by
Smoluchowski41 in the form nk=n0�t /��k−1 / �1+ t /��k+1,
where n0 is the initial concentration, �= �Kn0 /2�−1, and K
=4�D is the size-independent kernel. For large times, t��,
the distribution becomes exponential, nk= �� / t�2 exp�−k� / t�.
To compare with the kMC results in Fig. 2�d� we have to
proceed from the number of vacancies in an island k to the
linear size lk=�k. Then, the island size distribution can be
written as

F�l/L� =
�

2

l

L
exp�−

�

4
�l/L�2� . �10�

The solid line in Fig. 5�b� shows this distribution.
In the case of rounded islands for the bond energy Eb

=0.2 eV, an approximate analytical solution of the Smolu-
chowski equations can be obtained for large times, when the
mean number of vacancies in the islands is large compared to
k0 in Eq. �3� and the scaling law �1� with �=2 holds. Then,
the kernel Kij becomes homogeneous, Ki,j =−�/2Kij for any
, and the asymptotic size distribution F�l /L� is31,43,49

F�l/L� =
2W

��1 + �/2�
�Wl/L�1+�e−�Wl/L�2

, �11�

where W= �1+� /2���3/2+� /2� /��2+� /2�. Note that Eq.
�10� is a particular case of Eq. �11� with �=0. For �=2, one
has W=3�� /4. The approximate solution �11�, shown in Fig.
6�b�, well agrees with the numerical solutions of the Smolu-
chowski equations.

IV. DISCUSSION

Facetting is the phenomenon that distinguishes the crys-
talline state from a liquid. Facetting of two-dimensional is-
lands on a crystal surface follows the same general laws as
the facetting of a crystal itself.38 Our kMC simulations show
that the Brownian motion of islands and their dynamic coa-
lescence qualitatively change when facetting takes place. The
motion of a facetted island consists of a series of discrete
jumps, Fig. 3�b�, when whole rows of atoms detach from a
facet and reattach to another facet. As a result, the diffusion
coefficient of an island does not decrease with increasing
island size, Fig. 4�b�. If the screening effects are not taken
into consideration, the dynamic coarsening of facetted is-
lands is described by the scaling laws �1� and �2� with �
=0.

In the case of rounded islands at smaller bond energies,
the power law �1� for the size dependence of the island dif-
fusion coefficient applies to sufficiently large islands �diam-
eter larger than about 15a�. The exponent �=2 points to a
correlated detachment and subsequent reattachment of atoms
as the diffusion mechanism.16–18 However, for small islands,
the diffusion coefficient found in the kMC simulations nota-
bly deviates from the power law to smaller values, Fig. 4.
The origin of the deviation has already been discussed in
Sec. II B.

The “effective medium” screening50 is a peculiarity of
diffusion in two dimensions. It removes the singularity of the
d-dimensional diffusion equation at d=2. We have derived
the kernel �8� for the Smoluchowski equations to describe
Brownian motion of islands in two dimensions. The screen-
ing has rather little effect on the time dependence of the
mean island size but substantially modifies the island size
distributions, especially for facetted islands. As a result of
screening, the fraction of small islands notably increases.
The distribution of facetted islands with size-independent
diffusion coefficient becomes monotonously decreasing
function. The numerical solution of the equations well agrees
with the results of atomistic kMC simulations, Fig. 2�d�.

The bond counting ansatz gives us just one relevant di-
mensionless parameter, the ratio of bond energy to tempera-
ture. Facetting takes place when this parameter is large
enough. This ansatz, together with the step edge barrier, pro-
vides diffusion and coarsening of vacancy islands. The same
model applied to adatom islands would cause Ostwald ripen-
ing. It is not directly applicable to metal �100� or �111� sur-
faces, since the experiments4–14 show that in these systems
the detachment of atoms from the island periphery is prohib-
ited and the island motion proceeds due to atom migration
along the periphery. More sophisticated models are devel-
oped for kMC simulations of these systems.19–27 However,
the experiments on the Ag�110� surface reveal the terrace
diffusion as driving force for Brownian motion of vacancy
islands.15 An exponent �=2 in Eq. �1� is found, which agrees
with our simulations in the case of small bond energies. The
island size independent diffusion coefficient and the monoto-
nously decreasing island size distribution that we obtain for
large bond energies were not previously observed.

V. CONCLUSIONS

The appearance of facets in the equilibrium island shape,
through either increasing the bond energy or decreasing the
temperature, qualitatively change both the Brownian motion
of individual islands and their coarsening kinetics. We show
by kinetic Monte Carlo simulations that the island diffusion
coefficient for facetted islands becomes size independent, the
mean island size follows the L� t1/2 law, and the island size
distribution becomes broad and monotonously decreasing.

Numerical solutions of the Smoluchowski equations by a
Monte Carlo method allow us to follow the long-term evo-
lution of the island distribution. The kernel of the Smolu-
chowski equations for Brownian motion in two dimensions
is derived in an “effective medium” approach. We find that
the screening correction gives rise to a qualitative change of
island size distribution but has rather little effect on the time
dependence of the average island size. The solutions of the
Smoluchowski equations are in a good agreement with the
results of our atomistic kinetic Monte Carlo simulations.
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