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Electron-phonon relaxation in size-quantized systems may become inhibited when the spacing of discrete
electron energy levels exceeds the magnitude of the phonon frequency. We show, however, that nanoclusters
can support a fast nonradiative relaxation channel which derives from their distinctive ability to undergo
Jahn-Teller shape deformations. Such a deformation represents a collective and coherent vibrational excitation
and enables electronic transitions to occur without a multiphonon bottleneck. We analyze this mechanism for
a metal cluster within the analytical framework of a three-dimensional potential well undergoing a spheroidal
distortion. An expression for the time evolution of the distortion parameter is derived, the electronic level
crossing condition formulated, and the probability of electronic transition at a level crossing is evaluated. An
application to electron-hole recombination in a closed-shell aluminum cluster with 40 electrons shows that the
short ��250 fs� excitation lifetime observed in recent pump-probe experiments can be explained by the
proposed mechanism.
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I. INTRODUCTION

One of the central challenges in the physics of clusters
and related nanoscale systems is the issue of the relaxation
dynamics of excited states. In particular, what are the specific
decay channels and rates of single-particle and collective
electronic excitations in size-quantized structures, and how
do they evolve from the molecular limit of vibronic coupling
to the electron-phonon interaction characteristic of the bulk?

The so-called phonon bottleneck problem1 is noteworthy.
Consider a small particle with electrons occupying a set of
discrete energy levels, up to some highest occupied level �A�
�analogous to the “highest occupied molecular orbital,” or
“HOMO,” in spectroscopic language�. Suppose an electron is
excited into the next higher level, �B� �analogous to the “low-
est unoccupied molecular orbital,” or “LUMO”�; can it now
undergo nonradiative relaxation? In a conventional solid-
state system, electron-hole recombination can be efficiently
accomplished by phonon emission. But in a cluster the gap
EB-EA �the “intershell spacing,” or the “HOMO-LUMO
gap”� can easily exceed the scale of vibrational energies by a
very large factor. Thus to bridge the gap an electron would
need to emit a multitude of vibrational quanta simulta-
neously, a high-order process of exceedingly low probability.

In this paper, we point out and analyze an efficient relax-
ation mechanism which is based on the fact that free nano-
clusters possess an important degree of freedom: they can
undergo significant shape deformations. This feature distin-
guishes them from constrained nanostructures such as semi-
conductor quantum dots. The proposed mechanism is illus-
trated in Fig. 1: Upon excitation, the cluster sets out on a
Jahn-Teller distortion from its original spherical shape; the
energies of the A and B orbitals shift and eventually cross; an
intershell transition occurs; and finally the electron lands
back in its original shell and the shape oscillation decays into
a swarm of incoherent vibrations �heat�. An essential point to
note is that this process is not subject to the phonon bottle-

neck issue: shape deformation is a coherent state, i.e., a co-
herent multiphonon excitation without any additional small-
ness. The process is analogous to internal conversion at a
level crossing in polyatomic molecules,2 with the particular-
ity that it involves a distinctly collective coordinate.

The general treatment will be supplemented by a specific
illustration referring to a recent time-resolved two-photon
photoemission experiment on free Aln

− clusters in a beam.3,4

Aluminum clusters exhibit electronic shell structure,5 and
Al13

− is a “magic” cluster: its 40 valence electrons are ac-
commodated in closed shells �1s ,1p ,1d ,2s ,1f ,2p�, and a
substantial gap separates the highest occupied level �2p, cor-
responding to the label A above�, from the next, lowest un-
occupied one �1g, corresponding to B�. In the experiment, a
femtosecond laser pulse resonantly excited an electron from
A into B,6 and a subsequent ionizing pulse probed the popu-
lation of the excited level after a certain delay. A surprising
observation was that the magic Al13

− cluster had a relaxation
rate as fast as neighboring nonmagic clusters �estimated at
about 250 fs�, despite its considerably larger excitation gap.
This implies that electron-electron scattering is not the cen-
tral factor, and indicates “the existence of a very effective
relaxation mechanism, which is independent on the elec-
tronic structure.”3 So if there are no available intermediate
electronic states in the gap, and radiative decay is known to
occur on much longer time scales, a natural deduction is that
the electron must relax via strong electron-phonon coupling.
But this evokes the aforementioned phonon bottleneck issue:
The excitation gap in Al13

− is 1.5 eV,3 while the phonon
energy in Al is much smaller: �40 meV.8 We will demon-
strate that the coherent deformation mechanism can explain
the experimentally observed time scale.

Below, we treat the process step-by-step via an analytical
model calculation for a finite square-well potential box filled
with electrons, one of which is in an excited state. Section II
calculates the deformation-induced shift and crossing of the
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uppermost electronic levels, Sec. III evaluates the time
needed to reach the level-crossing point, and Sec. IV consid-
ers the transition probability at this point. Quadrupole and
octupole deformations are invoked and analyzed.

II. LEVEL SHIFTS AND CROSSINGS UNDER THE
INFLUENCE OF QUADRUPOLE SHAPE DEFORMATIONS

As stated above, we model the cluster electrons as a
Fermi gas confined to a spherically symmetric square-well
potential. This is, of course, only an approximation to more
accurate self-consistent shell-model potentials, but the quali-
tative character of the low-lying shells in clusters and nuclei
is not very sensitive to the well shape.9 The wave functions
and energy levels of electrons in such a potential are given
by

�nlm = cjl�knlr�Ylm��,��; Enl = �2knl
2 /�2m*� . �1�

Here c is the normalization constant, jl are spherical Bessel
functions, Ylm are spherical harmonics, knl is the nth root of
the equation jl�knlR�=0, R=rsa0Ne

1/3 is the cluster radius �rs

is the Wigner-Seitz parameter, a0 is the Bohr radius, Ne is the
number of valence electrons in the cluster�, and m* is the
electron effective mass.10

Now suppose the particle surface proceeds to distort in an
axially symmetric manner parametrized by a set of deforma-
tion parameters13,14 �L,

R� = R�1 + �
L

�LPL�cos ��� 	 R�1 + �
L

fL���� . �2�

This, of course, shifts the electronic energy levels. To
calculate the shift for a deformation of some particular
multipolarity L we introduce a rescaled radial coordinate

r̃=r
1+ fL����−1. In terms of the spherical coordinates
�r̃ ,� ,��, the boundary remains a sphere of radius R, but in
the Hamiltonian there appears a correction to the Laplace

operator: H̃
ˆ

= H̃
ˆ

0+ H̃
ˆ

L�. Here H̃
ˆ

0=−�2�̃2 / �2m*�, the tilde de-
notes the fact that the Hamiltonian and the wave functions
will now be written in the “squeezed” coordinate system. To
first order in the deformation, the perturbation is

H̃
ˆ

L� = − 2fLH̃
ˆ

0 +
�2

2m*

1

r̃

�

�r̃
� �

� cos �
�sin2 �

�fL

� cos �



+ sin2 �
�fL

� cos �

�

� cos �
� . �3�

As a consequence, the shell degeneracy is removed and
the energy levels split as follows:

Enlm� = Enl + �Enlm, �4�

where

�Enlm = �nlm�H̃ˆ L��nlm� = − 2�LEnl�nlm�PL�cos ���nlm� .

�5�

The right-hand side of Eq. �5� arises from the fact that
only the first term in Eq. �3� contributes to the diagonal ma-
trix element. For quadrupole deformations �L=2� a calcula-
tion of Eq. �5� leads to the known result15,16

�Enlm = �2Enl��l,m� , �6�

where

��l,m� = 2
3m2 − l�l + 1�

�2l − 1��2l + 3�
. �7�

This specific expression has been derived for the square
potential well model, but it will be qualitatively applicable to
other shapes of the confining potential as well. For example,
for a harmonic oscillator potential the shell energy shift dif-
fers only by a factor of 2.15

From Eqs. �6� and �7�, it follows that to first order in the
deformation parameter, the total energy of a filled shell
doesn’t change: 	−l
m
l�Enlm=0. This reflects the fact that
for a closed-shell cluster the spherical shape represents a
minimum-energy configuration �at least a local minimum�. It
is the presence of incompletely filled shell levels that drives
cluster shape deformations.

This is the case in our situation: an electron promoted
from the originally filled A shell into the originally empty B
shell. The cluster will begin to deform until the A sublevel
containing the hole �call it �nA , lA ,m�� approaches the B sub-
level ��nB , lB ,m�� containing the excited electron, at which
point an interlevel transition can occur. �Transitions will take
place only between levels with the same value of m, hence
both wave functions contain the same index.� In other words,
the critical deformation parameter �2,cr for level crossing is
determined by setting

FIG. 1. �Color online� Scheme of the electronic relaxation
mechanism in a free cluster proceeding via a coherent spheroidal
shape deformation. The drawing illustrates the example of an
electron-hole excitation created in an Al13

− cluster.
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�Eel 	 �EnB,lB,m − �EnA,lA,m �8�

equal to the shell gap �EB-EA�. The negative sign of the sec-
ond term arises because the total energy of the remaining
occupied A levels decreases by the same amount by which
the hole energy increases �since the total energy of a filled
shell must remain unchanged�. From Eq. �6�, the result is

�2,cr =
EB − EA

��lA,m�EA − ��lB,m�EB
. �9�

Consider the Al13
− cluster example. For Al, rs=2.1,

m*�1.4me.
8 For a cluster of 40 electrons, R�3.7 Å. The

relevant roots of jl are kn=2,l=1R=7.73 and kn=1,l=4R=8.18,
which translates into E1g�1.12E2p, E2p�11 eV, E1g−E2p
�1.3 eV. The latter value is in sensible agreement with the
experimental gap magnitude of 1.5 eV.3 The specific sublev-
els involved in the relaxation process can be identified from
Eq. �6�. Quadrupole distortion will split the 2p level into two
groups: m=0 will shift downwards, and m= ±1 will shift
upwards towards the 1g shell according to �E2p,m=±1

= 2
5�2E2p. The hole will “float up” this branch towards the

photoexcited electron, which in turn will be “sliding down”
along the �E2p,m=±1=− 34

77�2E1g branch of the 2g shell.17 Put
another way, the net change in the electronic energy, Eq. �8�,
will be �Eel=−2�2� 1

5E2p+ 17
77E1g�. Using the above relation

between E2p and E1g, we find that the relevant level crossing
will occur at �2,cr�0.15. This value of the deformation pa-
rameter agrees to within �10% with that found from the
Clemenger-Nilsson diagram of electronic levels in spheroidal
metal clusters.18 The diagram also illustrates that the linear
approximation for �Enlm holds well for many subshells up to
rather high values of the distortion parameter.

Now that we have found the point at which the electron
and hole curves cross and recombination can occur, two
more questions must be answered: �1� How long after the
electron excitation event �for our purposes, instantaneous�
will the deformation coordinate reach this value, and �2�
what is the transition probability at the crossing point? These
questions are taken up in the following two sections.

III. CLUSTER SHAPE OSCILLATIONS

The deformation dynamics of the confining potential well,
which models the massive ionic core, may approximately be
treated classically. To determine the low-energy cluster shape
oscillation spectrum, we therefore need to include a term
describing the potential energy of volume-conserving surface
deformations of an elastic spherical crystallite �for example,
the clusters analyzed in the experiment3 are expected to be
below their melting point�. For cubic crystals, the elastic
energy density is8,19

U = 1
2C11�uxx

2 + uyy
2 + uzz

2 � + C12�uxxuyy + uxxuzz + uyyuzz�

+ 2C44�uxy
2 + uxz

2 + uyz
2 � , �10�

where u are components of the strain tensor, and C are the
elastic moduli.

For quadrupolar shape distortions, one finds �see Appen-
dix A� that the elastic potential energy is determined only by
the following combination:

Epot = �R3�2
2�C11 − C12� . �11�

Here �2 is the shape deformation parameter introduced in the
previous section. �In principle, deformation of a cluster ion
also gives rise to Coulomb potential energy, but in the
present case the Coulomb energy20 is negligible compared
with the elastic energy.�

Finally, the kinetic energy of the quadrupole surface os-
cillation is given by13

Ekin = ��/5��R5�̇2
2, �12�

where � is the density and �̇2	��2 /�t.
We can now write down a general equation expressing

energy conservation for a cluster undergoing small-
amplitude spheroidal shape deformations: Ekin+Epot+�Eel
=0, or

��/5��R5�̇2
2 + �R3�2

2�C11 − C12� + �2
�Eel/��2�0 = 0.

�13�

The first two terms are the kinetic and potential energies
of deformation, Eqs. �11� and �12� and the third terms is the
concomitant change in the electronic energy �the derivative
is evaluated at �2=0�. The initial conditions for our situation
are �2�t=0�=0, �̇�t=0�=0: At the instant of electronic exci-
tation, the cluster core has not yet started moving away from
its original spherical shape. This differential equation has the
solution

�2�t� = a sin2� 1
2
t� , �14�

where the characteristic shape oscillation frequency is


2 = 5
C11 − C12

�R2 �15�

and the oscillation amplitude is

a =
− 
�Eel/��2�0

�R3�C11 − C12�
. �16�

Equation �14� is one of the main results: it describes the
manner and the time scale of Jahn-Teller deformation of
cluster shapes. It applies to liquid-drop clusters as well as to
crystalline ones: in the former case the elastic energy term in
Eq. �13� is replaced by a surface tension term, but the �2
dependence remains the same.21

In the specific case of a single electron-hole pair excita-
tion, Eq. �8� applies, and from Eq. �6� we obtain for the
numerator of Eq. �16�

− 
�Eel/��2�0 = EnA,lA,m��lA,m� − EnB,lB,m��lB,m� . �17�

Considering again Al13
−, we substitute the parameters

from the end of Sec. II together with the aluminum density
and bulk moduli,8 and find for this cluster: 
�3�1013 s−1

and a�0.2. Using Eq. �14�, this means that the first approach
to the level crossing point,

�2��� = �2,cr �18�

will occur in ��100 fs.
It remains to verify that the probability of an electronic

transition at this point is not too small.
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IV. TRANSITION PROBABILITY AT THE CROSSING
POINT

The picture so far is as follows: after an electron is trans-
ferred into the lowest unoccupied orbital, the cluster begins
to undergo a quadrupole deformation according to Eq. �14�,
and the electron and hole energy levels approach each other
at the point �2,cr. Here the excited electron can return into its
original shell. The crossing terms are also commonly re-
ferred to as the “diabatic potential curves.”22 As the crossing
point is passed at a certain speed v, the transition probability
w for a single passage can be evaluated by the Landau-Zener
formula23 w= �1−exp
−2�V2 / ��v�FA−FB � ���. Here V is the
coupling matrix elements of the two electronic wave func-
tions at the crossing point, and F are the forces �i.e., the
slopes of the two crossing curves, A and B in our notation� at
the same point.

For some cluster sizes, the sublevels of interest are di-

rectly coupled by the spheroidal deformation operator H̃
ˆ

2�

Eq. �3��, in which case the above expression for w can be

applied immediately, with V of the form �A�H̃ˆ 2��B�. The ex-
ponent is likely to be rather large, and the transition prob-
ability near unity. This means that it will be possible to as-
sociate the electronic relaxation time with the time needed to
reach the crossing point, i.e., with the root of Eq. �18�.

However, there will commonly arise situations when di-
rect coupling is absent. For example, in the example of pho-
toexcited Al13

− the relevant states are �A�= �2p ,m= ±1� and
�B�= �1g ,m= ±1�. Since their angular momentum quantum

numbers differ by �l=3, they cannot interact via H̃
ˆ

2�. �In-
deed, the Clemenger-Nilsson diagram18 shows explicitly that
there is no avoided crossing between these two terms when
the cluster shape becomes spheroidal.24�

In cases like this, the transition probability w should be
evaluated based on the fact that some additional perturbation
must be responsible for mixing the A and B states and facili-
tating electron transfer into its “home” shell. Interlevel cou-
pling may be supplied, for example, by weak admixtures of
other orbital momentum character into the shell wave func-
tions �cf. Ref. 6� and by small-amplitude shape deformations
with L�2. Let us consider the latter scenario, focusing here
on octupolar distortions.

Axially symmetric octupolar deformations are described
by the L=3 term in Eq. �2�. The transition probability is
therefore calculated as

w = 1 − exp�− 2��A�H̃ˆ 3��B��B�H̃ˆ 3��A�

�� �

�t
�EA� − EB��� � . �19�

The denominator corresponds to the original electronic po-
tential energy curves which shift and cross as a result of the
cluster’s quadrupole shape deformation �as discussed in Sec.

II�, while H̃
ˆ

3� in the numerator is the octupole perturbation
Hamiltonian which couples these terms and thereby enables
a transition from one to the other. This perturbation is given
by Eq. �3� with L=3; both terms on the right-hand side of

Eq. �3� contribute to the off-diagonal matrix elements.
Writing the numerator as a product of two separate matrix

elements reflects the fact that perturbation operators H̃
ˆ

L� are
defined in the “squeezed” coordinate system and are thus
non-Hermitian. The form of the denominator, in turn, makes
use of the fact that vF=�Enlm� 
�2�t�� /�t, with the term ener-
gies calculated in Eqs. �4� and �6�. The time dependence
�2�t� is given by Eq. �14�, and the derivative is to be evalu-
ated at the time � corresponding to the diabatic term crossing
point �2,cr, Eq. �18�.

Since H̃
ˆ

3���3, the octupole deformation amplitude, the
transition probability for single passage across the crossing
point will be given by

w = 1 − exp�− K�3
2� , �20�

where the factor K contains all the cluster-specific
matrix elements and factors in Eq. �19�. Its magnitude can
be quite large �e.g., for the Al13

− example, it evaluates to
K�2�104�, which can make w substantial even for small
�3 amplitudes, as shown below.

The octupole shape deformations may be static or caused
by thermal oscillations. To the best of our knowledge, static
axial shapes of this type have been considered only for alkali
clusters,25–27 and a few of these have been predicted to have
minimal energies for finite, and sometimes even sizeable,
values of �3. Such cases imply 100% transition probabilities
at the crossing point. However, the calculations are param-
eter dependent, and their generality and applicability to other
materials has not been accessed.

On the other hand, thermal surface oscillations will al-
ways be present in warm clusters in a molecular beam. It
makes sense, therefore, to estimate the their contribution to
the exponential in Eq. �20�. This is described in Appendix B,
where the time dependence of �3 and its time-average value
are estimated.

Referring again to the case of the Al13
− experiment, the

value found for use in Eq. �20� is �3,ef f
2 �2�10−4. Combin-

ing it with the aforementioned estimate for K, we once again
obtain a transition probability close to unity. Consequently, it
is reliable to conclude that electron-hole recombination will
occur within one or two level crossings, i.e., within a time
range of between �� and ��2�
−1−��, as calculated at the
end of Sec. III. This translates into a range of �100–200 fs.
In other words, within this time interval, the electron will
transfer to the lower-shell orbital which it originally vacated
as a result of absorbing a photon. Given the approximate
nature of the calculation, the result is, in fact, quite consistent
with the experimental3,4 observation of a relaxation time of
�250 fs in the “magic” closed-shell Al13

−.
As a result of the electronic transition, the cluster now

finds itself in the ground electronic state, but with a shape
deformed away from the equilibrium. As emphasized earlier,
it is essential that this situation represents not a high-order
electron-phonon scattering process, but the excitation of a
coherent phonon state. The collective distortion will then
rapidly dephase into a superposition of incoherent vibrational
quanta �i.e., heat�. This is an interesting dynamical problem
in its own right, but it falls outside the scope of the present
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paper, since we have seen that the process of electronic re-
laxation may be considered complete at the level crossing
point.

V. CONCLUSIONS

Time-resolved spectroscopy on free metal clusters has
presented a challenge: How is it possible for an excited elec-
tron to exhibit very fast relaxation across a shell energy gap
which significantly exceeds the vibrational frequencies of the
particle? How is the “phonon bottleneck” effect, familiar in
nanostructure physics, bypassed in this situation? We have
demonstrated that there exists a specific fast electronic relax-
ation mechanism which involves not a slow multiphonon
process, but a fast coherent vibrational excitation: shape de-
formation of the cluster core. The availability of such a de-
gree of freedom represents a special and distinguishing prop-
erty of free nanoclusters.

As an application of the theory, the case of the closed-
shell Al13

− cluster has been considered. The calculated tran-
sition time scale provides an explanation for the recent spec-
troscopic observation3,4 of surprisingly fast electron-hole
recombination in this cluster.

It should be pointed out that the mechanism and formal-
ism discussed here are valid for open-shell �nonspherical�
clusters as well. Furthermore, they are applicable to other
electronic excitation states and channels involving free clus-
ters: An electron can be injected into an excited energy level
in a controlled manner not only by photoexcitation, but, for
example, by resonant collisional transfer28–30 or by the cap-
ture of a slow electron. It would be interesting to investigate
the relaxation dynamics of such electrons under energy- and
time-resolved conditions.
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APPENDIX A: THE DISPLACEMENT VECTOR

For shape deformations described by Eq. �2�, the velocity
of any point in the particle can be derived from a “velocity
potential” � as v� =��, where13

� = �
L

�LrLPL�cos �� �A1�

and

�L = L−1R2−L�̇L. �A2�

The velocity is the time derivative of the displacement
vector19 u� , and therefore we have

u� = �
L

L−1R2−L�L � 
rLPL�cos ��� . �A3�

The strain tensor is expressed via Cartesian partial deriva-
tives of u� .19 For L=2,3 this leads to the results in Sec. III
and Appendix B.

APPENDIX B: AMPLITUDE OF OCTUPOLE
OSCILLATIONS

The amplitude of L=3 shape deformations can be evalu-
ated in a manner analogous to that for quadrupolar oscilla-
tions in Sec. III. For the kinetic and potential energies, one
finds �see Ref. 13 and Appendix A, respectively�,

Ekin = �2�/21��R5�̇3
2, �B1�

Epot = �4�/5�R3�3
2�C11 − C12 + 4

3C44� . �B2�

These are assumed to be small-amplitude thermal oscilla-
tions, so the total energy is Ekin+Epot=Ethermal�kBT. �For
small oscillations, we can neglect the shift of the electron
shell energy.� The solution of this equation of motion is

�3�t� = b sin �t , �B3�

with frequency

�2 =
42

5

C11 − C12 +
4

3
C44

�R2 �B4�

and amplitude

b2 =
5Ethermal

4�R3�C11 − C12 +
4

3
C44
 . �B5�

The effective magnitude of the deformation for use in Eq.
�20� can be taken as the time-average of �3�t�, i.e., �3,ef f

2

� 1
2b2.
For Al13

−, these relations result in ��4�1013 s−1 and
�3,ef f

2 �Ethermal /150 eV. Clusters in the experiment in Refs. 3
and 4 were estimated to be at T�300 K, which gives
�̃3,ef f

2 �2�10−4. This, as anticipated, is a small shape distor-
tion �about 1%�, but it gives a serious contribution to the
relaxation probability in Eq. �20�.
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