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Transport through a single-molecular conductor is considered, showing negative differential conductance
behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by
a recent experiment by Leroy et al. using a carbon nanotube contacted by a scanning tunneling microscope tip
�Nature 432, 371 �2004��, where negative differential conductance of the breathing-mode phonon side peaks
could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those
which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single
electronic level to a local phonon, forming polaron levels. A “half-shuttle” mechanism is also introduced. A
quantum kinetic formulation allows us to derive rate equations. Assuming asymmetric tunneling rates and in
the absence of the half-shuttle coupling, negative differential conductance �NDC� is obtained for a wide range
of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for
intermediate electron-phonon coupling. In addition, in the absence of a gate, the “floating” level results in two
distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that
the half-shuttle mechanism tends to reinforce the negative differential regions, but it cannot trigger this behav-
ior on its own.
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I. INTRODUCTION

The prospect of using molecules as the fundamental
building blocks of future nanoelectronics devices is rather
innovating and exciting from the point of view of potential
applications. On the fundamental side, the field of molecular
electronics also opens new directions for research because of
the prominent role of phonon �vibron� excitations in elec-
tronic transport. The nano-objects which are connected to
metallic leads may consists of individual molecules, self-
assembled monolayers, or conjugated systems such as poly-
mers and carbon nanotubes. The interplay of electron trans-
port and molecular vibrations has triggered much interest,
and unambiguous signatures of phonons have been detected
in several experiments.1–8

A recent work7,8 considered electron injection from a
scanning tunneling microscope �STM� tip into a carbon
nanotube. A single-wall carbon nanotube �CNT� is freely
suspended over a trench. The STM tip is located near the
center of the suspended part of the CNT. A dc-bias voltage V
is applied between the substrate and STM, and the current
flowing through the STM-tip–CNT–substrate structure is
measured at a given tunneling distance, controlled by the
setpoint current. The motivation for this special geometry is
to allow for free internal vibrations to occur in the suspended
portion of the nanotube, in particular the so-called radial
breathing modes �RBMs�.9 Contrary to acoustic modes in
such system, this mode has a rather high oscillation fre-
quency and the authors observed that conductance peaks in

the current-voltage characteristics of the nanotube were sur-
rounded by phonon side peaks, due to emission or absorption
of RBM phonons. Indeed, CNTs display a sizable coupling
of electrons to RBM modes.10 The contacts to the nanotube
being rather resistive, transport in this system is dominated
by the Coulomb blockade regime and phonon side peaks
were observed around each Coulomb blockade peak in dif-
ferential conductance plots.

Interestingly, the authors mention frequent detection of
negative differential conductance �NDC� regions. Striking
NDC features also appear in a very recent work by Sapmaz
et al.,6 in a transport measurement of a suspended CNT,
where current flows through the CNT, between two contacts
at the substrate. In this work, phonon side peaks are attrib-
uted to longitudinal stretching modes and the steps in the
I�V� characteristics are followed by spikes, thus displaying
NDC features. The purpose of the present theoretical work is
to show that such NDC features can be described quite sim-
ply using a generic model which consists of a quantum dot
with a single-orbital level, coupled to an on-site single-
phonon mode, and connected to leads by tunnel junctions.
Due to the weak tunnel couplings, the physics of NDC ap-
pears to be a consequence of the transport through small
polaron states on the molecule. Notice that polaron formation
in CNTs is suggested by several works.10 Similar models
have previously been considered in the literature.11–17 Here
we consider a molecular system—or a nanotube setup—
whose tunneling matrix elements from the molecule to the
leads are asymmetric, which is the case in Ref. 7 and possi-
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bly also in Ref. 6. We propose that given this asymmetry,
NDC can be obtained for a wide range of parameters and it
can even be quantified by analytical means for strong asym-
metry. Furthermore, we argue that our approach for the de-
scription of NDC is by no means confined to the experimen-
tal geometry of Ref. 7, which can be considered as an
“experimental paradigm” for phonon-modulated molecular
transport. The present approach should apply to any molecu-
lar transport in the Coulomb blockade regime where an
optical-like phonon mode dominates. Notice that NDC was
found in Ref. 11 within a symmetric model, using an ansatz
for the Franck-Condon factors coupling the leads to the po-
laron levels. Catastrophic NDC was also proposed to occur
in Ref. 13, but due to an additional mechanism. In the frame-
work of a single-site model, NDC was also found in an adia-
batic treatment of the polaron problem.21 It has been pro-
posed to occur in the case of two competing molecular
states18 or within a two-site model.19 Besides electron-
phonon coupling, other physical mechanisms can lead to
NDC.20

In molecular electronics, one is tempted to use existing
theoretical tools developed in the context of mesoscopic
physics because the size of the devices allows a coherent
description of the transport inside the molecule. When the
molecule is connected to good contacts and when the role of
Coulomb interactions and electron-phonon interactions is re-
duced, the Landauer formulation of transport combined with
a Green’s function calculation of the transmission coefficient
serves as a good starting point for computing transport,22 but
it then neglects the dynamical degrees of freedom of the
molecule. Phonons can be included in these approaches,
analytically23 or using numerical calculations24,25 based on
the work of Ref. 26. Alternatively, the Landauer approach
can be generalized to a situation where interactions are re-
stricted to a finite region12,15,27 using nonequilibrium Green’s
functions.

On the other hand, molecular contacts or the contacts to a
nanotube are often of poor quality. It is then reasonable to
think of the molecule as a quantum dot, which is subject to
the Coulomb blockade. This point of view was adopted by
several authors,11–13,15,16,28 and is confirmed by experiments.
One of the advantages of molecular electronics comes from
the size of the individual nano-object which is connected to
the electrodes. Even at relatively large temperatures �a few
Kelvins�, the dynamics within the molecule and nanotube is
fully phase coherent. On the other hand, the tunneling rates
to the reservoirs are typically small compared to temperature.
One can then derive rate equations for the electron popula-
tion of the dot. Here our goal is to use the simplest model
which can account for the physics of the experiment of Ref.
7. We therefore derive a kinetic equation approach which can
account for the observed NDC effect, treating the electron-
phonon coupling nonperturbatively while still allowing for
an intuitive understanding of the physics at hand. Further-
more, consequences can be derived on the electron transport
as well as on the nonequilibrium phonon population. In the
present work the local mode is not coupled to any environ-
mental degrees of freedom, like phonon modes or electron-
hole excitations in the substrate. Although such coupling is
probably relevant in some experiments, the very high phonon

quality factors �Q�20 000� obtained in other works7 justify
to neglect it as a first step.

Experimentally, the addition of voltage gates on a molecu-
lar transport setup is still challenging but it is possible8,29 to
approach three metallic probes in a nanometer-scale region.
Yet there is also a motivation to study a setup where the
molecular levels are “floating” instead of being fixed by a
gate. Besides the strong asymmetry of the tunneling rates, a
specific feature of our work is that NDC can occur in such
absence of gate voltage and that the ratio of the right-left
capacitance plays an important role, as it dictates the location
of the molecular levels.

The structure of the paper is as follows. The model is
introduced in Sec. II, and the derivation of the rate equations
is provided in Sec. III. The general considerations about cur-
rent transport and phonon occupation numbers are discussed
in Sec. IV. Numerical results are presented in Sec. V, illus-
trating the role of the asymmetry of the capacitances, of the
shift of the dot level, and of the so-called half-shuttle mecha-
nism on the NDC. We conclude in Sec. VI.

II. THEORETICAL MODEL

Although the potential relevance of our approach applies
to the carbon nanotube experiments of Refs. 7 and 8, we
refer to the central region between the leads as the quantum
dot. This quantum dot is weakly coupled to two metallic
electrodes by tunnel junctions. In the STM geometry of Refs.
7 and 8, the electrodes represent the STM tip and substrate,
to which we refer as the “left” �l� and “right” �r� electrodes,
respectively �Fig. 1�. Each tunnel junction �j= l ,r� is charac-
terized by a resistance �Rj� and a capacitance �Cj�. While Rr

and Cr are constant for a given contacted nanotube sample,
Rl and Cl are functions of the tip-tube separation. The capaci-
tances Cl and Cr are sample dependent.30 For generality, one
can add a gate voltage Vg and a gate capacitance Cg.

We focus on the strong Coulomb blockade regime, assum-
ing that the number of electrons which can be added to the
dot is restricted to 1. The physical features revealed in the
corresponding bias window can be easily extended to a full
span of many Coulomb blockade peaks, as well as several
orbital levels as in Refs. 7 and 8. The extra-charge electron
state is locally coupled to a phonon mode: in Refs. 7 and 8

FIG. 1. Schematic drawing of a carbon nanotube suspended
over a trench. A bias voltage is applied between the STM tip
�source� and substrate �drain�. The inflated portion in the suspended
portion of the nanotube illustrates the radial breathing mode. h is
the tip-nanotube separation at rest.
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this mode is identified with the radial breathing mode of the
carbon nanotube9,10 and, in Ref. 6, with the longitudinal
stretching mode. In view of the phonon-assisted tunneling
processes, the above-mentioned Coulomb blockade regime
implies that the charging energy of the dot is assumed to be
infinitely large compared to the relevant energy scale deter-
mined �at low temperature� by the phonon energy � and the
bias voltage. In the absence of phonons, electron transport
would occur only through a single-electron state on the dot.

In the Coulomb blockade regime, far from the Kondo
regime, spin degrees of freedom are neglected. The Hamil-
tonian of the system is written as follows:

H = H0 + Hleads + V , �1�

where

H0 = �� − gx�d†d + �b†b, x = b + b†, �2�

Hleads = �
jk

� jkcjk
† cjk, �3�

V = �
jk

T j�x�cjk
† d + H . c. �4�

Here the operator d �d†� annihilates �creates� an electron on a
single dot level of energy �; similarly, cjk �cjk

† � annihilates
�creates� an electron with momentum k and energy � jk in the
jth lead. The RBM is linearly coupled �with the coupling
energy g� to the electric charge on the dot; the RBM excita-
tions are annihilated �created� by b �b†�. In Eq. �4�, T j is the
energy associated with the tunneling coupling to the dot; for
simplicity, T j is assumed to be energy independent �constant
density of states in the metallic leads�, but we take into ac-
count the dependence of the tip-tube tunneling matrix ampli-
tude on the boson coordinate x: due to the “breathing” mo-
tion of the tube, the tip-tube tunneling distance deviates from
its equilibrium value. Explicitly, we assume an exponential x
dependence

Tl�x� = Tl0e−sx, �5�

where s is determined by the ratio of the amplitude of the
zero-point RBM oscillations to the electronic tunneling
length ��0.5 Å� which characterizes the tunnel barrier be-
tween the STM tip and the nanotube. Such position-
dependent amplitudes have been introduced in the context of
nanomechanical electronic devices,31–34 where one refers to
the “shuttle” mechanism as the central region oscillates be-
tween the two electrodes. On the other hand, in our situation
the tube-substrate tunneling matrix amplitude is x indepen-
dent: Tr�x��Tr0. For s�0, we refer here to this position-
dependent tunneling Hamiltonian as the half-shuttle mecha-
nism, because only one of the tunneling amplitude �left� is
modified by the position.

In the model Hamiltonian �1�, formally describing the
phonon-assisted tunneling of otherwise noninteracting elec-
trons, the charging effects are taken into account via the bias-
voltage dependence of the position of the dot level ��� with
respect to the chemical potentials of the leads, �l,r. A gate
voltage Vg and gate capacitance Cg can be included. In our

analysis, � includes the change in the charging energy of the
dot when one extra electron is added to the dot and which is
obtained from the electrostatic energy consideration:

� − �0 = 2EC�nx + 1/2� + e� , �6�

where �0 is the “bare” energy level of the electron level in
the dot, EC=e2 /2C is the charging energy, and enx is a back-
ground �fractional� charge of the dot. Furthermore, the po-
tential of the dot, �, is given by

� = �
j=l,r

cj� j/e + cgVg, �7�

cj = Cj/C, cg = Cg/C, C = Cl + Cr + Cg. �8�

In typical experiments, Cg�Cj. It is worth noticing that in
the “floating-level” geometry which is considered in part of
this work �e.g., without the gate electrode, Cg=0�, the frac-
tional charge is not fixed but it can instead be affected by
changes in the capacitances of the junctions35 �that is, nx may
depend on the tip-tube separation�.

Assuming weak coupling to the leads, it is convenient to
eliminate the electron-phonon coupling in H0 by the unitary

transformation H̃=	†H	, with

	 = e−i
pd†d, p = − i�b − b†�, 
 = g/� . �9�

In the rotated basis, the electron state in the dot becomes
“dressed” with phonons, forming a small polaron. This re-
sults in the “polaron shift” of the dot level energy, �̃=�
−g2 /�, and a renormalization of the dot-lead tunneling cou-
pling. In the polaron representation, the Hamiltonian reads

H̃ = H̃0 + Ṽ + Hleads, �10�

H̃0 = �̃d†d + �b†b , �11�

Ṽ = �
jk

T j�x�e−i
pcjk
† d + H.c. �12�

In Eq. �12�, we have used the fact that

	†Tl�x�d	 = Tl�x + 2
d†d�de−i
p = Tl�x�e−i
pd . �13�

III. RATE EQUATIONS

Based on the assumption that the leads are in thermal
equilibrium at given chemical potentials ��l and �r�, inde-
pendently of the state of the dot, one can derive a kinetic
equation for the reduced density matrix by tracing out the
electrode degrees of freedom from the total density matrix.
Such equations have been used by several authors,11,13,16,32

but for sake of completeness we provide here a full deriva-
tion.

In the polaron representation, the reduced density matrix
of the phonon-coupled dot is given by

R�t� = e−itH̃0RV�t�eitH̃0, RV�t� = Trleads�̃V�t� , �14�

where �̃V�t� is the total density matrix in the interaction pic-
ture �with respect to the tunneling coupling to the leads�,
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which obeys the operator equation of motion

i�t�̃V�t� = �Ṽ�t�, �̃V�t�� , �15�

Ṽ�t� = eit�H̃0+Hleads�Ṽe−it�H̃0+Hleads�. �16�

Using the integral form of Eq. �15�,

�̃V�t� = − i�
0

t

d��Ṽ���, �̃V���� + �̃V�0� , �17�

substituting Eq. �17� into Eq. �15�, and taking the trace over
the electronic degrees of freedom of the leads with the above
mentioned assumption of �̃V�t�=�leads

eq
� RV�t�, where �leads

eq is
the equilibrium density matrix of the leads, we arrive at the
integro-differential equation of motion for the reduced den-
sity matrix in the polaron representation:

�tRV�t� = − �
j=l,r

2
� j�
0

t

d�ei�̃��Fj
����	T̃ j

†�t�T̃ j�t − ��d†dRV�t − �� − T̃ j�t − ��dRV�t − ��d†T̃ j
†�t�


+ Fj
����	RV�t − ��dd†T̃ j�t − ��T̃ j

†�t� − T̃ j
†�t�d†RV�t − ��dT̃ j�t − ��
� + H.c., �18�

where � j is the density of states in the jth electrode,

T̃ j��� = T j��x����e−i
p���, �19�

with

x��� = be−i�� + H.c., �20�

p��� = − ibe−i�� + H.c., �21�

and

Fj
�,���� =

1

2
����� � PV

ie−i�j�

� sinh�
�/��� �22�

�where “PV” stands for the principal value�. From the above
expressions for the kernels Fj

�,����, it follows that the rel-

evant retardation time is of the order of the inverse tempera-
ture �. Assuming temperature to be high compared to the
tunneling rates, �−1�2
� jT j

2, and considering the long-time
behavior of the reduced density matrix, t��, we construct
an asymptotic solution of Eq. �18� by using an improved
perturbation expansion36:

RV�t� = R̄��t� + �R�1��t� + o��� . �23�

In Eq. �23�, � is a formal perturbation parameter that reflects
a weakness of tunnel coupling and must be formally attrib-
uted to the right-hand side of Eq. �18�:

��zR̄�z� + ��tR
�1��t� + o��� = − � �

j=l,r
2
� j�

0

t

d�ei�̃��Fj
����	T̃ j

†�t�T̃ j�t − ��d†dR̄�z − ��� + ¯ 
� , �24�

with z=�t. In the first-order equation in �, retardation effects
are neglected �the Markovian approximation�, and in the
above equation, we can replace 
0

t d�¯→
0
+�d�¯. By con-

struction, R̄ is, on the time scale �, a slowly evolving part of
the reduced density matrix, while the rapidly oscillating
�with frequencies determined by a multiple integer of �� part
of the right-hand side of Eq. �24� is absorbed into R�1�. In
what follows, we assume that the phonon frequency is high
compared to the tunneling rates, ��2
� jT j

2. This “antiadia-
batic” condition allows us to neglect R�1� as being negligibly

small compared to R̄. Under the above assumptions, Eq. �24�
reduces to a differential operator equation for R̄�t�.

Although R̄ is diagonal in the on-dot electron number �no
coherence between subsequent tunneling events at long
times�,

R̄�t� = �1 − d†d�R0�t� + d†dR1�t� , �25�

yet it is nondiagonal in the phonon number due to the pres-
ence of the displacement operators �e±i
p� on the right-hand
side of Eq. �24�. However, equations for the diagonal and

off-diagonal parts of R̄�t� are decoupled from each other. As
a result, in steady state �t→ + � �, which we are interested in,
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R̄ becomes diagonal in both the electron and phonon num-
bers.

Introducing the electron-phonon joint probabilities

Pn
i �t� = �n�Ri�t��n� , �26�

for i= 	0,1
 additional electrons and n= 	0,1 ,2 , . . . 
 boson
excitations on the dot, we obtain the system of rate equations
for the joint probabilities, which in the steady case can be
written in the following form:

�tPn
0 = 0 = − �n

�Pn
0 + �

m

Lnm
� Pm

1 ,

�tPn
1 = 0 = − �n

�Pn
1 + �

m

Lnm
� Pm

0 , �27�

with the normalization condition �n�Rn
0+Rn

1�=1. The charge
and phonon transition rates are given by

�n
� = �

m

Lmn
� , �n

� = �
m

Lmn
� , �28�

Lnm
� = �

j=l,r
� j� j,mn

2 f j��̃ − �mn�,

Lnm
� = �

j=l,r
� j� j,nm

2 �1 − f j��̃ − �nm�� . �29�

In the above equations, f j���= �e���−�j�+1�−1 is the Fermi
distribution function of the jth electrode, �nm= �n−m��,

� j = 2
� jT j0
2 , �30�

�l,nm = �n�e−sxe−i
p�m�, �r,nm = �n�e−i
p�m� . �31�

Explicitly, we have, for the oscillator matrix elements

�n�e−sxe−i
p�m� = e−s
+�s2−
2�/2 �
q=0

Min�n,m�
�− 1�m−q�n ! m!

�n − q� ! �m − q� ! q!

��
 − s�n−q�
 + s�m−q. �32�

From the solution of Eq. �27� we can calculate the dc
current and expectation values of the phonon observables. It
should be noticed that in the original �nonpolaron� represen-
tation, the resulting phonon density matrix is given by

Rph = �
n

�Pn
0�n��n� + Pn

1e−i
p�n��n�ei
p� . �33�

In general, Rph has contributions from both charge states i
=0,1 and is nondiagonal in vibrational space �two shifted
oscillators�.

In order to express the current in terms of the joint prob-
abilities Pn

i , we have to average the current operator taken in
the polaron representation,

Ĩ j = ei�
k

T j�x�e−i
pcjk
† d + H.c., �34�

with the total density matrix

�̃�t� = e−it�H̃dot+Hleads��̃V�t�eit�H̃dot+Hleads�, �35�

where �̃V�t� obeys Eq. �17�. Following the same steps and
assumptions which we have made in the derivation of the
rate equations, we obtain the average dc current flowing
from the jth lead to the dot as �we set e=1�

Ij = �
n

�� j,n
� Pn

0 − � j,n
� Pn

1� , �36�

where � j,n
�,� are the partial relaxation rates contributing to

�n
�,�, Eq. �28�, from the jth electrode:

� j,n
� = �

m

� j� j,nm
2 f j��̃ − �nm� , �37�

� j,n
� = �

m

� j� j,mn
2 �1 − f j��̃ − �mn�� . �38�

By virtue of the rate equations, we have conservation of the
current, Il=−Ir.

IV. PHONON-ASSISTED TRANSPORT FOR �l™�r

In calculating the I�V� characteristics from Eqs. �18� and
�36�, we will focus on the case of highly asymmetric two-
junction model with �l��r. This corresponds to the typical
experimental situation with STM measurements where a
contact to the STM tip plays the role of the high-resistive
tunneling junction. For instance, in STM measurements on
suspended nanotubes, the typical ratio Rtip /Rsub�103–105

can be huge depending, in particular, on the tunneling dis-
tance between the STM tip and the nanotube, h�4 Å typi-
cally. In the present section, no gate is present �floating level�
and thus Cg=0.

At the same time, according to the data in Ref. 8 obtained
from spectroscopy measurements on suspended nanotubes,
the ratio Ctip /Csub�Cl /Cr can be smaller as well as larger
than unity depending on an effective length of the portion of
the nanotube that is on the substrate and which can be rela-
tively short due to local defects induced by the edges of the
trench. Thus, there is no dominating asymmetry in the ca-
pacitive coupling of the dot to the both electrodes. As a re-
sult, in the voltage-biased system, the effective position of
the polaron level with respect to the chemical potentials of
the leads is strongly affected by the ratio Cl /Cr which is not
negligibly small like �l /�r, or can even be larger than
unity.30 It results that the polaron level �assuming neither
gate-induced nor intrinsic shift of the polaron level at zero
voltage� is not trivially stuck to the chemical potential of the
far less resistive junction electrode, �r.

Considering the system of stationary rate equations �27�
and writing explicitly expressions for the Fermi factors en-
tering Eq. �29�, we obtain �see also Eqs. �6� and �7��

f l��̃� = f�E − crV�, fr��̃� = f�E + clV�, V = �l − �r,

�39�

where f���= �e��+1�−1 and
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E = �0 − g2/� + 2EC�nx + 1/2� �40�

determines the position of the polaron level with respect to
the lead chemical potentials at V=0, considered as the refer-
ence level of zero energy. From Eq. �39�, the role of charging
effects in the single-electron resonant level problem can be
viewed as follows: when changing the bias voltage, the
chemical potentials move in opposite directions �depending
on the sign of V� with different “velocities” determined by
the capacitance ratios, cr and cl for the left and right elec-
trode, respectively. The above picture is given in the “refer-
ence frame” of the polaron level, where its position is volt-
age independent. For the floating-dot geometry, E may be
strongly affected by a background charge nx. In the presence
of a gate electrode,30 E can be controlled by the gate poten-
tial, and C in Eq. �7� must also include the gate capacitance,
with cl+cr�1.

In this section, in order to make analytical progress on the
prediction of the current transport, we formally assume tem-
perature to be zero. Because the rate equations have been
derived in the high-temperature approximation �T��r�, the
zero-temperature assumption is justified for the voltage-
biased cases where the chemical potentials �l,r are not very
close to the phonon sidebands, so that thermally activated
tunneling processes can be neglected.

We first notice that in the case where the polaron level E
lies beyond the bias-voltage window, the system of rate
equations �27� reduces to the following:

Lnm
� Pm

0 = Lmn
� Pn

1, �41�

which is satisfied for all phonon numbers m ,n. The ground-
state solution of Eq. �41� is either Pn

i =�n0�i1 �i=0,1� for E
��l,r or Pn

i =�n0�i0 for E��l,r. As a result, in this case the
current is zero: no contribution to the current occurs from the
phonon sidebands alone �cf. Ref. 16�.

Equation �41� also works in the less trivial case when E
lies within the bias-voltage window, but ��l,r−E � ��. For
instance, for V��l−�r�0, the solution of Eq. �41� �valid
for arbitrary �l,r� reads Pn

i =�n0Pi, where

P0 = 1 − P1 =
L00

�

L00
� + L00

� =
�̃l

�̃l + �r

, �42�

�̃l = �le
−2s
+s2

, �43�

and the current is given by

I = e−
2 �̃l�r

�̃l + �r

. �44�

For large 
, the exponential prefactor in Eq. �44� leads to a
significant suppression of the current at low bias voltages
�the so-called Franck-Condon blockade15–17�. The role of s
�“half-shuttle”� will be discussed later.

At higher voltages, such that phonon sidebands enter the
bias-voltage window, Eq. �41� fails, and we have to go back
to the full system of rate equations �27�, taking into account
the total balance of probabilities for transitions between dif-
ferent states of the dot. This renders the problem of calculat-

ing phonon distribution functions Pn
i and eventually the I�V�

characteristics a rather complicated one to be solved analyti-
cally. However, for the case of high asymmetry in the tun-
neling couplings, it is possible to make some further analyti-
cal progress before passing to numerical calculations.35

We now exploit the condition �l��r for analyzing steady
solutions of the rate equations. In the general case, when a
bias voltage V is applied and the current is not identically
zero �up to thermally activated processes�, the polaron level
is accompanied by N+M phonon sidebands captured in the
bias-voltage window, where we introduce �“int” stands for
the integer part�

N = int���l − E�/�� , �45�

M = int���r − E�/�� . �46�

Independently of the sign of V, the integer N �M� is defined
as a number of phonon sidebands lying between the polaron
level and the chemical potential of the electrode connected to
the dot through the more �less� resistive junction. An ex-
ample with N=2 and M =1 for V�0 is shown on Fig. 2. Due
to high asymmetry �l��r, only probabilities 	Pm

0 
 with m
� �0,M� do not vanish in this limit. For the example in Fig.
2, the probabilities to have an electron on the dot with any n
phonons, Pn

1, are suppressed due to “fast” tunneling of the
electron to the right electrode via n+2 open channels; the
probability to have the dot with an empty electron state but
with the number of phonons M +1=2 �and higher�, PM+1

0 , is
also negligible due to the “fast” tunneling of an electron
from the right electrode with absorbing two phonons. In
other words, on a large time scale determined by �l

−1, the
polaron-hole states with 0 and 1 phonon excitation are �qua-
si�steady states with respect to the tunneling coupling to the
right electrode. Notice that in the asymmetric situation, the
phonon number distributions are nearly the same in the po-
laron basis �the Pn

0’s� and the original basis �Rph�, as shown
by Eq. �33�.

The case V�0 can be treated in the same manner. We
obtain that only probabilities 	Pm

1 
 with m� �0,M� are not
vanishing as �l /�r. As a result, with a good accuracy, con-
trolled by the smallness of �l /�r, the current flowing from
the left to the right, I� Il �see Eq. �36��, can be written as

FIG. 2. Energy-level diagram for the case M =1 and N=2; the
arrows show possible channels for electrons to tunnel onto or from
the dot with changing �indicated by numbers� the phonon occu-
pancy; �l−�r=V
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I�V � 0� = �
m=0

M

Pm
0 Im, Im = �l �

n=0

m+N

�l,mn
2 , �47�

where �m=0
M Pm

0 +O��l /�r�=1 and

I�V � 0� = − �
m=0

M

Pm
1 Im, Im = �l �

n=0

m+N

�l,nm
2 , �48�

with �m=0
M Pm

1 +O��l /�r�=1. The current is given by a sum of
partial currents Im representing M conducting channels
which are distributed with the corresponding phonon occu-
pation probabilities. The magnitude of each partial current
depends on the previously defined number of phonon side-
bands, N, captured between E and �l.

When varying V, the number of captured phonon side-
bands, N and M, can change. In the voltage ranges where N
and M do not change, we obtain plateaus in the I�V� charac-
teristics. Assuming for concreteness V�0, we see from Eq.
�47� that if V increases in such a way that only N changes
�N can only increase with increasing V�, the magnitude of
each partial current, and hence the net current, will increase.
Thus, we obtain here the positive differential conductance
�PDC� behavior which is commonly computed and observed.
On the contrary, if when increasing V only M changes �i.e.,
increases� while N remains constant, then a new phonon-
assisted channel is added. This leads to redistribution of pho-
non occupation probabilities between all open channels.
Paradoxically, the net current may decrease, leading to a
NDC behavior on I�V�.11

For V�0, assuming that due to the voltage increase V
→V+�V the number of phonon sidebands in the bias-
voltage window has changed as 	N=0,M =0
→ 	N=0,M
=1
, using Eq. �47� the variation of the current �I= I�V
+�V�− I�V� becomes

�I = P0
0I0 + P1

0I1 − I0

= − P1
0�̃le

−
2
�1 − �
 − s�2 − �1 − 
2 + s2�2� . �49�

Thus, for this particular situation, assuming for simplicity s
=0, the condition for the NDC is 
�1: large values of the
electron-phonon coupling do not favor NDC. The magnitude
of the negative step on I�V� increases with increasing phonon
occupancy P1

0.
For V�0, considering the same transition 	N=0,M =0


→ 	N=0,M =1
, one finds

�I = − P1
1�̃le

−
2
�1 − �
 + s�2 − �1 − 
2 + s2�2� , �50�

with the same NDC condition 
�1 for s=0. From the above
expressions, we also notice that for positive �negative� bias
voltage and nonzero but small half-shuttle s�1, the NDC
effect increases �decreases� for the first phonon-assisted step
of the I�V� characteristic.

As far as the bias voltage increases, the current eventually
saturates and does not change in practice. For large bias volt-
ages V→ ±�, the corresponding saturation currents Isat

�±� are
given by �up to corrections O��l

2 /�r��

Isat
�+� = �l�

m=0

+�

Pm
0 �m�e−2sx�m� , �51�

Isat
�−� = − �le

−4s
�
m=0

+�

Pm
1 �m�e−2sx�m� . �52�

In the absence of the half-shuttle mechanism, we obtain that
the saturation current does not depend on the phonon distri-
bution, Isat

�±�=�l. For s�0, considering equilibrated
phonons—i.e., forcing Pm

s →�m0 in the limit of strong pho-
non relaxation—we obtain the saturation currents

Isat
�+� = �le

2s2
, Isat

�−� = − e−4s
Isat
�+�. �53�

For nonequilibrated phonons, Eq. �53� is expected to be ac-
curate in the limit cl�cr. Nevertheless, for relatively small

�1, the asymmetry in the current saturation values due to
the half-shuttle can be noticeable at low bias voltages for
cl�cr because of the fast saturation of the partial currents Im
�fast convergence of the series in Eqs. �47� and �48��.

V. NUMERICAL RESULTS AND DISCUSSION

We now turn to the numerical solution of the rate equa-
tions and explore the parameter space in order to find the
signatures of NDC. After writing the system of rate equa-

tions �27� in the matrix form 	̂P=0, with PT

= �P0
0 , P0

1 , P1
0 , P1

1 , . . . �, the problem reduces to finding the zero

eigenvalue of the matrix 	̂.16 The typical maximum number
of phonon states has been taken around 40, so that results of
the calculation would not depend on this choice for the con-
sidered range of parameters. From numerically found solu-
tions P, the current has been calculated in the left and right
electrodes using Eq. �36�. The achieved tolerance for Il=
−Ir was 10−6.

Contrary to the previous analytical arguments, calcula-
tions are performed at finite temperature. For calculation pur-
poses we assume a large asymmetry in the tunneling rates,
�l /�r=10−4. Yet most of our results also hold for moderate
asymmetries. The current I is plotted in units of �l�r / ��l

+�r�, and the bias voltage V, the polaron level E, and tem-
perature T are given in units of �. In Sec. V A, one considers
the floating-level case. We consider the effect of a given shift
of the dot level �due to background or gate charges� in Sec.
V B. In these two subsections we will disregard the half-
shuttle �s=0�, which will be considered in the last subsec-
tion.

A. Nonshifted polaron level „E=0…

We start by considering the case where the capacitances
surrounding the dot fully specify the position of the polaron
level. At zero bias voltage, the polaron level is aligned with
the chemical potentials of the electrodes E=0. In this case, as
immediately follows from the system of rate equations �27�,
we have the symmetry relation Pn

0�V�= Pn
1�−V� and conse-

quently I�−V�=−I�V�. Notice that for the “floating-level” ge-
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ometry the case of E=0 is an exceptional one and must be
viewed as a reference point.

Figure 3 shows the I�V� characteristics for different 
’s
assuming small cl=0.1, so that the polaron level lies closer to
�r. In the experiment of Refs. 7 and 30, this means that the
nanotube has a large overlap with the conducting substrate.
As long as M =0—that is, if V�� /cl �this condition is sat-
isfied on the bias-voltage range which is plotted�—Pn

0=�n0
−O��l /�r�, which results in the PDC behavior of I�V�. The
PDC steps correspond to N increasing by one each time V
passes through a multiple integer of � /cr. Explicitly, the
current-step amplitude at V=n� /cr corresponding to the cur-
rent increase is given by

�I�n� = �le
−
2 
2n

n!
. �54�

For smaller 
’s the current-step amplitude decreases faster
with increasing V, which leads to the saturation of the current
at lower voltages.

Note that the first step �low bias voltage� is rounded. This
feature is specific to the fact that the capacitances are asym-
metric. Indeed, increasing the bias voltage from zero, the
chemical potentials move away from the polaron level, but
the chemical potential whose lead has the largest capacitance
remains close to this level. In this event, thermally activated
tunneling processes can be effective. When the bias voltage
is further increased the phonon sidebands which contribute
to new steps are those above the polaron level, and thus their
corresponding steps are not thermally rounded. In the case
where the asymmetry in the capacitances is opposite, which
is shown in the next figure, the same reasoning applies.

Figure 4 shows the I�V� characteristics for different 
’s
assuming a relatively large cl=0.9. In the experiment of
Refs. 7 and 30, this means that the nanotube has a small
length, thus a small overlap with the conducting substrate,
and thus a small capacitance compared to that of the tip-
nanotube contact. Alternatively, a large cl could be achieved
if the nanotube contains impurities or bends.

In the bias-voltage window, the polaron level is closer to
�l than to �r. Within the bias-voltage range which is plotted,
the current changes by steps when V passes through a mul-
tiple integer of � /cl. At these points, M increases by 1;
correspondingly, one more phonon-assisted channel is added.

For 
=1.5 one still observes the PDC behavior, although the
height of the current steps is strongly suppressed compared
to the previous case in Fig. 3. For 
�1, NDC occurs in the
first step, and with decreasing 
, more NDC steps appear.
For all curves, Eq. �49� gives the current jump between the
second and first plateaus in Fig. 4. We have also performed
calculations of the current-voltage characteristics in this
NDC regime while increasing gradually the temperature �not
shown�. Temperature tends to smooth the steps and to sup-
press NDC altogether when it becomes comparable to the
spacing between the steps.

At the same time that we monitor the electronic current, it
is instructive to examine the phonon occupation numbers in
order to quantify PDC or NDC behavior. The phonon distri-
butions Pm

0 , which play the role of probabilities of open
channels, at different bias voltages are shown in Fig. 5. This
figure demonstrates the increase of the number of phonon
excitations with increasing M �see Eq. �46��. It shows that
the phonon number which are occupied is restricted by M
−1. Thus, the phonon distribution allows to understand the
height of the PDC or the NDC steps.

In the two previous cases, two limits were considered:
either cl�cr or cl�cr. On the way to the more general situ-
ation when cl and cr are comparable, let us now consider in
more detail the capacitively symmetric case when cl=cr

FIG. 3. The case cl=0.1 for 
=0.8 �solid line�, 1.5 �dashed
line�, and 1.9 �dot-dashed line�. T=0.01.

FIG. 4. The case cl=0.9 for 
=0.5 �solid line�, 0.9 �dotted line�,
and 1.5 �dashed line�. T=0.01.

FIG. 5. Phonon distribution Pm
0 for the case of Fig. 4 at the bias

voltage V=2 �circles� and V=4 �triangles�.
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=0.5. The I�V� characteristics for 
=0.8 and 1.5 are shown
in Fig. 6. For 
=1.5, the current shows a stepwise increased
with essentially no NDC behavior. Note that because the
capacitances are equilibrated, the first step does not display
substantial rounding due to thermal effects. For 
=0.8, one
observes a stepwise increase of the current, but the onset of
each step is associated with a small spike, thus exhibiting
NDC behavior. This NDC behavior is thus qualitatively dif-
ferent from the one previously observed for the case of
asymmetric capacitances. The spikes bringing the NDC fea-
tures to the I�V� characteristics are robust with respect to
temperature. In Fig. 7 one sees that these spikes are broad-
ened with temperature, but NDC persists as long as the tem-
perature is not comparable to the phonon frequency. On the
I�V� for 
=1.5 �Fig. 6�, the NDC singularities appear only
for higher voltages; however, the first phonon-assisted cur-
rent step �at V=2�� is also deformed.

At low temperature, it is interesting to make a zoom of a
given step in order to see how the spikes evolve when the
electron phonon coupling is varied. Figure 8 shows these
“singularities” on the second step of the I�V� characteristic
for a wide range of 
’s �cf. Fig. 6�. Note that the NDC
behavior is more pronounced with increasing 

= 	0.5,0.8,1.1
. Indeed, in the limit of vanishing electron
phonon coupling, one gets only one step due to the polaron
�electron� level and all NDC features are absent. There is
therefore an optimal value of 
 which displays maximal

NDC behavior. Further increasing 
, NDC converts to the
PDC case �the curves for 
= 	1.5,1.9
�.

In this case of equal capacitances �cl=cr�, the polaron
level lies in the middle of the bias-voltage window at all V,
so that both N and M increase by 1 when V passes through a
multiple integer of 2�. In particular, at V=2� the transition
	N=M =0
→ 	N=M =1
 occurs: below V=2� the polaron
level is the only one which lies within the bias voltage win-
dow, while immediately above V=2�, two phonon side-
bands are simultaneously captured by the bias window. As a
result, in the vicinity of V=2� �how close depends precisely
on temperature�, we have a competition between the PDC-
and “possible NDC”-type contributions to the current, corre-
sponding to the processes of electron tunneling from the left
electrode into the dot with emission and absorption of one
phonon, respectively.

In the transition region V�2�, the current is given by
�here we take into account the Fermi factors�

I�V� = �
m=0

1

Pm
0 �V�Im, �55�

Im = �l�
n=0

m+1

�l,mn
2 f�− crV − �mn� , �56�

and P0
0+ P1

0+O��l /�r�=1. Explicitly, we have

I�V� = �le
−
2�1 + 
2f�� − V/2� + P1

0�V�
2�− 1 + 
2

+
1

2
��1 − 
2��2 − 
2� − 
2�f�� − V/2��� . �57�

From the numerics, it follows that up to V=V+�2�+W
�0, where W is the half-width of the Fermi distribution
function �see caption of Fig. 8�, we have P1

0�V�=0; thus, the
current successively increases up to

I�V+� = �le
−
2

�1 + 
2� . �58�

This effect is due to the high asymmetry in the tunneling
rates �l,r: the probability to have an empty dot with one

FIG. 6. The case cl=0.5 for 
=0.8 �solid line�, and 1.5 �dashed
line�. T=0.01.

FIG. 7. Temperature dependence of the NDC singularity for 

=0.8: T=0.005 �solid line�, 0.01 �dashed line�, and 0.04 �dotted
line�.

FIG. 8. From up to down 
= 	0.5,0.8,1.1,1.5,1.9
 for cl=0.5.
T=0.01. The dotted vertical lines around V=2 �corresponding to
V±=2±0.05� show the width of the Fermi distribution function at
given T.
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phonon, P1
0, remains negligible, O��l /�r�, until there is some

probability to have thermally activated electrons of energy
E−� coming from the right electrode. Only then, for V
�V+, where f��−V /2� has practically reached unity, does
P1

0�V� start deviating from zero. Thus, we have

I�V� − I�V+� = P1
0�V��le

−
2
g�
�, V � V+, �59�

g�
� = 
2�− 1 + 
2 +
1

2
��1 − 
2��2 − 
2� − 
2�� . �60�

For V�V+, the V dependence of the current is given by
P1

0�V�. With increasing V, P1
0�V� also increases and saturates

to some quantity �depending on 
� which is comparable with
P0

0 �the right-hand-side plateau in Fig. 8�. From numerics we
find that at V=2.5�—for instance, for 
= 	0.5,1.1,1.9
—we
correspondingly have P1

0�1− P0
0= 	0.35,0.48,0.38
. From

Eq. �59� and Fig. 9 we see that the NDC plateau disappears
for small 
�0.5; with increasing 
, the NDC contribution
from an open channel increases and decreases, having the
maximum at 
�1.15, and for 
�1.4 the NDC contribution
converts to the PDC one �cf. Fig. 8�.

Up to now, we have considered only strong asymmetric
capacitances and equal capacitances. A common feature of
these choices is that the current-voltage characteristics dis-
play steps �with or without NDC behavior� whose spacing in
voltage is essentially always the same at relatively low volt-
ages. Indeed, for the asymmetric capacitances plots each step
is separated by �approximately� �, while for cl=cr, this spac-
ing is 2�. If one was to plot the differential conductance, as
in the experiment of Ref. 7, one would obtain a periodic
series of peaks. What happens to this periodicity in an inter-
mediate situation where the capacitances are comparable, but
not equal? Figure 10 shows current-voltage characteristics
with two steps of different length for the case cr=1.5cl. The
number of phonon sidebands above the polaron level, N,
increases by 1 with the voltage period � /cr= �5/3��; for
these steps we always have a PDC behavior as is demon-
strated in the previous section. At the same time, the number
of phonon sidebands below the polaron level M→M +1 with
the voltage period � /cl=2.5�: one more channel becomes
open which yields the possibility of NDC. The larger 
, the
more PDC steps at low bias voltages are observed.

B. Shifted polaron level „EÅ0…

In this subsection, we consider the more general situation
where, due to gate or background charges, the polaron level
E is shifted by a constant value with respect to the chemical
potentials of the leads at zero bias voltage. For E�0, the
symmetry I�V�=−I�−V� is violated; moreover, I�V� is not
shifted in a trivial manner, meaning that it does not simply
follow E. Figure 11 shows two current-voltage characteris-
tics for different values of E. As was mentioned in Sec. IV,
the current is zero when the polaron level lies beyond the
bias voltage window. For negative V, the polaron level be-
comes captured in this window at V=−E /cl=−4E. At this
point, the number of phonon subbands below the bare
level—N in this case—suddenly changes from N=0 to N
=int�crE /cl��=int�3E /��. In the curves of Fig. 11 corre-
sponding to E=0.4� and 0.7�, we observe a transition to
N=1 and N=2, respectively. This results in a fast saturation
of the curves at negative voltages �the saturation is faster for
the curve with larger E�.

Previously, we found that small cl leads to PDC for the
first phonon assisted peaks. Here, although cl=0.25 is rela-
tively small in Fig. 11, for positive V, we observe NDC
behavior already for the first phonon-assisted step on I�V�
�around V=2�� for E=0.7. This can be explained as follows.
At small positive voltages, we first have a zero-current pla-
teau until the polaron level becomes captured in the bias-
voltage window �N=M =0� at V0=E /cr. This leads to the
first PDC step on the I�V� curve at V0= �4/3�E. Then the

FIG. 9. g�
� function, Eq. �60�. FIG. 10. 
=1.9 �solid line�, 1.5 �dashed line�, and 0.8 �dot-
dashed line� for cl=0.4, E=0, T=0.01, and s=0.

FIG. 11. E=0.4 �dashed line� and E=0.7 �solid line� for 

=0.8, T=0.01, and cl=0.25.
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second plateau persists until V1= ��−E� /cl�2�, which cor-
responds to the phonon sideband level E−� becoming cap-
tured in the bias window �N=0,M =1�. Because 
=0.8 is
less than the critical value 1 �see Sec. IV�, this transition
gives the NDC step. Next a plateau persists until, V2= ��
+E� /cr when the phonon sideband level E+� is captured in
the bias window �N=1,M =1�, resulting in a PDC step on
I�V�. The conditions to observe NDC for the first phonon-
assisted step are therefore

cr� � E � �cr − cl�� � 0, 
 � 1. �61�

The width of the NDC plateau is V2−V1= �E− �cr

−cl��� /clcr. Equation �61� is fulfilled for the case E=0.7�
in Fig. 11, but it fails for E=0.4�, where we have the PDC
behavior of the first phonon-assisted step on I�V�, for V�0.

Figure 12 shows the temperature dependence of the NDC
step for E=0.7�. With increasing temperature T, the
phonon-assisted channel opens for higher voltages when the
one-phonon excited state of the empty dot becomes unreach-
able for thermally activated electrons from the right electrode
at energy E−�+W �as before, W is the half-width of the
Fermi function�. As a result, the NDC region with a de-
creased slope gradually shifts towards the next step on I�V�.

Figure 13 shows the opposite situation: the NDC appears
this time with increasing temperature. At low temperature,
when the Fermi half-width W is negligibly small, we only
observe PDC behavior for the first step on I�V� at V0=E /cr,

where we suddenly have a transition to 	N=0,M =1
. At this
threshold, both the polaron level and the first phonon sub-
band below it belong to the bias voltage window. Then we
obtain a plateau in the I�V� curve up to V1= �E+�� /cr, where
the next PDC step is associated with the increase of N by
one. However, if the temperature is increased so that W be-
comes comparable with �−E, now at V=V0 the occupation
probability P1

0 will be negligibly small because of thermally
activated electrons tunneling from the right electrode.P1

0

starts developing only at V� ��−E+W� /cl�1.2�, leading
to NDC behavior. Here we have used that at T=0.04�, the
half-width of the Fermi function is about 0.2�. At much
higher temperature everything is of course washed out �not
shown�.

We conclude this subsection by some comments on the
role of the asymmetry in the tunneling rates �’s on current
transport. Figure 14 shows I�V� characteristics for the differ-
ent cases of junction asymmetry. As is seen from the plots,
the NDC steps in the cases of high and moderate asymmetry
��l /�r=0.01 and 0.1, respectively� turn into PDC steps in the
symmetric case ��l=�r�. We also notice that the NDC steps
are slightly shifted with respect to their PDC counterparts in
the symmetric case. This shift is associated with the finite
width of the Fermi function, and it has been already been
discussed in the two previous figures. The height of the
phonon-assisted steps in the asymmetric case is noticeably
large compared to the symmetric one. This is related to the
phonon distribution, an example of which �at V=4�� is
shown in Fig. 14 for both cases �symmetric and asymmetric�.
In the asymmetric case, the number of phonons is restricted
by M, while in the symmetric case the phonon distribution is
more spread out. As a result, in the symmetric case, the
phonon-assisted contribution to the current is weakened.

C. Effect of the half-shuttle on I„V…

In this subsection we discuss the role of the half-shuttle
mechanism on I�V� characteristics.

It is worth mentioning that in the absence of the half-
shuttle �s=0�, the rate equations �27� are invariant under the
transformation

FIG. 12. The case 
=0.8, cl=0.25, and E=0.7 at different tem-
peratures: T=0.01 �thin solid line�, 0.02 �dashed line�, and 0.04
�bold solid line�.

FIG. 13. The NDC induced by temperature for the case 
=0.8,
cl=0.25, and E=0.9: T=0.005 �dashed line� and 0.04 �solid line�.

FIG. 14. For 
=0.8, T=0.02, E=0.25, and cl=0.5: �l /�r

=10−2 �solid line�, 0.1 �dashed line�, and 1 �dotted line�. The inset
shows the phonon distribution Pm

0 at the bias voltage V=4: circles
for �l /�r=10−2 and triangles for �l /�r=1.
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V → − V, E → − E, Pn
0 ↔ Pn

1. �62�

As a consequence, the current-voltage characteristics IE�V�
and I−E�V� corresponding to the cases of the polaron level
shifted by E and −E, respectively, are related as follows:

IE�V� = − I−E�− V� . �63�

The presence of the half-shuttle mechanism �s�0� violates
this symmetry.

Figure 15 shows I�V� for the case when cl=0.25 is rela-
tively small and where the polaron level is not shifted, both
of which are favorable for PDC. The current steps are sup-
pressed at negative voltages �differential conductance peaks
in the inset of Fig. 15�, while at positive bias voltage, the
current steps have a tendency to increase. From Eqs. �47�,
�48� we obtain that the current-step amplitude at V=n� /cr
corresponding to the current increase is given by

�I�n� = �le
−
2−2s
+s2 �
 + sign�V�s�2n

n!
. �64�

In other words, the half-shuttle mechanism works in favor of
the formation of the polaron state: the probability of phonon-
assisted tunneling onto the dot from the left electrode is in-
creased, while the phonon-assisted tunneling from the dot to
the left electrode is decreased. Equation �53� for the satura-
tion currents illustrates this fact.

The case of relatively large cl=0.75 is shown in Fig. 16.
Like in the previous case, here we also observe suppression
of the current steps at negative voltages. At positive voltages,
the NDC steps become more pronounced compared to the
PDC ones. Expressions for the one-phonon-assisted steps are
given by Eqs. �49� and �50�.

We have provided concrete evidence that the half-shuttle
mechanism alone, with reasonable values of the parameters,
cannot produce NDC when cl is small and when the bare
polaron level is not shifted upwards. Nevertheless, based on
the results of Figs. 17 and 18, we conclude that in situation
when NDC is present �shifted level or reversed capaci-
tances�, the addition of the half-shuttle tends to emphasize
the NDC features.

VI. CONCLUSION

To summarize, we have provided an in-depth study of
NDC behavior in molecular quantum dots or transistors.
While this study covers a wide range of experimental param-
eters such as capacitances and electron-phonon coupling,
here the focus was put on the case where the tunneling cou-
pling from the dot to the source and drain leads is asym-
metrical. This choice was motivated by the experiment of
Leroy and co-workers7,30 where a nanotube is suspended
over a trench, allowing nearly free vibrations of the phonon
breathing mode. Electrons flow from an STM tip to the sus-
pended region of the nanotube, and their tunneling amplitude
is much smaller than that of the nanotube to the substrate. It
turns out that this assumption allows us to quantify NDC
behavior by analytical means. Yet moderate asymmetries, of-
ten encountered with two poor metallic contacts, qualita-
tively display the same physics.

We have used a microscopic approach modeling the mol-
ecule and nanotube as a quantum dot, which is justified
based on the early observation of Coulomb blockade behav-
ior in carbon nanotubes. A single-phonon mode couples on
site to the quantum dot in two different way. First, as the
principal mechanism, it couples to the electron density on the
dot, as in a polaron model. Second, the half-shuttle coupling
was introduced, with the motivation that it should be present
in the experiment of Refs. 7 and 30 when the nanotube vi-
brates, the tunneling distance between the nanotube wall and
the STM tip oscillates accordingly, but the amplitude of this
motion is believed to be rather small �or the order of the zero
point motion, which can be smaller than 0.1 Å�.

With these ingredients, the polaron transformation elimi-
nates the electron charge coupling to the phonon on the dot
and transfers this coupling to the tunneling Hamiltonian. At
this point, we have chosen to describe the situation corre-
sponding once again to the experiment of Refs. 7 and 30,
where the time scale associated with tunneling events be-
tween the dot and leads is large compared to the temperature,
so that electrons evacuated in the leads effectively loose their
phase coherence. On the other hand, the quantum mechanical
nature of electron-phonon dynamics within the dot �polaron
formation� is fully captured. This happens to be the regime
were most molecular electronics experiments are performed

FIG. 15. Asymmetry of I�V� due to the half-shuttle only: s
=0.1 �solid line� and s=0 �dashed line�. The case of 
=0.7, cl

=0.25, E=0, T=0.04. The inset shows the differential conductance
for s=0.1.

FIG. 16. Asymmetry of I�V� due to the half-shuttle: s=0.1 �solid
line� and s=0 �dashed line�. The case of 
=0.7, cl=0.75, E=0, and
T=0.04. The inset shows the differential conductance for s=0.1.
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nowadays, as these experiments typically do not require di-
lution refrigerator technology. From the density matrix of the
total system, a kinetic equation for the reduced density ma-
trix �with the leads degrees of freedom integrated out� was
derived, leading to master equations for the electron popula-
tion and their associated phonon numbers.

At temperature high enough for this rate equation is valid,
but low enough that thermally activated tunneling from the
phonon sideband can be neglected, analytical predictions
were made for the current-voltage characteristics, thanks to
our assumption of a highly asymmetrical molecule-lead con-
figuration: the positive or negative differential conductance
behavior depends both on the location of the bare polaron
level and on the occupation of the associated phonon
sidebands—above and below this level—which are included
in the bias voltage window.

Turning to numerics, attention was first drawn to the role
of the relative capacitances to the dot. If the molecule and
nanotube is in better contact with the lead which evacuates
the electrons �the substrate� than with the one who injects
electrons, it is plausible to believe that the capacitance of this
junction will be larger than that of the injecting junction. In
this case, no negative differential conductance is obtained.
When increasing the bias voltage, the contribution of an in-
creasing number of phonon sidebands leads to a standard
staircase behavior in the current-voltage characteristics.
Thermal effects tend to round off the first step. In the experi-
ment of Refs. 7 and 30, the use of several nanotube samples
with different lengths allowed to vary the relative capaci-
tance of the injecting and of the tunneling contact. This pro-
vided a motivation to study the so-called “reversed capaci-
tance” case, which according to our analytical prediction
could justify the presence of an negative differential behav-
ior. This was indeed observed numerically, but it was empha-
sized that intermediate phonon couplings are needed to ob-
serve NDC: “small” electron-phonon coupling leads to
barely noticeable NDC, while “large” electron-phonon cou-
pling suppresses NDC altogether, thus the need to use non-
perturbative techniques to study NDC.

Do these results disqualify the possibility of NDC if con-
tacts where the capacitances between left and right are com-
parable? The answer is no, although NDC could be more
difficult to detect in this case. While the global shape of the

current voltage characteristics displays the staircase structure
typically attributed to PDC, the onset of each step is fol-
lowed by a small spike, thus displaying NDC behavior. The
amplitude of this peak can be optimized with phonon cou-
pling. For slightly asymmetric capacitances, the same effects
are observed, but the staircase structure is modified as it
involves two distinct periodicities.

Because background charges may shift the bare polaron
level and because of the possibility of using a voltage gate on
the molecule and dot, we also studied the possibility of NDC
in this case. This suggests that when the level is shifted up-
wards, NDC is possible even when the capacitance of the
injecting junction is small.

Finally, we have proposed that a half-shuttle mechanism
may play a role in a STM experiment. It can be detected by
the asymmetry of the current-voltage curves. Yet, in our
opinion, this mechanism cannot account for NDC alone and
only tends to increase the heights of PDC and NDC steps in
the current-voltage characteristics. Notice that approaching
the tip closer to the molecule should strongly enhance the
half-shuttle mechanism. In our numerical calculations, we set
s=0.1 assuming the amplitude of the zero-point RBM oscil-
lations to be of the order of 1 pm. Estimating the zero-point
amplitude, we have considered a single-wall carbon nano-
tube as an elastic hollow cylinder with diameter d0�1 nm,
with wall thickness �1 Å, and with a length corresponding
to the relevant breathing part �10 nm. Accordingly, the un-
deformed volume of the cylinder is V0�1 nm3. The elastic
properties of the nanotube cylinder are characterized with the
average Young’s modulus Y �1 TPa �see, for instance, Ref.
37�. Assuming ���10 meV �� is the frequency of the
RBM�, one finds, for the relative extension of the nanotube
due to the breathing,

�x � � ��

YV0
�1/2

� 10−3. �65�

Thus, the estimated diameter change ��xd0 associated with
the zero-point oscillations is of the order of 1 pm.

Overall, we have provided a rather complete account on
the possible occurrence of NDC behavior in molecular elec-
tronic transport, due to phonon-assisted transport. This phe-
nomenon is due to a distribution of the total spectral weight

FIG. 17. The case 
=0.7, cl=0.5, E=−0.8, T=0.04, and s
=0.1.

FIG. 18. The case 
=0.7, cl=0.5, E=0.8, T=0.04, and
s=0.1.
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of the injected electron on the polaron levels included in the
bias window. Taking into account the correct microscopic
expressions of the Franck-Condon factors associated with
phonon transitions, we have demonstrated that NDC effects
are a fingerprint of the polaronic nature of charge carriers.
While we cannot rule out that NDC could exist in molecular
system with symmetric molecular junctions, it was not ob-
served within this model. On the other hand, we have clearly
shown that for asymmetric tunneling rates, there exists a
wide range of parameters which lead to NDC.

A striking result of this work is the fact that a simple
counting of the NDC steps in the current voltage character-
istic �or, alternatively, a counting of the peaks in differential
conductance� provides direct information about how many
phonon subbands contribute to transport. The question re-
mains about whether this NDC behavior can be observed in
experiments. Our model could apply to Ref. 6, if the tunnel
couplings are indeed asymmetric. Concerning Ref. 7, NDC
occurs but only for the first phonon sideband. This can be
due to several factors: first, as a general rule, the height of
PDC or NDC steps tends to decrease with increasing phonon
sidebands number. Furthermore, if the electron phonon cou-
pling is weak, NDC is present but its manifestation is weak.

Finite temperature tends to smear these steps, so in order to
observe several peaks in NDC, lower temperatures would be
required, keeping in mind that the tunneling contacts should
not be too large in order to “avoid” any Kondo-like regime.
Another aspect which we have not considered in this work is
the possibility of phonon damping. The population of the
phonon subbands may rearrange due to the coupling with the
environment of the molecule.15,16 The environment could in-
clude electron-hole pairs generated in the leads, which
should be reduced because of our weak-coupling assump-
tion. On the other hand, for a “large” molecular system, the
optical phonon mode �the breathing mode of the nanotube of
Ref. 7� is also accompanied by other phonon modes such as
acousticlike modes, which have typically lower energies, and
which therefore can play the role of a “bath.” Because of the
importance of the occupation of the phonon subbands for
NDC in our present work, we expect that substantial cou-
pling to this bath will tend to suppress NDC.
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