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A new first-principles computational approach to a charged surface/interface is presented. The surface is
modeled as a slab imposed with boundary conditions to screen the excess surface charge. To treat this model,
which is nonperiodic in the surface normal direction, a standard pseudopotential plane-wave scheme is modi-
fied at the Poisson solver part with the help of the Green’s function technique. Benchmark calculations are
done for Al/Si�111� with the bias voltage applied between the surface and the model scanning tunneling
microscopy �STM� tip, the model back gate, or the model solution. The calculations are found to be efficient
and stable, and their implementation is found to be easy. Because of the flexibility, the scheme is considered to
be applicable to more general experimental situations.
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I. INTRODUCTION

Understanding of electronic and geometric properties of
surfaces and interfaces has been greatly advanced by virtue
of the increasing number of first-principles calculations
based on the density functional theory �DFT�.1,2 A large
number of such works make use of the computational
scheme based on the plane-wave �PW� basis set, pseudopo-
tential �PP� scheme, and repeated slab geometry.3 This
scheme is very flexible in describing various surface-inter-
face geometries in both the surface and vacuum regions. It is
reasonably accurate in describing electronic structures,
atomic force, and a stress tensor with a moderate cost of
computational time. It is also readily combined with ad-
vanced computational methods such as molecular dynamics
�MD� simulation. Numerous algorithms have been developed
so far; the scheme serves a wide variety of applications.

Since this approach handles all degrees of freedom within
the supercell quantum mechanically, however, the cell size is
limited to typically a few nanometers, even using modern
supercomputers.4–6 Therefore, modeling is severely re-
stricted for some problems by supercell geometry, or the pe-
riodic boundary condition �PBC� imposed on the cell. Typi-
cal examples of such problems are the following.

For studying the work function, we require the Fermi
level, �, referred to the vacuum level, for which we need to
determine the potential profile between surface and infinity.
When an electrode, such as that used in a scanning tunneling
microscopy �STM� tip, exists at some distance away from
the surface of grounded substrate, � referred to the electrode
potential is the relevant quantity. The value of �, which is
controllable experimentally by changing the bias voltage,
strongly affects the potential profile between the surface and
electrode. When that region is filled with a solution, the sys-
tem constitutes a kind of battery, in which a variety of elec-
trochemical processes can occur. These problems are difficult
to model when imposing the PBC in the surface normal di-
rection, say the z direction. Use of a basis set other than the
PW, such as a real-space mesh or atomic orbitals, might be a

way of overcoming those problems, but considering other
advantages that are inherent in the DFT-PW-PP scheme, it is
very important to extend the scheme, using minimal modifi-
cation, to thereby allow its application to such problems. In
this context, this paper describes such DFT-PW-PP based
methods and shows its applicability.

Our approach consists of solving the Poisson equation in
the whole region under study, which is, for example, z
� �−� , � � when handling the slab sandwiched by vacua.
This task is accomplished with the help of Green’s function
technique. The Kohn-Sham equation, on the other hand, is
solved in a cell of finite length in the z direction imposing the
PBC. Such a treatment is allowed when the electrons are not
extended much beyond the surface region, but are instead
confined within a certain region near the surface. For that
reason, although we use an isolated slab geometry instead of
the repeated slab and use a corresponding Poisson solver, we
use the Kohn-Sham solver of the repeated slab. Thereby, we
restrict our study to a situation in which the surface and the
electrode are electronically disconnected.

In this respect, our approach is clearly distinguishable
from those that are frequently adopted to study the nonequi-
librium electronic current flowing through a molecular de-
vice between the source and drain electrodes. In those cases,
it is essential to solve the Kohn-Sham equation or the corre-
sponding Green’s function imposing the open boundary con-
dition to obtain the electrons in the scattering state.7–9 In
contrast, in our approach, the current is negligibly small in
our target systems and the electrons in the ground state are
given particular attention.

When electronically disconnected from the electrode, the
surface is generally charged up because of the applied bias
and is exposed to the electric field that is generated between
the surface and electrode. The electric field might be inter-
preted as being generated from both the surface charge and
its image charge in the electrode. This interpretation is justi-
fied particularly when the electrode is modeled as a con-
tinuum of perfect conductors.

Specifically addressing the surface exposed to the electric
field, several precedent works10,11 have used an external po-
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tential that is linear in the slab region and bent near the cell
boundary, i.e., the sawlike potential, that adapts to the re-
peated slab geometry. For the charged surface exposed to the
electric field, Ho et al.12 and Fu et al.13 used a repeated slab
model in which a planar neutralizing charge sheet is put at
the cell boundary. The charge sheet avoids divergence of the
electrostatic energy. In this model, the electric field origi-
nated from the excess surface charge is generated between
the surface and the charge sheet. These works demonstrate
that it is possible to compute the surface that is charged up
and/or exposed to an electric field within the repeated slab
technique. By removing the PBC in the surface normal di-
rection, however, modeling can be accomplished more flex-
ibly. Consequently, modeling would be able to take explicit
account of the image charge contribution; we could also put
external charges at some distance away, as is often done in
cluster model approaches. Introducing such flexibility into a
DFT-PW-PP based scheme is the salient motivation of this
study.

More specifically, we treat an isolated slab that is sand-
wiched by semi-infinite media of relative permittivity ��r�,
with which to describe vacuum, conductor, or solution within
a level of a macroscopic continuum model �see Fig. 1�. The
Poisson equation is then modified as

� · ���r� � �V�r� = − 4��tot�r� . �1�

When we introduce a region of infinite permittivity, the me-
dium works as a perfect conductor. On the other hand, when
the permittivity is finite and has the value of water molecules
in the liquid phase �78.4�, the surface can be considered as
being in contact with water. If the value of � is one, the
surface is, of course, exposed to ultrahigh vacuum �UHV�.
An important advantage of our scheme is that the potential
can be obtained in reference to the value at infinity. This
enables determination of the Fermi level, below which elec-
trons are accommodated. Therefore, we can perform elec-
tronic structure calculations under the constant � condition,
which has been asserted as very important to treat electrode
problems.14

The total charge density �tot�r� in Eq. �1� consists not only
of charges of the electrons and nuclei, but also of external
charges that are located additionally. As the external charge,
we would be able to introduce classical charge density �c�r�
that would be determined according to the solution theory,
such as the Poisson-Boltzmann �PB� theory15 in which �c�r�
is determined statistically based on the electrostatic potential

V�r�. It is important to point out that, by introducing �c�r� of
solution theory, charge neutrality is satisfied automatically in
the whole region, �, as

�
�

�tot�r�dr = 0, �2�

and the system of weak screening �long screening length�
can be described with a modest computational time. This is
an advantage over the repeated slab approach in which an
extremely large supercell is required.

The remainder of this paper presents details of this
scheme, in which four explicit formulations are made for the
slab in contact with the vacuum, conductor, and solution.
Furthermore, we demonstrate its applicability using the
benchmark calculations of the Al/Si�111� surface, i.e., the
Si�111� 1	1 surface with an aluminum adlayer. Those cal-
culations confirmed that our scheme reproduces the total en-
ergy obtained by the repeated slab calculation in which a
comparison is possible; the computational time required for
the electronic structure calculation and force calculation are
comparable between the two schemes.

The separated treatment of the Poisson equation and the
Kohn-Sham equation, which is the essence of our scheme, is
considered to have potentialities for providing more flexible
modeling of the surface/interface, although the formulation
and calculation were done for the four selected cases just for
illustration. In particular, for the solution, we used one of the
simplest continuum theories, i.e., the PB theory, as a first
step. We consider that great improvement might be achieved
if our scheme were combined with the multiscale “quantum
mechanics and molecular mechanics �QM/MM�”
models16–18 or advanced liquid theory such as the reference
interaction site model �RISM-SCF�,19 but the work in that
direction is beyond the scope of this paper and is left for
future studies.

II. METHOD OF CALCULATION

A. Slab model for the surface and interface

For description of the surface and interface, we use a slab
geometry, which is periodic in the direction parallel to the
surface but is not periodic in the perpendicular direction,
sandwiched by semi-infinite media, such as vacuum, an elec-
trode, or an electrolyte �see Fig. 1�. We will call the medium
“effective screening medium” �ESM� hereafter. We treat the
slab part that consists of substrate and adsorbate atoms mi-
croscopically within DFT; we treat the medium part within a
continuum characterized by relative permittivity ��r� and ad-
ditional classical charge density �c�r�. As stated in the Intro-
duction, we assume that the electrons are confined to the
region, say z� �−z0 ,z0�, and that the wave functions are
solved using the repeated slab of length 2z0, for which stan-
dard DFT-PW-PP programs are applicable.

B. Total-energy functional

The total-energy functional of the ESM model is

FIG. 1. Schematic drawing of a slab geometry sandwiched by
semi-infinite media. z0 and z1, respectively, denote the cell bound-
ary for repeated slab calculations and the interface between the
vacuum and the medium.
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E��e,V� = K��e� + Exc��e� −� dr
��r�
8�

��V�r��2

+� dr��e�r� + �I�r��V�r� , �3�

where �e�r� denotes the electron charge density, �I�r� is the
nuclear charge density, and V�r� is the electrostatic potential.
In addition, K and Exc, respectively, represent the kinetic and
exchange-correlation energy functional of the electrons; ��r�
is the �nonuniform� relative permittivity of the ESM. In this
equation, the classical charge density is omitted for simplic-
ity. We also omit the entropic term of the electrons.20

The Kohn-Sham equation is obtained when the total-
energy functional is varied by the Kohn-Sham orbital under
the orthonormality constraint. When varied by the electro-
static potential, we obtain a Poisson equation, Eq. �1�, that
differs from an ordinary Poisson equation in that the relative
permittivity has a spatial dependence.

Next we rewrite the total-energy functional using a
Green’s function for the Poisson equation

� · ���r� � �G�r,r�� = − 4�
�r − r�� . �4�

Equation �3� becomes

E��e� = K��e� + Exc��e� +
1

2
� � drdr��e�r�G�r,r���e�r��

+� � drdr��e�r�G�r,r���I�r��

+
1

2
� � drdr��I�r�G�r,r���I�r�� , �5�

which has the well-known form for the DFT energy func-
tional, except that the electrostatic interaction is modified
slightly from 1/r to that according to Eq. �4�. The third,
fourth, and fifth terms, respectively, correspond to Hartree
energy �EH�, electron-ion interaction energy �Ee-i�, and ion-
ion interaction energy �Eion�. The term for interaction be-
tween the electrons and the nuclei

� � drdr��e�r�G�r,r���I�r�� , �6�

can be rewritten for the pseudopotential scheme as

� � drdr��e�r�G�r,r���g�r�� +� dr�e�r�Vloc
short�r�

+ �
�

����
Vps���	 , �7�

in which the first, second, and third term correspond, respec-
tively, to the long-range local, short-range local, and nonlo-
cal part.21 The detailed formulation of the long-range local
part will be described in Appendix C. In the first term, �g�r�
is the effective nucleus charge localized near the nuclear po-
sition; Vloc

short�r� is the short-range local potential; ��s are the
Kohn-Sham orbitals; and 
Vps is the nonlocal part of the
pseudopotential, which has a finite range from the nuclear

position. We call the sum of the first and second terms the
local potential energy �Eloc� hereafter.

Here we comment on the transferability of the pseudopo-
tential. Pseudopotentials are constructed using an atom iso-
lated in vacuum. For that reason, they cannot be used for
atoms located in the region where the relative permittivity
becomes considerably larger than 1. On this basis, we will
locate the nuclei in the region of �r=1 in our model. In
principle, however, it would become possible to construct a
pseudopotential by locating the nucleus in a medium of
given value for �r, but that is beyond the scope of this study.

C. Analytical solution of the Poisson equation

This section shows a Green’s function formulation for the
solution of the Poisson equation Eq. �1�, which is accom-
plished by imposing appropriate boundary conditions on
Eqs. �1� and �4�, and expressing the solution as

V�r� =� dr�G�r,r���tot�r�� . �8�

Below we consider some important boundary conditions for
which Green’s function is determined analytically. �Note that
one can alternatively solve the Poisson equation for an arbi-
trary form of ��r� using a finite-difference approach on a
regular grid.22� For this purpose we consider the case in
which relative permittivity depends only on z. Then the Pois-
son equation


�z���z��z� + ��z���
2�G�r� − r��,z,z�� = − 4�
�r� − r���
�z − z�� ,

�9�

becomes the following in the Laue representation:


�z���z��z� − ��z�g�
2�G�g�,z,z�� = − 4�
�z − z�� , �10�

where g� is a wave vector parallel to the surface and g� indi-
cates the absolute value of g�. Then we consider the follow-
ing four boundary conditions:

�i� �zV�g� ,z��z=±�=0, ��z�=1;

�ii� V�g� , ±z1�=0, ��z�= 
1 if �z � �z1

� if �z � �z1;

�iii� 
V�g� ,z��z=z1
=0

�zV�g� ,z��z=−�=0
, ��z�= 
1 if z�z1

� if z�z1;

�iv� �zV�g� ,z��z=±�=0, ��z�= 
1 if �z � �z1

�r if �z � �z1.

The boundary condition �i� represents a slab located in the
vacuum. This is a special case of the ESM model in which
no screening exists. We can easily obtain Green’s function
from Eq. �10� as

Gb�g�,z,z�� =
4�

2g�

e−g��z−z��. �11�

This is equal to the Fourier component of the bare Coulomb
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Gb�r� − r��,z,z�� =
1


�r� − r���2 + �z − z��2
. �12�

It is noteworthy that the present boundary condition is
applicable only to neutral systems because otherwise, either
�zV�0,−� � or �zV�0, + � � should be nonzero, as is well
known for the one-dimensional Poisson equation. In that
case, V�0,z� has a linear increase or decrease with z, thereby
rendering the electrostatic energy divergent. For neutral sys-
tems, the calculation with our scheme becomes essentially
the same as that with the repeated slab model when a suffi-
ciently long supercell is used for the z direction. However,
several important differences exist between the two calcula-
tions. When using the boundary condition �i�, the electro-
static potential always refers to the vacuum level, whereas
such is not the case for the repeated slab calculation; this fact
is important when calculating the work function. Even when
the slab has a dipole moment and, therefore, V�0,z� has a
long tail, no correction is required when using �i�, contrary to
the repeated slab calculations.23,24

Imposing the boundary condition �ii�, which will be called
“metal/vacuum/metal,” on a symmetric slab model, we can
calculate the surface to which a separated metal electrode
applies a bias voltage. The electrode region, �z � �z1, has in-
finite relative permittivity and thus should have a constant
potential, which is taken to be zero and is used as a reference
energy. This system would correspond to the STM experi-
mental setup in which the STM tip is modeled by a metal
capacitor: This model would be appropriate when the tip-
surface distance is sufficiently large so that overlap in the
electronic wave functions can be neglected. We can solve Eq.
�10� analytically as

G�ii��g�,z,z�� =
4�

2g�

e−g��z−z�� +
4�

2g�

	
e−2g�z1 cosh�g��z − z��� − cosh�g��z + z���

sinh�2g�z1�
,

�13�

when both z and z� are in the region �z � �z1. This equation
consists of the bare Coulomb part �the first term� and the rest
�the second term�, which can be interpreted as a mirror im-
age part, as can be shown by rewriting the second term as

4�

2g�
�
m=0

�


exp�− g��z − z� + �4m + 4�z1��

+ exp�g��z − z� − �4m + 4�z1��

− exp�− g��z + z� + �4m + 2�z1��

− exp�g��z + z� − �4m + 2�z1��� . �14�

That is, the second term represents Coulomb interaction with
a series of image charges located at the mirror image posi-
tions, z=−z�± �4m+2�z1 and z=z�± �4m+4�z1.

Here we comment that, with the help of the Green’s func-
tion technique �Eq. �13�� we can accurately compute the Har-
tree interaction with the image charges, but not for the
exchange-correlation �xc� interaction. Nonlocal electron cor-
relation is known to exist between interacting fragments,25

which in our case is between the surface and the electrode.
The xc interaction is considered to be much weaker than that
of the Hartree when the distance is taken to be about 10 Å, a
typical surface-tip distance; however, it is an important
theme of future research to investigate how the electron-
electron interaction would be affected by existence of the
image.

In boundary condition �iii�, say “vacuum/metal,” the
metal electrode is put on only one side of the slab, as z
�z1. When the slab is constituted by atomic layers, or by
atomic chains or a tubular nanomaterial like carbon nano-
tubes extending to x or y direction, the system correspond to
the back gate FET experimental setup in which the metallic
continuum that is separately located at z�z1 plays the role of
a back gate electrode. By solving Eq. �10� we obtain Green’s
function as

G�iii��g�,z,z�� =
4�

2g�

e−g��z−z�� −
4�

2g�

e−g��2z1−z−z��, �15�

when both z and z� are smaller than z1. This equation con-
sists of the bare Coulomb part �the first term� and the mirror
image part �the second term�. Contrary to the case for the
boundary condition �ii�, only one image appears at z=−z�
+2z1.

By imposing the boundary condition �iv�, say “solvent/
vacuum/solvent,” we can calculate the surface that is in con-
tact with the solution. In regions I and III, which, respec-
tively, correspond to z�−z1 and z�z1, the relative
permittivity is taken to be that of the solution; it is 78.4 for
water. The philosophy behind this model is identical to that
of the polarized continuum model �PCM� �Ref. 26� and its
modifications.18 We can solve Eq. �10� analytically; Green’s
function is

GII
�iv��g�,z,z�� =

4�

2g�

e−g��z−z�� +
4�

2g�

e−2g�z1��r − 1�2 cosh�g��z − z��� − ��r
2 − 1�cosh�g��z + z���

2�r cosh�2g�z1� + �1 + �r
2�sinh�2g�z1�

, �16�

when both z and z� are in the region II, i.e., within the region �−z1 ,z1�. Rewriting the second term on the right-hand side as
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4�

2g�
�
m=0

� �� �r − 1

�r + 1
�2m+2


exp�− g��z − z� + �4m + 4�z1��

+ exp�g��z − z� − �4m + 4�z1���

− � �r − 1

�r + 1
�2m+1


exp�− g��z + z� + �4m + 2�z1��

+ exp�g��z + z� − �4m + 2�z1���� , �17�

it is readily apparent that Eq. �16� consists of the bare Cou-
lomb term �the first term� and the image charge part �the
second term�. The positions of the image charges are identi-
cal to those that we found in the case of boundary condition
�ii�, but the interaction decreases exponentially as the dis-
tance from the image increases.

We must impose the charge neutrality condition on the
system, as in the case of boundary condition �i�. In a solu-
tion, however, electrolyte ions such as H+ or SO4

2− exist and
can change their spatial distributions to screen the electro-
static potential. For that reason, the whole system is always
neutral, even when the surface is charged up. The screening
length ranges from nanometers to micrometers depending on
the ion density. In addition, its atomic scale description is too
demanding. For those reasons, we incorporate the screening
effect macroscopically using a continuum model. As the con-
tinuum model, we use modified PB �MPB� theories,27 the
detailed formulation of which will be given in the Appendix
A. Thereby, we can treat the charged surfaces in the solution
within the boundary condition �iv�.

It is noteworthy that the electrostatic potential obtained by
Eq. �8� is not periodic in the cell �−z0 ,z0� and must be made
periodic for use for the Kohn-Sham solver. For this, we
modify the potential near the cell boundary, where the elec-
tron density is negligibly small.28 It is convenient to use a
cubic polynomial for this purpose.

D. Constant-� calculation

The zero of the electrostatic potential constitutes the base
relative to which levels, ��, and the chemical potential of
electrons, �, are determined. For electrons in the grand ca-
nonical ensemble, the density is then obtained as

�e�r� = �
�

����

����r��2 �18�

on the basis of the energy level of the Kohn-Sham orbital,
which is calculated from

�−
1

2
�2 + V�r� + Vxc�r;�e�����r� = �����r� , �19�

where Vxc�r� is the exchange-correlation potential. In this
procedure, the total number of electrons, Ne, is not given in
advance. It is instead determined through self-consistent cal-
culations. From this constant-� scheme, we can obtain the
grand potential as a function of �, which enables us to dis-
cuss thermodynamic stability of a surface phase, as was em-

phasized in Ref. 14. In practice, one can use Eq. �18� at every
self-consistent loop �constant-� mode�. Alternatively, one
can do several parallel calculations for given values for Ne
�constant-Ne mode� from which the grand potential is ob-
tained through interpolation. The former is usually less stable
and requires more iterations to achieve self-consistency.

III. APPLICATION TO A PRACTICAL CALCULATION

In Sec. II, we presented several Green’s functions that
were obtained by imposing boundary conditions �i�–�iv�.
Their simple analytic form allows us to obtain the electro-
static potential very easily, similarly to the case of the re-
peated slab calculations. This ease in obtaining them makes
it feasible to perform first-principles calculations of the sur-
faces while imposing various boundary conditions. This sec-
tion presents a simple benchmark calculation using Al/
Si�111� to demonstrate the applicability of our method.

The surface has a symmetric slab structure, as shown in
Fig. 2. The Si slab has 1	1 lateral periodicity and is eight
atomic layers thick. The Al atoms are adsorbed on the on-top
site. The lattice parameter and the Si-Al distance are 5.43 Å
and 2.15 Å, respectively. Thickness of the vacuum region,
�vac, is 10 Å. All calculations are performed using the gen-
eralized gradient approximation �GGA� within the DFT.1,2

We use the Perdew-Burke-Ernzerhof �PBE�-type exchange-
correlation functional.29,30 Norm-conserving pseudopoten-
tials with separable form are adopted to describe electron-ion
interaction.31,32 The valence wave functions are expanded by
the planewave basis set with a cut-off energy, Ecut, of
16 Ryd. The number of sampled k points in the irreducible
Brillouin zone is 12. We use the computer code TOKYO AB-

INITIO PROGRAM PACKAGE �TAPP�,33 in which the ESM part
is newly implemented.

A. Proof test

In boundary condition �i�, where the relative permittivity
of the ESM is 1, Al/Si�111� is embedded in vacuum. This
corresponds to a repeated slab model with sufficiently large
�vac. As a proof-test, we compute the total energy and the
energy terms in Eq. �5� for both the ESM and the repeated

FIG. 2. Top view �left panel� and side view �right panel� of the
Al/Si�111� slab model. Gray and black balls, respectively, represent
Si and Al atoms. The solid line denotes the unit cell of the surface.
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slab ��vac=10 Å�. As shown in Table I, K and Exc are iden-
tical within an accuracy of 0.1 mHartree, indicating that the
electronic wave functions and the electron density are funda-
mentally identical in both calculations. Although the values
for EH, Eloc, and Eion are different because of different treat-
ment for the diverging term, i.e., g� =0 term, the total ener-
gies, Etot, are identical in both calculations. The residual dif-
ference in Etot, a few hundredths of a mHartree �not shown in
the table�, is originated from the different definitions of the
cut-off energy; it is conventionally defined as 1

2 �G�2�Ecut,
but in our case as 1

2 �G��2�Ecut, because the ESM calculation
is based on the Laue representation. The difference will be-
come negligible if we use an extremely large value for the
cutoff.

The atomic force is calculable using the analytic deriva-
tive of the total energy. We have checked that the force is
calculated accurately. The computational time to obtain the
force was found to be almost identical to that for the repeated
slab calculation.

B. “Metal/vacuum/metal” and “vacuum/metal”

Now that we have tested the ESM implementation using
the boundary condition �i�, let us proceed to other boundary
conditions �ii� and �iii�, i.e., the surface located near the me-
tallic electrode. We can perform the calculation at constant-
Ne mode or at constant-� mode, but the former is generally

faster because of its more rapid SCF convergence. Here we
present the calculation in the constant-Ne mode in which the
charge state is taken as ±0.01e, ±0.005e, and 0e per unit cell.

Figures 3�a� and 3�b� show the geometry of our model.
The ESM �electrode in the present case� is located at �z �
�z1 for the boundary condition �ii� and z�z1 for the bound-
ary condition �iii�, where z1 is taken to be away from the Al
layer by 10 Å. Carefully checking the tail of the electronic
wave function �, we determine the position for z0 beyond
which � has negligibly small amplitude. Then the Kohn-
Sham equation is solved by applying the periodic boundary
condition at �z � =z0.

First we show results for the boundary condition �ii�,
metal/vacuum/metal. Figures 3�c� and 3�e�, respectively,
show the planar average of the valence charge density, 
�,
and the electrostatic potential, 
V, in reference to those of
the neutral surface. As shown in Fig. 3�c�, the electron accu-
mulates or depletes around the Al layer, but not in the Si
layers; consequently, metallic screening occurs at the Al
layer. This feature is also apparent in Fig. 3�e�, where 
V is
almost flat in the Si layers; it bends only near the Al layer.
By calculating the gradient of V in the vacuum region, we
can obtain the strength of the electric field near the surface.
The results are −0.071, −0.036, 0.035, and 0.071 V/Å for
the charge states of +0.01e, +0.005e, −0.005e, and −0.01e,
respectively. Figures 3�d� and 3�f�, respectively, show 
�
and 
V calculated with the boundary condition �iii�, vacuum/

TABLE I. Comparison of energies in Eq. �5� calculated for Al/Si�111�. RS and BC�i�, respectively,
denote the repeated slab calculation and the calculation with the boundary condition �i�. The energy unit is
Hartree.

K Exc EH Eloc Eion Etot

RS 13.6359 −11.0195 112.8645 −228.4642 77.5645 −35.4188

BC�i� 13.6359 −11.0195 −952.9827 1893.1658 −978.2183 −35.4188

FIG. 3. Side view of the Al/Si�111� slab model �a� with boundary condition �ii� and �b� with boundary condition �iii�. Gray and black
balls, respectively, represent Si and Al atoms. Gray areas indicate the ESM �electrode�. Both z0 and z1 indicate the cell boundary for the
repeated slab calculation and electrode position, respectively. The planar average of the valence charge density 
� �see text� is calculated
with �c� boundary condition �ii� and �d� boundary condition �iii�. The planar average of the electrostatic potential 
V �see text� is calculated
with �e� boundary condition �ii� and �f� boundary condition �iii�. Solid, broken, dotted, dashed-dotted lines, respectively, denote +0.01e,
+0.005e, −0.005e, and −0.01e surface charge states.
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metal. Contrary to the boundary condition �ii�, the metal
electrode is placed only at the right-hand side of the slab �see
Fig. 3�b��.

In the present method, the bias applied to the surface is
obtainable as the difference in the Fermi energy between the
charged system and the neutral system. Figure 4 shows the
applied bias plotted against the induced electrons on the sur-
face. Reflecting the two-dimensionality of the local density
of states around the surface, the bias is linearly dependent on
the induced charge. The slope for the boundary condition �ii�
is almost half of that for the boundary condition �iii�. This
can be understood from the facts that charge is induced on
both sides for the boundary condition �ii� whereas it is in-
duced on only one side for the boundary condition �iii� and
that the induced charges become almost equal when summed
up on both sides. Roughly estimated from Fig. 4, one elec-
tron per 100 surface sites is induced on the surface when
applied with the bias of 1 V.

C. Solvent-metal interface

Let us now examine the ESM model combined with mac-
roscopic theory for the solution. For macroscopic theory, we
use the MPB theory.27 Note that, when using a finite value
for the relative permittivity for the ESM, we must introduce
a neutralizing charge to prevent divergence in the electro-
static energy of the charged surfaces.

As discussed in Appendix A, the MPB modifies the origi-
nal PB theory by introducing an effective expulsion radius to
account for the steric effect. Since the electrolyte ion density
�c�r� depends nonlinearly on the electrostatic potential V�r�,
�c�r�, and V�r� need to be solved self-consistently through
iteration, but because the functional �c�V� has a very simple
analytical form �see Appendix A�, they can be determined
within inconsequential CPU time.

The system geometry is shown in Fig. 5�a�, where only
the region of positive z is shown because we are using a
symmetric slab. In the present calculation, we use the MPB
parameters as follows. The expulsive volume of the ion is
v=7.53 Å3 both for cation and anion; both ions has the va-
lence of 1 and bulk density of 0.1 M; the temperature is

300 K; the Stern layer thickness is 5 Å; and the relative per-
mittivity of the ESM is 78.4. The surface-ESM distance is
taken to be 5 Å. The Poisson equation is solved using a cell
whose length in the z direction is 4z0 �see Appendix A�. For
charge state calculations, we use ±0.01e, ±0.005e, and 0e per
unit cell.

The planar average of the valence charge density, 
�, the
electrostatic potential, V�r�, and the electrolyte ion density,
�c�r�, are shown respectively in Figs. 5�b�–5�d�. The bias
voltage applied to the surface is found to be −0.24, −0.12,
0.12, and 0.24 V, respectively, for the charge states of
+0.01e, +0.005e, −0.005e, and −0.01e. These values corre-
spond to one induced electron per approximately 50 surface
sites when applied with the bias voltage of 1 V, which is
about two times greater than that obtained above using the
boundary condition �ii�, where the surface-ESM distance was
taken to be 10 Å.

IV. SUMMARY AND PERSPECTIVE

We have proposed a new first-principles computational
approach to a surface/interface in the slab model. In view of
the fact that the DFT-planewave�PW�-pseudopotential�PP�
scheme has been widely applied to surface problems, but that
there are problems whose application has been restricted by
the periodic boundary condition �PBC� required by the
scheme, we modified the scheme so that the PBC require-
ment might be removed in the surface normal direction. That
task was accomplished by making use of the properties of
the electrons; the wave function decays rapidly with distance

FIG. 4. Fermi energy difference 
� with respect to that of the
neutral surface as a function of the induced charge on the surface.
Triangles and circles denote the calculation with boundary condi-
tion �ii� and �iii�, respectively.

FIG. 5. �a� Side view of the Al/Si�111� slab model with bound-
ary condition �iv�. Gray and black balls indicate Si and Al atoms,
respectively. Gray areas indicate the ESM �water�; z1 indicates the
cell boundary for the repeated slab calculation. The planar average
of �b� 
�, �c� 
V, and �d� 
�c �see text�. Solid, broken, dotted,
dashed-dotted lines, respectively, denote +0.01e, +0.005e, −0.005e,
and −0.01e surface charge states.
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from the surface. This characteristic allows the use of sepa-
rate treatments; the Poisson equation is solved in the whole
space under study with the help of Green’s function tech-
nique, whereas the Kohn-Sham equation is solved using a
repeated slab of finite length. Using this scheme, we can treat
the nonperiodic slab with minimal modification of the DFT-
PW-PP scheme. The only parts that must be modified are the
Hartree potential, ion core pseudopotential, and the ion-ion
interaction.

We have applied the scheme to a slab that is sandwiched
by vacuum and/or the effective screening medium �ESM�
characterized by relative permittivity, ��r�, and additional
classical charge density. For the ��r� of ESM, we used infin-
ity to model the STM tip and back gate electrode, and the
value 78.4 to model the solution. For the additional classical
charge, we used the continuum charge of the modified PB
theory to model electrolyte ions in the solution. Using these
ESMs, we have performed the calculation for Al/Si�111� in
contact with the vacuum, the model STM tip, the model back
gate electrode, or the model solution. Then we have dis-
cussed the potential profile and induced surface charge. Re-
sults of calculations indicated that the computational time
required to obtain the electronic structures and the atomic
force is almost equal to that of the standard DFT-PW-PP
scheme. In this scheme, atomic forces are obtained from the
analytic derivative of the total energy. For that reason, this
scheme is advantageous for conducting a molecular dynam-
ics simulation conserving the total energy accurately.

Considering the easy implementation and flexibility of
our scheme, we consider that the scheme might be modified
for wider applications and might be improved through the
use of more realistic continuum models.
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APPENDIX A: MODIFIED POISSON-BOLTZMANN
METHOD

One of the most widely used macroscopic models for
electrolyte ions is the Poisson-Boltzmann �PB� model,15 in
which the electrolyte ion distributes statistically according to
the electrostatic potential. This model lacks statistical corre-
lations and the steric effect: repulsion between ions. Because
of the latter fact, although the model has been successful in
predicting ion profiles close to neutral surfaces, it strongly
overestimates ionic concentrations that are found close to
charged surfaces. The steric effect is known to be incorpo-
rated effectively by introducing the Stern layer,34 beyond
which the ions cannot approach, and more systematically by
introducing an effective ionic radius, as was shown recently
by Borukhov et al.27 The modified PB �MPB� model has a

free-energy form that can be easily combined with our effec-
tive screening medium �ESM� scheme.

The MPB introduces number densities of ions, c+�r� and
c−�r� for the cation and anion, respectively. They have elec-
trostatic contribution to the free energy as

� dr�zionc−�r� − c+�r��V�r� −� dr��+c+�r� + �−c−�r�� ,

�A1�

where zion is the valence of the anion; the cation is assumed
to be monovalent; �+ and �− are the chemical potentials of
the cation and anion, respectively.35 They also have the en-
tropic contribution as

− TS =
kBT

v
� dr
vc+�r�ln�vc+�r�� + vc−�r�ln�vc−�r��

+ �1 − vc+�r� − vc−�r��ln�1 − vc+�r� − vc−�r��� ,

�A2�

where v denotes the effective exclusion volume of the ions
and kBT is the thermal energy. These terms can be added
simply to Eq. �3� to obtain the free-energy for our MPB-
ESM model. By varying with respect to the ion densities we
can obtain the Poisson equation

� · ���r� � �V�r� = − 4���e�r� + �I�r� + zionc−�r� − c+�r�� ,

c−�r� = c−
0 e−zion�V�r�

1 − c−
0v�zion + 1� + c−

0v�e−�zionV�r� + zione
�V�r��

,

c+�r� = c−
0 zione

�V�r�

1 − c−
0v�zion + 1� + c−

0v�e−�zionV�r� + zione
�V�r��

,

�A3�

where c−
0 is the number density of anion in the bulk. The

charge densities of the cation and anion are called the clas-
sical charge density, �c�r�=zionc−�r�−c+�r�, in the text. The
classical charge density must be solved self-consistently be-
cause of the nonlinear structure of the equation.

In solving this equation, because the ion densities are
much more extended in z direction compared to the densities
for the electrons and nuclei, we must use a much larger cell.
Even when using such a larger cell, the computational cost
for solving the Poisson equation is usually much smaller than
that for the Kohn-Sham equation.

APPENDIX B: ION-ION CONTRIBUTION

The ion-ion interaction energy, Eion, in Eq. �5� is usually
calculated using Ewald summation method.36 In our method,
however, the electrostatic interaction is modified slightly
from 1/r because of the presence of the ESM. Let us now
reformulate the Ewald summation method to be suitable for
the boundary condition �ii� as a representative of our method.

The explicit form of Eion is
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Eion = �
R�R��

�
��

Z�Z�

2
� � drdr�
�r − R���

	G�ii��r� − r��,z,z��
�r� − R��� � − Eself, �B1�

where Z� indicates the bare ionic charges of the �th atom
�pseudocharges in a PW-PP framework�; R�� is an abbrevi-
ated notation of �th atom in a unit cell, i.e., R� +��, and Eself
is the self-interaction correction term which is defined as

Eself = �
R�

�
�

Z�
2

2
� � drdr�
�r − R���

	Gb�r� − r��,z,z��
�r� − R��� . �B2�

By introducing a fictitious Gaussian charge distribution

�fic�r − R��� =
Z��3

�3/2 e−�2�r − R���2, �B3�

we can split the first term of Eq. �B1� into two parts as EG
+ER, where these two parts are defined as

EG = �
R�R��

�
��

Z�Z�

2
� � drdr�
�r − R���

	G�ii��r� − r��,z,z���fic�r� − R��� � , �B4�

ER = �
R�R��

�
��

Z�Z�

2
� � drdr�
�r − R���

	G�ii��r� − r��,z,z���
�r� − R��� � − �fic�r� − R��� �� .

�B5�

The � in Eq. �B3� is an arbitrary parameter, whose value
ensures good convergence of both sums over G� and R�

space, where G� is a reciprocal-lattice vector parallel to the
surface.

After straightforward calculations, we obtain

EG = �
G��0

�
��

Z�Z�

2S0
eiG�·����−�����F1

��G�,��
z ,��

z� + F2�G�,��
z ,��

z��

+ �
��

�Z�Z�

S0
��z1 −

��
z ��

z

z1
� − ���

z − ��
z�erf�����

z − ��
z��

−
1

�
�
e−�2���

z − ��
z �2� , �B6�

where erf�x� is the error function; S0 is the area of the surface
unit cell; and the functions F1 and F2 are defined as

F1
��G�,��

z ,��
z� =

�

G�
�e−G����

z −��
z � erfc� G�

2�
− ����

z − ��
z��

+ eG����
z −��

z � erfc� G�

2�
+ ����

z − ��
z��� ,

�B7�

F2�G�,��
z ,��

z�

=
2�

G�

e−2G�z1 cosh�G����
z − ��

z�� − cosh�G����
z + ��

z��
sinh�2G�z1�

,

�B8�

where erfc�x� is the complementary error function and G�

indicates the absolute value of G�.
When we calculate Eq. �B5�, we should note the follow-

ing. The image charge from the point charge located at R��

and that from the Gaussian charge located at R�� are identical
unless the tail of the Gaussian charge and the ESM overlap
each other.37 Therefore it is easy to show that the electro-
static potential from those image charges has no contribution
to ER. Thanks to this fact, we can only calculate the bare
Coulomb term in Eq. �B5� without evaluating a slowly con-
vergent series �see Eq. �14��. Then we can rewrite ER as

ER = �
R�R��

�
��

Z�Z�

2
� � drdr�
�r − R���Gb�r� − r��,z,z��

	�
�r� − R��� � − �fic�r� − R��� ��

= �
R�

�
��

Z�Z�

2

erfc���R�� + �� − ����
�R�� + �� − ���

. �B9�

A divergent term in ER is canceled by that in Eself. Finally we
obtain the ion-ion interaction energy as

Eion = �
R�

�
��

Z�Z�

2

erfc���R�� + �� − ����
�R�� + �� − ���

− �
�

Z�
2 �


�

+ �
G��0

�
��

Z�Z�

2S0
eiG�·����−�����F1

��G�,��
z ,��

z�

+ F2�G�,��
z ,��

z�� + �
��

�Z�Z�

S0
��z1 −

��
z ��

z

z1
�

− ���
z − ��

z�erf�����
z − ��

z�� −
1

�
�
e−�2���

z − ��
z �2� ,

�B10�

where the sum over R� excludes R� +��−��=0.

APPENDIX C: LOCAL IONIC PSEUDOPOTENTIAL

In a PW-PP scheme, the term for an interaction between
electrons and effective nucleus charge �pseudocharge� is de-
composed into two parts: a local part and a nonlocal part �the
third term of Eq. �7��. In the evaluation of the local part, it is
often convenient to separate the local part into two parts: a
long-range local part �the first term of Eq. �7�� and a short-
range local part �the second term of Eq. �7��. For the short-
range local part and the nonlocal part, we can use conven-
tional pseudopotential generation schemes. On the other
hand, it is necessary to change the generation method for the
long-range local part as indicated below.

The long-range local potential is thought of as originating
from Gaussian-type pseudocharges,
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�ps
� �r� = �

j=1

2
Z�� j

��� j
��3

�3/2 e−��j
��2�r�2, �C1�

where � is an atom index, �1
�+�2

�=1, and � j
� is a decay

constant that is defined during pseudopotential generation.
Our method uses two Gaussian components to mimic the
effective core charge, as is done in Bachelet, Hamann, and
Schlüter �BHS� pseudopotentials.38 In the present method,
electrostatic interaction is slightly modified from 1/r. For
that reason, we must reformulate the interaction between the
electrons and the pseudocharge. Because the ESM is located
at far from the surface outside the range of the short-range
part and the nonlocal part, only the long-range local part
should be modified by applying Green’s function to above
�ps

� �r�.
Here we show the long-range local potential, Vloc

long�g� ,z�,
for the boundary condition �ii� as a representative of our
method. Starting from Eq. �8� in g� space,

Vloc
long�g�,z� = �

−z1

z1

dz�G�ii��g�,z,z���g�g�,z�� , �C2�

where �g�r� is the effective core charge given by

�g�r�,z� = �
R�

�
�

�ps
� �r� − R��,z − ��

z � , �C3�

in real space, after straightforward calculations, we obtain

Vloc
long�g� � 0,z�

= �
�

Z�

S0
e−ig�·�����

j

2

� j
�F1

�j
�

�g�,z,��
z � + F2�g�,z,��

z �� ,

�C4�

Vloc
long�g� = 0,z�

= − �
�

2�Z�

S0
�
j=1

2

� j
���z − ��

z �erf�� j
��z − ��

z ��

+
1

� j
�
�

e−��j
��2�z − ��

z �2� + �
�

2�Z�

S0
�z1 −

z��
z

z1
� .

�C5�
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