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A consistent quantum-statistical theory of equilibrium graphitization of diamond is suggested based on the
truncated harmonic oscillator model. The graphitization is caused by the interaction of carbon atoms with
phonons, while the essential role is played by spontaneous emission of acoustic phonons. The model allows us
to carry out the analytical description of the process in a general form all the way to estimations of the
observable numerical values. The values found are compatible with the computer simulation results obtained
independently by several researchers. It turns out that the initial state of carbon sp3 �diamond� is highly
unstable and can, at high temperatures, spontaneously convert to sp2 �graphite� on a time scale of 10−14 s. This
transition is the base for graphitization. After the process has started, it slows down because of saturation
effects. The temperature dependence of graphitization rates has been established. The developed theory of
equilibrium graphitization can be considered as a starting point for consistent study of the later stages of
graphitization, when the saturation is taken into account; as well as for the study of nonequilibrium graphiti-
zation in laser or electron beams.
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I. INTRODUCTION

Diamond is a material of unique physical properties, find-
ing an increasing range of applications in various areas of
technology and industry. One example is laser fabrication of
diamond draw plates for production of thin wires or bearings
that find applications in precision devices. The laser ablation
taking place in this process is not sufficiently well studied. In
particular, the role of the process of turning diamond into
graphite is not well understood, although the fact that dark
graphite deposits appear on diamonds as a result of laser
ablation is well known.1,2 Another example is making dia-
mond components for optics and especially laser applica-
tions, and also high-current switches and other components
designed to operate with intense optical beams and strong
electric fields. Such components suffer slower degradation.
One possible degradation mechanism of diamond compo-
nents is connected with turning diamond to graphite.

Many of the diamond and diamondlike film properties are
well understood. Others still need to be explored because
they are particularly interesting for theory and experiment.

It is well known that the diamond form of carbon can
spontaneously transit to the graphite form.3,4 The term
“graphitization” refers to the transition of carbon from the
sp3 �diamond� to the sp2 state �one of the graphite forms�.
This process has been experimentally studied in detail5–7 at
different temperatures, in various buffer gases and in
vacuum. It was shown that graphitization is accompanied by
reducing the sample density and increasing its volume. It has
been proven that some free volume is required for the graphi-
tization onset, i.e., the graphitization takes place either near
structural defects inside the sample, or at its surface. With
time, the near-surface graphite/diamond interface goes
deeper inside the sample, and then the entire sample turns to
graphite. The duration of this transformation depends on the

environment content and on the temperature. The direct and
catalytic types of graphitization are usually considered.5,6

The direct type of graphitization is a spontaneous transi-
tion sp3→sp2. It takes place with appreciable rate5,6 in
vacuum or in passive gas atmospheres at temperatures over
2000 K. This type of graphitization is studied in Ref. 8 as an
autocatalytic process.

A theoretical analysis of graphitization is carried out5–7 in
the so-called kinetic approximation, when the process rate
was arbitrarily, “from general considerations,” ascribed the
Arrhenius character R�exp�−Ea /kT�. The activation energy
Ea and other parameters were chosen to match the experi-
mental results. The diamond and graphite anisotropy had to
be ignored, because taking it into account would make the
task practically impossible.

In presence of water, hydrogen, oxygen, or some metals,
catalytic graphitization occurs. This process can be observed
near catalysis centers at 2000 K and lower.7–9

The above-mentioned works give an empirical description
of the graphitization rather than it being consistently derived
from quantum mechanics first-principles theory. Therefore a
consistent theory of graphitization is needed. In spite of a
large amount of experimental data on graphitization of the
bulk diamond and diamondlike films, its mechanisms are not
clearly understood. It appears natural, however, to consider
the direct graphitization dominant, and to study it first.

The major theoretical efforts directed at the study of this
type of graphitization �both at high-temperature equilibrium
and at nonequilibrium, e.g., in strong laser fields� lie in the
area of numerical simulation.10–12 The simulations took ad-
vantage of the fundamental dynamics equations for an en-
semble of atoms. Just like an analytical solution, this requires
knowledge of the crystal geometrical and dynamic constants.
The underlying physical model represented a crystalline
cluster of a few hundred carbon atoms in the sp3 state, which
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was tracked for several picoseconds. The simulation is lim-
ited to several dozens of elementary atomic jumps, a part of
which led to transitions into the sp2 state. The calculations
have shown10 that the graphitization becomes noticeable al-
ready after 0.1 ps from the start of the simulation. Physical
explanations for such a quick graphitization onset in Ref. 10
are absent. On one hand, such a short time appears to con-
tradict the experimental data showing that development of
graphitization takes minutes or even hours. For example,13 a
0.1 karat diamond completely turns into graphite in
10–30 min at 2200 K; and in 10–180 s at 2400 K. On the
other hand, in laser fields,12 the time of graphitization onset
is less than 100 fs. Such a fast graphitization onset agrees
with our estimates �shown below� for the initial stages of
graphitization.

The main theoretical concepts of the “kinetic approxima-
tion” are based on the following two statements.5–7

First, graphitization takes place if the atom is surrounded
by a sufficiently large free volume. In other words, graphiti-
zation takes place at the surface, near dislocations, vacancies,
etc. Graphitization of thin films or small polycrystalline
samples is particularly fast. Laser radiation can cause the
formation of very small graphite “droplets” inside an ideal
diamond crystal.14

Second, in order to participate in graphitization, an atom
needs to jump over a certain potential barrier, i.e., to acquire
energy exceeding the activation energy Ea �in principle, a
tunneling transition with atom energy less than Ea is also
possible; however, it is very unlikely for heavy particles such
as carbon atoms�.

In the framework of the above statements, two major
graphitization mechanisms are considered. The first �i�
mechanism6,7,15 corresponds to a two-stage graphitization,
i.e., a real departure of an atom from the diamond surface �in
which case Ea is the sublimation or evaporation energy�, and
the following recondensation into the “graphite state.” The
second �ii� mechanism11,16 corresponds to the one-step tran-
sition sp3→sp2.

There also exists a concept that diamond undergoes
graphitization not atom by atom, but by small clusters con-
sisting of several carbon atoms.17,18

In this paper, we suggest a graphitization model that is
based on the fundamental principles of quantum statistics.
This model will allow us to treat the problem analytically all
the way to evaluating the experimental observables. In the
present work we will only consider the initial stages of
graphitization. In the following, the scope of our approach
can be expanded to later times. We will follow the lines of
the accepted theoretical approach and neglect the anisotropy
of the diamond lattice. We will study a quantum-mechanical
transition of individual carbon atoms from the state sp3 to the
state sp2 using the truncated harmonic oscillator method. Us-
ing this method we will derive analytical expressions for
mean kinetic rates of graphitization. These expressions will
allow us to evaluate the graphitization rates using only the
standard parameters of carbon, diamond, and graphite, with-
out auxiliary assumptions and empirical data. The results of
the evaluation agree with the simulation results very well.

The theoretical study of the initial stages of equilibrium
graphitization is important for understanding of this funda-

mental physical phenomenon and for the further understand-
ing of nonequilibrium graphitization caused by a particle
beam or laser radiation. These types of graphitization are of
major technological importance.

II. MODEL OF THE GRAPHITIZATION TRANSITION

In the truncated harmonic oscillator approximation dis-
cussed above, graphitization resembles the processes of de-
fect generation, diffusion, sublimation, and impurity desorp-
tion. This allows one to expect that the same mathematical
tools can be applied to graphitization as have been used for
the study of those process. Following Refs. 19–22 we de-
velop a theory for the initial stages of graphitization. We will
assume that the potential confining an sp3 carbon atom is a
parabolic well with the depth Ea1 and the width 2l1=a1,
where a1 is the diamond lattice constant �see Fig. 1�. The
atom performs local oscillations in its well with frequency
�1=�K1 /M, where M =2�10−23 g is the carbon atom mass
and the effective spring constant K1 can be found from
1
2K1l1

2=Ea1. It is remarkable that the numeric value of K1 is
close to Ela1, where El is Young’s modulus for diamond. In
the well, there exist Na1=Int�Ea1 /��1� of equidistant levels.
Transitions between these levels occur with emission or ab-
sorption of phonons. If an sp3 atom receives the energy Ea1 it
is raised to the highest level and can evaporate from the
crystal surface. Then, it can recondense into the graphite sp2

state. Therefore, we have the graphitization mechanism �i�.
The formal description of this mechanism is similar to that
for thermodesorption of impurities, and one can use the re-
sults of Ref. 22 to determine the rate of graphitization. Ad-
ditional discussion and estimates are provided below.

Besides the above studied sp3 well, there is also an empty
sp2 well on the surface. The latter well has parameters Ea2,
l2, and �2 �see Fig. 1�. Affected by the phonons, an sp3 atom
can disappear without going over the barrier Ea1, and a real
sp2 atom will appear instead. This is graphitization of the
type �ii�; here the transition can originate from any initial
level n in the diamond well to any final level k in the graph-
ite well. Such a transition is the usual quantum-mechanical
transition between a given initial and all allowed final states.
Since the atom sits on the surface, it always has enough free
volume to expand. Due to the possibility of graphitization by
transition to a final state k lying lower than the initial state n,

FIG. 1. Potential wells for a diamond atom �Ea1 , l1� and a graph-
ite atom �Ea2 , l2�; the arrow shows the graphitization transition from
the level n to the level k accompanied by spontaneous emission of
phonon ��q.
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such transition time can be very short, e.g., of the order of a
half period of the diamond atom local oscillations, �t
�T1 /2�� /�1. A classical analog of this system is an un-
stable system consisting of a small weight placed on top of a
smooth sphere. Substituting the typical value of the activa-
tion energy and the carbon atom mass we find �1
�1014 s−1 �see the estimates in Sec. VIII�, and hence the
graphitization onset time should be of the order of 10−14 s.
Such a short time scale is confirmed by mathematical
modeling10–12 as well as by our estimates �see below�.

III. THE HAMILTONIAN OF THE SYSTEM

The initial form of the system’s Hamiltonian should de-
scribe both the diamond and graphite atoms of carbon.
Therefore the unperturbed Hamiltonian should have the fol-
lowing form:

H�x� = H1�x� + H2�x� , �1�

where the indices 1 and 2 represent the diamond atom and
graphite atom, respectively; the x axis is directed normally to
the flat surface of the sample, pointing outside.

Each term in Eq. �1� has the form

Hi�x� =
P2

2M
+ Ui�x�, i = 1,2, �2�

where P� Px is the operator of the x projection of the carbon
atom momentum and Ui�x� is the potential energy of the
atom on the surface. This potential is determined by all at-
oms of the sample.

The truncated harmonic oscillator approximation consists
of replacing the unknown function Ui�x� by the following
expression:19–22

Ui�x� = − Eai +
1

2
Kix

2, 0 � x � 2li, Ui�2li� = 0. �3�

Consistently with Eq. �3�, the atoms can be considered as
harmonic oscillators with energies

En = − Ea1 + �n + 1/2���1 � 0, �1 =�K1

M
, �4�

and

Ek = − Ea2 + �n + 1/2���2 � 0, �2 =�K2

M
, �5�

correspondingly for the diamond atom and graphite atom.
The eigenfunctions of the operators �3� can be represent-

ed23 as

�n�x� = NnHn��x�exp�−
1

2
�2x2�, �4 = MK1�−2, �6�

�k�x� = NkHk�	x�exp�−
1

2
	2x2�, 	4 = MK2�−2, �7�

where Hn and Hk are normalized Hermitian polynomials.
The internal degrees of freedom of atoms are not consid-

ered in the present treatment, i.e., the atoms are described as

indivisible structureless particles that can only transit be-
tween states n and k.

The above description is similar to one we have used in
Refs. 22 and 24 but it has important distinctions, brought
about by the specifics of the graphitization process that make
one consider two types of particles �sp3 and sp2�. This sub-
stantially changes the form of the matrix elements and the
necessary mathematical operations. For instance, functions
�7� should be treated as the initial-state wave functions for
graphitization types �i� and �ii�, and also as the final-state
wave functions for the type �ii�. For the type �i�, the final
wave function should be a plane wave with a certain momen-
tum �compare to the treatment of desorption processes in
Refs. 22 and 24�.

Consider the thermographitization caused by interaction
of atoms with phonons. This interaction is accounted for by

the displacement operator 
�,22,24,25 introducing the creation
and annihilation operators bq

† and bq of a phonon with qua-
simomentum q� , and the constant 
�C�,22,24,25 which deter-
mines the coupling of atom to various normal modes of the
lattice.

To describe graphitization, it is sufficient to limit the treat-
ment to the phonons propagating normally to the surface.
Turning this perturbation on means that operators �3� are
transformed as follows:

Ui�x� Þ Ui�i�x,
�� =
1

2
Ki�i�x + 
��2 � Ui�x� + xKi
 , �8�

where the last term describes the single-photon transitions.
Two-photon transitions with amplitudes proportional to the
square of the displacement from equilibrium, 
2, are not con-
sidered.

The complete Hamiltonian of the system has the follow-
ing form:

H = H0 + V�x�, H0 =
P2

2M
+ U1�x� + U2�x� . �9�

The unperturbed Hamiltonian H0 determines the above-
mentioned eigenfunctions and energy eigenvalues. The per-
turbation is

V�x� = xK	
q


�C��bqeiqx + bq
†e−iqx� . �10�

In Eq. �10�, the factor K equals K=K1+K2, which takes into
account the well-known fact that interaction with phonons is
possible in the initial diamond state as well as in the final
graphite state.

IV. SECOND QUANTIZATION AND INTERACTION
REPRESENTATION

The following study of graphitization is convenient to
carry out in terms of the second quantization. Consider the
field operator

��x� = 	
n

An�n�x� + 	
k

Bk�k�x� , �11�

where An and Bk are the annihilation operators of a diamond
atom in the n state and of a graphite atom in the k state,
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respectively. After the standard procedure of second quanti-
zation �see details in Refs. 22 and 24�, the perturbation op-
erator �10� becomes

V = K 	
n,k,q


�C�Bk
†An
��+ �bq + ��− �bq

†�

+ K 	
n,k,q


�C�An
†Bk

�+ �bq + 
�− �bq

†� + ¯ , �12�

where we omit all terms irrelevant for graphitization transi-
tions n→k and k→n.

The operator �12� includes the matrix elements of the
graphitization transitions:

��±� =� dx �k
*�x�x exp�±iqx��n�x� , �13�


�±� =� dx �n
*�x�x exp�±iqx��k�x� . �14�

Since we are presently studying the type �ii� graphitiza-
tion, both �n�x� and �k�x� are real functions �6� and �7�.
Therefore �i

*=�i and ��±�=
�±�.
The coefficients �13� and �14� will be calculated below.

Now we switch to the interaction representation by introduc-
ing the relations representing the energy conservation for the
processes we study. Transition to the interaction representa-
tion is a common quantum-mechanical operation. It yields a
time-dependent interaction operator

V�t� = K 	
k,n,q


�C�Bk
†An
��+ �bq exp� i

�
	1t�

+ ��− �bq
† exp� i

�
	2t�� + H.c., �15�

	1 = Ek − En − ��q

= Ea1 − Ea2 + �k + 1/2���2 − �n + 1/2���1 − ��q,

�16�

	2 = Ek − En + ��q

= Ea1 − Ea2 + �k + 1/2���2 − �n + 1/2���1 + ��q.

�17�

The above equations pertain to the graphitization type �ii�.
For comparison, we write down the equation22 responsible
for the energy conservation in type �i�:

	 = Ek − En − ��q =
P2

2M
+ Ea1 − �n + 1/2���1 − ��q.

�18�

From Eqs. �16�–�18� we see that the fundamental distinc-
tions between the graphitization types �i� and �ii� is in that
the type �i� is related to overcoming the potential barrier Ea1,
while for the type �ii� this is not necessary, although the
energy difference Ea1−Ea2 �or Ea1−Ea2±��q, to be exact� is
important.

V. THE PERTURBATION THEORY, THE SYSTEM’S
EVOLUTION OPERATOR, AND THE MEAN RATE

OF THERMOGRAPHITIZATION

Assuming that at the initial time the system’s wave func-
tion was ��t0�, we will introduce the evolution operator
u�t , t0�,26 so that ��t�=u�t , t0���t0�, u�t0 , t0�=1, which satis-
fies the Schrödinger equation in the interaction representa-
tion:

i�
�u�t,t0�

�t
= V�t�u�t,t0� . �19�

Knowing u�t , t0� we can find the wave function ��t� and the
statistical operator

��t� = u�t,t0���t0�u†�t,t0� , �20�

where �0 is the equilibrium �unperturbed� statistical operator.
Therefore all statistical averages can also be found:

�R�t = Tr
R��t�� = Tr
u†�t,t0�Ru�t,t0���t0�� . �21�

In particular the distribution function of the carbon atoms
in the graphite state can be found for the time t elapsed since
the graphitization onset:

f�k,t� � �Bk
†Bk�t = Tr
u†Bk

†Bku��t0�� . �22�

In practice, evaluation of the trace in Eq. �22� is associ-
ated with a few known problems, including the expressing of
multiparticle distribution functions via single-particle ones.
This particular problem is overcome in the framework of the
perturbation theory. However, this approach transforms Eq.
�22� into a quantum kinetic equation describing the graphiti-
zation process, which is very difficult to solve. It is much
easier to study the initial stages of the process, finding the
statistical mean rate of graphitization at those stages. To do
this, we will solve Eq. �19� perturbatively, keeping only the
first-order terms. Then,

u�t,t0� = 1 + u1�t,t0� ,

u1 = − 2�iK 	
k,n,q


�C�Bk
†An
��+ �bq��	1� + ��− �bq

†��	2��

+ An
†Bk
��+ �bq��	2� + ��− �bq

†��	1�� . �23�

The operator �23� is considered on the time interval t→−�
to t→�, which allows us to introduce Dirac’s � functions
expressing the energy conservation law for the n→k transi-
tion.

Equation �23� can be used in the framework of perturba-
tion theory to approximately calculate the trace �22�. To do
this, one has to make use of Wick’s theorem27,28 and of the
�-function properties. Then from Eq. �22� we arrive at

�f�k,t�
�t

=
2�

�
K2
1 − f�k,t��	

n,q
�
�C��2f�n,t�

� 
���+ ��2Nq��	1� + ���− ��2�Nq + 1���	2�� .

�24�

In Eq. �24� f�k , t� is the distribution function of graphite
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atoms at a time t, f�n , t� is a similar function for the diamond
atoms, and Nq is the equilibrium distribution function of
phonons with quasimomentum q.

Now we will use the approximation of short times and
study the initial stages of graphitization, disregarding the re-
verse processes.

First of all, we notice that during the early stages of
graphitization, there are very few of the sp2 atoms, so 1
− f�k , t��1. For the same reason, the initial distribution
function of the diamond atoms f�n , t�� f0�n�= f0�En� is the
usual Boltzmann distribution function normalized to the
number of diamond atoms Nc of the sample surface:

f0�n� = C exp�−
En

T
�

= C exp�Ea1

T
�exp�−

��1

T
�exp�− n

��1

T
� . �25�

In Eq. �25� we took advantage of Eq. �4� and substituted the
temperature T in energy units. The normalization constant C
is found from the condition

	
n

f0�n� = Nc, �26�

which yields

C = Nc
1 − exp�−
��1

T
��exp�−

Ea1

T
�exp���1

2T
� . �27�

After the simplifications we have made, the quantum-
kinetic problem is reduced to a much easier problem of find-
ing the statistical mean rate of the early stage graphitization.
In this case, the total graphitization rate per atom is

R =
1

Nc
	

k

�f�k,t�
�t

=
1

Nc
2�K2 	

k,n,q
�
�C��2f0�n�

�
���+ ��2Nq��	1� + ���− ��2�Nq + 1���	2�� . �28�

Before we find the final form of the graphitization type
�ii� rate, we need to calculate the factors ��±�.

VI. CALCULATING THE MATRIX ELEMENTS

Calculating the matrix elements for our problem is the
most mathematically intensive part of this paper. Similar cal-
culations are encountered in Refs. 22 and 24, although pres-
ently the integrands are more complex. Since the involved
transformations are so bulky, we start by a simplified de-
scription of the matrix element. For now we assume that the
factors � and 	 are equal; see Eqs. �6� and �7�. Then it
follows from Eq. �13� that

��±� = NkNn�
−�

�

dx xeiqx exp�− �2x2�Hn��x�Hk��x� .

�29�

Unfortunately, the complex exponent makes calculating �29�
so difficult that an exact solution is not feasible. A similar
situation arises in, e.g., absorption of light by atoms, and in

similar problems. In these problems the photon wave number
is considered small, and the exponential is put into a series
whose first term �unity� describes the absorption in the dipole
approximation. This approximation is usually accepted, al-
though the coordinate of the atom that absorbs light can take
on any values. In our case q is the phonon quasimomentum.
In the first Brillouin zone qa1�1, since most phonon wave-
lengths significantly exceed the diamond lattice constant a1.
Therefore in this work, we also will use the dipole approxi-
mation with respect to phonon quasimomenta, which simpli-
fies Eqs. �29� and �13�. This approximation also removes the
distinction between ��+� and ��−�. The remainder of the
factor �29�,

� = �
−�

�

dx x exp�− �2x2�Hn��x�Hk��x� , �30�

is well known from the theory of transitions between the
harmonic oscillator levels:

� =�
1

��2
�n + 1/2, k = n + 1,

1

��2
�n , k = n − 1,

0 in all other cases.
� �31�

The result �31� can be used as a limiting case in the general
description of the factor �13�.

Thus we are considering the factor �13� in the dipole ap-
proximation. Recalling that � and 	 are essentially the in-
verse widths of the potential wells, we can write �=�−	,
��0, � /	�1 �the estimates result in � /	�0.063�. In this
way a new small parameter emerges, which allows for fur-
ther simplifications of Eq. �13�. The first such simplification
is

exp�−
1

2
��2 + 	2�x2� � �1 −

�

	
	2x2�exp�− 	2x2� .

�32�

Next, the normalization constant product can be trans-
formed to

Akn � NkNn � 	�1 +
�

2	
���2k2nk!n!�−1/2. �33�

Finally, in the general case it can be shown that

Hn��x� � Hn�	x� + 2n
�

	
	xHn−1�	x� . �34�

Further transformations, too extensive to be given explic-
itly, make use of the recurrent relation 2yHm�y�=Hm+1�y�
+2mHm−1�y� to convert the terms proportional to x , x2 , x3 to
a form consisting of only Hermitian polynomial products and
a constant. If we now take into account the Hermitian poly-
nomial orthogonality, we arrive at the following expression
for �:
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� =
Akn

2	2 ���2kk!�
�n,k−1 + 2�k + 1��n,k+1�

+
Akn�

8	3 
− 2�k + 2��n,k−1 + 4�k2 − 1��n,k+1 − �n,k−3

+ 8�k + 1��k + 2��k + 3��n,k+3� . �35�

In Eq. �35�, the terms with indices k±1 correspond to tran-
sitions between the adjacent levels of the oscillators; while
the terms with indices k±3 take account of nonlinearity and
correspond to jumps over two levels. It is clear that the latter
processes are very unlikely and can be treated as small per-
turbations of the order � /	.

Taking Eq. �33� into account, and dropping the terms of
the order of �� /	�r for r�2, we arrive at

� =
1

�2	
��k�n,k−1 + �k + 1�n,k+1� +

�

2�2	2

k�k + 1�n,k+1

− �k + 1��k�n,k−1 + ��k + 1��k + 2��k + 3��n,k+3

− �k�k − 1��k − 2��n,k−3� . �36�

To conclude this section, we point out that calculating the
value of �36� poses no difficulty thanks to � symbols and to
the small parameter � /	.

VII. CALCULATION OF THE GRAPHITIZATION
MEAN RATE

In order to calculate the mean rate of graphitization �28�,
we will replace the sum over the phonon quasimomenta by
an integral. A standard substitution in the single-dimensional
case is25

	
q

F�q� =
1

2�
� dq F�q� . �37�

Substituting �37� and 
�C� �Refs. 22, 24, and 25� into �28� we
obtain

R =
1

Nc

2�

�
K2	

k,n
���2f0�En�I�k,n� , �38�

where we defined

I�k,n� =
1

2�
� dq

�

3��q

Nq��	1� + �Nq + 1���	2�� .

�39�

The term proportional to Nq corresponds to the processes
accompanied by a phonon absorption, while the term propor-
tional to Nq+1 corresponds to phonon emission, the unity
representing spontaneous emission. The integral in Eq. �39�
is taken over the first Brillouin zone.

Considering the acoustic phonons �diamond is a one-
atomic crystal� we assume ��q=uq, where u is the speed of
sound. Then the integral �39� transforms to

I =
�

6��u
� d�q

�q

Nq����q − E� + �Nq + 1�����q + E�� ,

�40�

where

E � Ea1 − Ea2 + �k + 1/2���2 − �n + 1/2���1. �41�

Integrating �40� we arrive at

I =
�

6��u
� 1

E
Nq�E� −

1

E

Nq�− E� + 1�� , �42�

where both terms are positive, since for various k and n there
may be E�0 as well as E�0. It is interesting to point out
that the factors 1 /E resembles the usual energy denominators
arising in description of nonresonant transitions in systems
with discrete spectrum.

Substituting the derived results into Eq. �38�, we can take
the sum over the final states k. The complete expression for
the mean rate of graphitization which comes from this sum-
mation is given in Appendix A.

Taking into account the comments from Appendix A con-
cerning the role of spontaneous processes, and assuming
Nq�1, we will only retain one term of �A1�:

R �
1

Nc

K2

6�u	2	
n

nf0�En�
1

�4
. �43�

Here we need to take into account that �1−�2=����1,
which can be seen from Eqs. �4�–�7� and from the definition
�=�−	. Then we see that

�� � 2�1
�

	
, �44�

which allows us to simplify Eq. �A2� for the �4 as follows:

1

�4
�

1

��1 − Ea1 + Ea2
�1 +

4�n − 0.5���1

Ea1 − Ea2 − ��1

�

	
� . �45�

Neglecting the small term inside the large parentheses of Eq.
�45�, we derive, instead of Eq. �43�,

R �
1

Nc

K2

6�u	2

Z

��1 − Ea1 + Ea2
, �46�

where the sum

Z = 	
n

nf0�En� �47�

can be calculated exactly �see Appendix B�:

Z =
Nc

1 − exp�− ��1/T�
exp�−

��1

T
� . �48�

Taking the sum �47� and �48� in the exact form means that
the contributions of all levels n to the graphitization rate are
accounted for. The presence of the factor n in Eqs. �46� and
�47� confirms our earlier conclusion22 that the probability of
interaction of phonons with an atom is proportional to the
number of maxima of the oscillator’s wave function, which
increases with the level number. This confirmation appears
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especially valuable coming from the problem substantially
different from the one considered in Ref. 22.

From Eqs. �47� and �48� we find the rate of graphitization
type �ii�:

R �
1

6�u

K2

a1
2	2

1

��1 − Ea1 + Ea2

exp�− ��1/T�
1 − exp�− ��1/T�

=
nc

6�u

K2

	2

1

��1 − Ea1 + Ea2

exp�− ��1/T�
1 − exp�− ��1/T�

. �49�

Deriving Eq. �49�, we assumed all linear sizes of the
quantization volume equal to unity, and normalized the cal-
culations to one atom. Thus the factor a1

2 appeared, denoting
the surface area taken by a single diamond atom. Instead of
introducing this factor we could express the full rate of
graphitization via the surface concentration nc of the dia-
mond atoms, arriving at the same value for the rate.

Equation �49� is our final result for the graphitization �ii�.
We will use this result for numerical estimates. Expression
�49� shows the graphitization rate dependence on the main
parameters of the diamond crystal. It is worth mentioning
that the exponentials in �49� depend on the oscillator energy
�� and not the sublimation energy Ea1. It is also noteworthy
that in �49� we recognize Planck’s formula for an oscillator
with frequency �1:

N�1
=

1

exp���1/T� − 1
�

exp�− ��1/T�
1 − exp�− ��1/T�

. �50�

VIII. PARAMETER SET AND EVALUATION OF THE
GRAPHITIZATION RATE

The main parameters of the problem will be assumed as
follows: M =2�10−23 g, a1=1.78�10−8 cm, a2=2�10−8

cm, �=3.51 g/cm3, u=1.75�106 cm/s, Ea1=7.35 eV
�1.17�10−11 erg, Ea2=7.32 eV, �Ea=Ea1−Ea2=0.022 eV
�3.52�10−14 erg.

Then we find K1�2.95�105 cgse units, K2�2.34�105

cgse, and, according to Eqs. �4� and �5�, �1�1.22
�1014 s−1, �2�1.08�1014 s−1. Next, from the definition of
	 
Eq. �7�� we find 	�1.44�109 cm−1. Therefore for our
choice of parameters and for the temperature T�0.172 eV
�i.e., 2000 K� Eq. �49� yields R�2�1014 s−1. The estimate
based on the half of the local oscillation cycle yields R1/2
=2/T=�1 /��4�1013 s−1, which is approximately five
times smaller than what we just have found. However, if
Planck’s formula �50� is taken into account to determine the
level populations, the mean value of R1/2 increases by a fac-
tor 1.7, which reduces the discrepancy between R1/2 and R to
2.9. The threefold discrepancy is considered an excellent
agreement, for the given type of problem.

To evaluate the graphitization rate for type �i� we will use
Eq. �36� from Ref. 22,

R1 � Rd �
�2MK1

2

8a1
2	2���D


1 − exp�−
��1

T
��

� exp�−
��D

T
�	

n

�n + 1/2�
�����
���

exp�− n
��1

T
� ,

�51�

where the notation from the present work has been substi-

tuted; �D is the Debye frequency, �� is defined in Ref. 22,
and a1

2 is the surface area per one atom.
To obtain a comprehensive comparison of Eqs. �49� and

�51�, we replace n+1/2 by just n in the latter, and also, for
the order-of-magnitude estimates, replace �� by Mu2 /2.
Then the simplified Eq. �51� looks as follows:

R1 �
K1

2

4a1
2	2�u��D


1 − exp�−
��1

T
��exp�−

��D

T
�Z ,

�52�

where the sum Z is found from Eqs. �47� and �48�.
Taking into account that in diamond �D�2�1 and substi-

tuting the numbers from the parameters list above we find
Eq. �52� to yield

R1 � 1.4 � 1013 s−1. �53�

By comparing the values found from Eqs. �49� and �52�
we see that graphitization type �i� is more than an order of
magnitude slower than type �ii�.

IX. CONCLUSION AND DISCUSSION OF THE RESULTS

We have studied a fundamental physical problem, which
is also technologically important, the unique property of dia-
mond to spontaneously convert to graphite. The initial stages
of graphitization, that is, before the saturation turns on, are
studied. In contrast with the earlier research works, the se-
lected model allows us to build a consistent quantum theory.
This theory yields the mean statistical rate of the diamond-
graphite transition. This rate can be compared to experimen-
tal data directly, without invoking additional assumptions
and without fitting parameters. The following are the major
results of our work.

We have built a quantum-kinetic model for the initial
stages of the “true” graphitization of diamond, occurring
without any active impurities �catalysts�. Two types of such
graphitization have been considered: a two-stage graphitiza-
tion �i� which consists of detaching a carbon atom from the
surface and then its spontaneous recrystalization in the
graphite state, and a single-stage type �ii� which is related to
a carbon atom transition from the sp3 state directly to sp2.
The treatment has been carried out in the framework of first-
order perturbation theory which allows one to pay special
attention to the energetic of the processes.

The description is based on the concept of a truncated
harmonic oscillator. This model’s advantages come from its
self-evidence and plausibility, as well as with the possibility
to carry the analytical calculations all the way through, using
this model.

The stochastic force responsible for the graphitization
transition is due to the interaction of the surface carbon at-
oms with acoustic phonons. This interaction is considered in
the dipole approximation. Since graphitization requires the
high-frequency acoustic phonons, the main contribution
comes from their spontaneous emission. Experimental obser-
vation of phonons near the frequency �1 of local oscillations
of a carbon atom in its potential well may be possible. Such
an experiment could confirm or elucidate the mechanisms of
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equilibrium thermal graphitization of diamond.
It is found that the transitions n↔k±3, although allowed

by the presence in the system of suitable nonlinearities, do
not take place due to the relation max�q�3�1. However,
these transitions may become quite important for nonequilib-
rium graphitization in laser fields.

The derived results pertain to only the initial stages of
graphitization when the majority of the atoms is still in the
sp3 state. These stages are characterized by very large
graphitization rates, consistently with the graphitization on-
set time found by mathematical modeling of the process and
with the decay time of nonequilibrium state of the sp3 graph-
ite. In reality, the process should be substantially slowed
down as a result of saturation the surface with the sp2 atoms,
and of the consequent reduction of the free volume.

It is very interesting to point out that for the initial graphi-
tization stages, the Arrhenius factor exp�−Ea1 /T�, usually as-
sumed in the kinetic model, is absent. Instead, similar factors
appear, however, with lower activation energy. It turns out
that the two-stage graphitization is an order of magnitude
slower than the direct graphitization. The graphitization rates
depend on all local level populations, i.e., the model ac-
counts for graphitization transitions starting from all initial
states.

The concepts and methods developed in the present work
create the base for description of both the unfolded graphiti-
zation at large times, and the nonequilibrium graphitization
in strong laser fields or electron beams.

APPENDIX A

Taking into account the form of the integral in �42� and
taking the sum over k in �38�, we can find the following
expression for the mean rate of graphitization of type �ii�:

R �
K2

6Nc�u	2	
n

f0�En��n + 1��Nq��1�
�1

+
Nq + 1

�2
�

+
K2

6Nc�u	2	
n

f0�En�n�Nq��3�
�3

+
Nq + 1

�4
�

+
K2�2

24Nc�u	4	
n

f0�En��n + 1��n + 2�2

��Nq��1�
�1

+
Nq��2� + 1

�2
� +

K2�2

24Nc�u	4	
n

f0�En�n�n − 1�2

��Nq

�4
+

Nq��4� + 1

�4
� +

K2�2

24Nc�u	4	
n

f0�En��n + 1�

��n + 2��n + 3��Nq��5�
�5

+
Nq��6� + 1

�6
� +

K2�2

24Nc�u	4

�	
n

f0�En�n�n − 1��n − 2��Nq��7�
�7

+
Nq��8� + 1

�8
� . �A1�

The two first terms in �A1� are the most important, while the
other four should be treated as small perturbations of the
order � /	. The terms have different physical meanings and
correspond to different transitions. Those depending on

�1–�4 correspond to transitions between the adjacent levels.
Those depending on �5–�8 arise from nonlinearity of the
interaction with respect to the coordinate x and correspond to
transitions over two levels to the third one.

The energies �i have the following form:

�1 = − �2 = Ea1 − Ea2 + �n + 3/2���2 − �n + 1/2���1,

�3 = − �4 = Ea1 − Ea2 + �n − 1/2���2 − �n + 1/2���1,

�5 = − �6 = Ea1 − Ea2 + �n + 7/2���2 − �n + 1/2���1,

�7 = − �8 = Ea1 − Ea2 + �n − 5/2���2 − �n + 1/2���1.

�A2�

It should be taken into account that �i are the arguments of
the phonon distribution functions Nq��i� and that the in-
equalities setting the maximum phonon energy to the Debye
energy o��i��Deb should hold. Positivity of �i is provided
by the choice of the index n in the sums �A1� and means that
a particular channel of graphitization is actually possible. By
this reasoning, in the first two terms of �A1� only the terms
with �1 and �4 are retained, while the terms with �2 and �3
are discarded.

The terms containing Nq correspond to processes with
phonon absorption, i.e., to transitions to the final state k,
which is higher than the initial state n. The terms with Nq
+1 correspond to phonon emission and transitions to a lower
level k. Since the phonons involved in the transitions be-
tween levels have relatively high energies ��q���1 �see the
estimates�, it is to be expected that the principal contribution
to the graphitization transitions will be made by the pro-
cesses involving spontaneous emission of phonons. There-
fore to make estimates, it is sufficient to keep in �A1� only
the term proportional to 1/�4.

Finally, the factors 1 /�i are similar to the energy denomi-
nators that appear in nonresonant processes of the first order
in the systems with a discrete energy spectrum.

APPENDIX B

There are two possible approaches to evaluation of the
graphitization rate. One way is to calculate the individual
contributions of transitions from selected levels n. Alterna-
tively, one can look for the total rate, taking the sum over n.
In the latter case, one needs to calculate the following sum:

S = 	
n=0

N

n exp�− n�� , �B1�

where �=��1 /T and N�1. Usually the summation over all
initial states is a complicated problem which is seldom
solved exactly. Our case, however, happens to be a lucky
exception, since the sum in Eq. �B1� is relatively easily
found.

Equation �B1� can be rewritten in the following identical
form:
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S =
d

d�
� d�	

n=0

N

n exp�− n�� . �B2�

Interchanging the order of the sum and the integral, we ob-
tain

S =
d

d�
	
n=0

N

n�C0 −
1

n
exp�− n��� =

d

d�
�C1 − 	

n=0

N

exp�− n��� ,

�B3�

where

C1 = C0	
n=0

N

n �B4�

is a parameter that does not depend on �, and therefore van-
ishes after differentiation.

Evaluating the sum in �B3� and differentiating the result,
we arrive at

S = −
d

d�
	
n=0

N

exp�− n�� =
d

d�
�1 + e−�1 − e−N�

1 − e−� �
=

e−�

1 − e−��1 − e−N�

1 − e−� − Ne−N�� �
e−�

�1 − e−��2 . �B5�
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