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A theoretical investigation is presented of the statistics of excitons in quantum dots �QDs� of different sizes.
A formalism is developed to build the exciton creation operator in a dot from the single exciton wave function
and it is shown how this operator evolves from purely fermionic, in the case of a small QD, to purely bosonic,
in the case of large QDs. Nonlinear optical emission spectra of semiconductor microcavities containing single
QDs are found to exhibit a peculiar multiplet structure which reduces to Mollow triplet and Rabi doublet in
fermionic and bosonic limits, respectively.
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I. INTRODUCTION

Semiconductor quantum dots �QDs�1 are a leading tech-
nology for the investigation of the quantum realm. They of-
fer exciting possibilities for quantum computation and are
important candidates for the next generation of light emitters.
In most cases, the best control of the states of the confined
carriers in QDs is obtained through coupling to light.2 This
light-matter interaction can be considerably enhanced by in-
cluding the dot in a microcavity, with pillars,3 photonic
crystals,4 and microdisks5 being the currently favored real-
izations. References 3–5 describe the first reports, in each of
these structures, of vacuum field Rabi splitting, whereby one
excitation is transferred back and forth between the light and
the matter fields. This contrasts with the weak coupling re-
gime previously studied,6,7 where only quantitative perturba-
tions of the dynamics occur, such as reductions in the life-
times of the dot excitations �Purcell effect�. In the case of
strong coupling, however, the coherent exchange of energy
merges the light and matter excitations into a new entity.
This is commonly referred to as an exciton-polariton in
semiconductor physics,8 with an important example being
the two-dimensional polaritons in planar microcavities, first
observed by Weisbuch et al.9 In cavity quantum electrody-
namics �CQED�, the equivalent concept is the dressed state
of atoms by the quantized electromagnetic field.

In QDs, optical interband excitations create electron-hole
pairs or excitons, confined by a three-dimensional potential
which makes their energy spectrum discrete. If this potential
is much stronger than the bulk exciton binding energy, and if
the size of the dot is smaller than the corresponding exciton
Bohr radius, the Coulomb interaction between electrons and
holes can be considered as a perturbation. For the lowest
exciton states, this is the fermionic limit where the Pauli
exclusion principle dominates. In the opposite limit, if the
confining potential is weak or the size of the dot is much
greater than the exciton Bohr radius, the exciton is quantized
as a whole particle. In this case, the bosonic nature of exci-
tons is expected to prevail over the fermionic nature of indi-

vidual electrons and holes. An important question for the
description of emission from QDs embedded into cavities in
the strong coupling regime is whether the dot excitations
coupled to light behave like fermions or like bosons. Here
we address the question of which statistics �Bose-Einstein,
Fermi-Dirac, or a variation thereof� best describes excitons
in QDs. This is a question which is very topical in view of
the recent experimental achievements and which has elicited
substantial theoretical works in the past, in connection with
the possibility of exciton Bose condensation.

In this paper we derive the exciton creation operator in a
QD which allows the calculation of nonlinear optical spectra
of QDs in microcavities. The model we develop takes into
account the saturation of the transition due to Pauli exclusion
alone and does not attempt to solve the complex manybody
problem which arises when Coulomb interactions between
excitons are included. Hence the model is most accurate in
describing the departure from ideal bosonic behavior in large
dots rather than near the fermionic limit in small dots. We
analyze the dot size effect on the statistics of excitons and
demonstrate the transition from the fermionic to bosonic re-
gime. To motivate this, we begin by summarizing how the
coupling of light modes with fermionic and bosonic material
excitations differ.

The Rabi doublet, with splitting amplitude 2�g as shown
on Fig. 1�a�, is well accounted for theoretically by the cou-
pling with strength �g of two quantized oscillators a and b
both obeying Bose algebra,

�a,a†� = 1, �1�

and equivalently for b. We shall describe this well-known
and elementary case in detail as it provides the foundation
for most of what follows. Neglecting off-resonant terms like
a†b†, the Hamiltonian reads10

H = ���a†a + b†b� + �g�ab† + a†b� . �2�

We assumed degenerate energies �� for the two oscillators,
which will not affect our qualitative results, while simplify-
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ing considerably the analytical expressions. One oscillator,
say a, describes the light field while the other, b, describes a
bosonic matter field. The analysis of Eq. �2� can be made
directly in the bare state basis �i , j� with i excitations in the
matter field and j in the photonic field, i, j�N. The value of
this approach is that the excitation, loss, and dephasing pro-
cesses generally pertain to the bare particles. For instance,
matter excitations are usually created by an external source
�pumping� and light excitations can be lost by transmission
through the cavity mirror. This physics is best expressed in
the bare states basis.

On the other hand Eq. �2� assumes a straightforward ex-
pression in the basis of so-called dressed states which diago-
nalizes the Hamiltonian to read

H = ��� − �g�p†p + ��� + �g�q†q , �3�

where p† and q† create a coherent superposition of bare
states, respectively, in and out of phase:

p = �a − b�/�2, q = �a + b�/�2. �4�

For clarity we shall denote �i , j�� the dressed states, i.e.,
the eigenstates of Eq. �3� with i dressed particles of energy
��−�g and j of energy ��+�g. We call a manifold the set
of states with a fixed number of excitations. In the dressed
states basis it reads, for the case of n excitations,

Hn = 	�i, j��;i, j � N with i + j = n
 . �5�

Its energy diagram appears on the left of Fig. 1 for manifolds
with zero �vacuum�, one, two, and seven excitations. When
an excitation escapes the system while in manifold Hn, a
transition is made to the neighboring manifold Hn−1 and the
energy difference is carried away, either by the leaking out of
a cavity photon, or through exciton emission into a radiative
mode other than that of the cavity, or a nonradiative process.
The detailed analysis of such processes requires a dynamical
study, but as the cavity mode radiation spectra can be com-

FIG. 1. �Color online� Energy diagrams of the
two limiting cases of dressed bosons �left� and
fermions �right�. In the first case the nth manifold
has constant energy splitting of 2�g between all
states and couples to the �n−1�th manifold by
removal of a quantum of excitation with energy
��±�g which leads to the Rabi doublet, �a�, with
splitting 2�g. In the second case, each manifold
is twofold with a splitting which increases like a
square root. All four transitions are allowed, lead-
ing to the Mollow triplet, �b�, for high values of n
when the two middle transitions are close in en-
ergy. The distance from the central peak goes like
2�g�n and the ratio of peaks is 1:2. The two
lowest manifolds �in blue� are the same in both
cases, making vacuum field Rabi splitting insen-
sitive to the statistics.
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puted with the knowledge of only the energy level diagrams,
we shall keep our analysis to this level for the present work.
The important feature of this dissipation is that, though such
processes involve a or b �rather than p or q�, they neverthe-
less still result in removing one excitation out of one of the
oscillators. Hence only transitions from �i , j�� to �i−1, j�� or
�i , j−1�� are allowed, bringing away, respectively, ��+�g
and ��−�g of energy, accounting for the so-called Rabi
doublet �provided the initial i and j are nonzero in which
case only one transition is allowed�. From the algebraic point
of view, this of course follows straightforwardly from Eq. �4�
and orthogonality of the basis states. Physically it comes
from the fact that, as in the classical case, the coupled system
acts as two independent oscillators vibrating with frequen-
cies �±g. In the case of vacuum field Rabi splitting, a single
excitation is shared between the two fields, and so the mani-
fold H1 is connected to the single line of the vacuum mani-
fold. In this case there is obviously no possibility beyond a
doublet.

Different physics occurs when the excitations of the ma-
terial are described by fermionic rather than bosonic statis-
tics. In the case of cavity QED, the simplest situation is that
of a dilute atomic beam where a single atom �driven at reso-
nance so that it appears as a two-level system� is coupled to
a Fock state of light with a large number of photons. This
case is described theoretically by the Jaynes-Cummings
model,11 in which a �the radiation field� remains a Bose op-
erator but b becomes a fermionic operator which describes
two-level systems, b†→�+ with

�+ = �0 1

0 0
� . �6�

Then the atom must be in either the ground or the excited
state, allowing for the manifolds

Hn = 	�0,n�, �1,n − 1�
 �7�

provided that n�1. The associated energy diagrams appear
on the right of Fig. 1, with two states in each manifold �in
our convention �0,n� refers to the bare states with the atom
in ground state and n photons, while �1,n−1� has the atom in
excited state and n−1 photons�. For the resonant condition,
where the two-level transition matches the cavity photon en-
ergy, the dressed states for this manifold are split by an en-
ergy �n�g. In the general case, all four transitions between
the states in manifolds Hn and Hn−1 are possible, which re-
sults in a quadruplet. It is hard to resolve this quadruplet, but
it has been done in Fourier transform of time resolved
experiments.12 It is simpler to consider photoluminescence
directly under continuous excitation at high intensity �where
the fluctuations of particle number have little effect�. In this
case, with n�1, the two intermediate energies are almost
degenerate and a triplet is obtained with its central peak be-
ing about twice as high as the two satellites. This is the
Mollow triplet of resonance fluorescence.13

Thus we are faced with two limiting cases, one is a pure
bosonic limit with equally spaced dressed states resulting in
the linear Rabi doublet, the other the pure fermionic limit
with pairs of dressed states of increasing splitting within a

manifold but decreasing energy difference between two suc-
cessive manifolds, giving rise to the Mollow triplet. In many
of the strong coupling experiments conducted so far, and in
all the reports concerning semiconductor QDs, only one
single excitation is exchanged coherently, so that the states
are dressed by the vacuum of the electromagnetic field, re-
sulting in the Rabi doublet. However, at this level of excita-
tion, there is complete agreement between the bosonic and
fermionic models, with both providing a good description of
the experimental observations. The prospect of stronger
pumping, with more than one excitation shared between the
two fields, makes it important to understand whether a real-
istic semiconductor QD will correspond to the bosonic or
fermionic case, or something intermediate between the two.

We review and discuss some of the more significant
achievements in this field in Sec. II. In Sec. III we lay down
a general formalism for building the exciton creation opera-
tor. In Sec. IV we study two limiting cases which resemble
Bose and Fermi statistics. We show how in the general case
the luminescence behavior interpolates between these two
limits which we have already discussed, and calculate the
second order coherence of the emitted light. In Sec. V we
draw the experimental consequences of the various statistics
and discuss how the spectra obtained allow a qualitative un-
derstanding of how excitations distribute themselves in the
excitonic field. In the final section we conclude and discuss
briefly ongoing work to refine the modeling of the excitonic
wave function.

II. EXCITONS AS QUASIPARTICLES

The generic optical excitation in an intrinsic semiconduc-
tor is the electron-hole pair. In bulk, the two oppositely
charged particles can be strongly correlated by the Coulomb
interaction and bound as hydrogenic states �Wannier-Mott
exciton�. Finding binding energies and wave functions for
the single exciton case is a difficult problem in various
geometries.14–16 As a particle constituted of two fermions,
the exciton is commonly regarded as a boson, from consid-
eration of the angular momentum addition rules and the spin-
statistics theorem. For a single particle, this is an exact state-
ment, albeit a trivial one. It is, however, generally agreed to
hold at low densities.17 As far as the vacuum coupling limit
is concerned, the exciton field operator which links the two
manifolds H1 and vacuum always assumes the simple form
�+ regardless of the details of the exciton �see the bottom of
Fig. 1�. In this case the Rabi doublet is obtained, as observed
experimentally.3–5

At higher excitation power, the problem assumes consid-
erable complexity as well as fundamental importance for
physical applications. Already at the next higher excitation—
with one more electron, hole, or electron-hole pair added to
the first exciton—the situation offers rich and various phe-
nomena both in weak18,19 and strong20 coupling, owing to the
underlying complexity of the excitonic states. In this work
we shall be concerned with resonant optical pumping, so that
excitations are created in pairs and the system always re-
mains electrically neutral. We shall describe as an exciton
any state of an electron-hole pair, whether it is an atomlike
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1s state or has both particles independently quantized,15 and
in a more general sense we shall also use the term for any
combination of particles which takes part in the excitonic
phase. Indeed the excitonic phase with more than one pair
requires at the most accurate level a description in terms of
an excitonic complex, e.g., in term of biexcitons/bipolaritons
for strong coupling of two electrons and two holes with
light.20 This comes from the Coulomb interaction which
links all charge carriers together and, in a most fundamental
way, also from the antisymmetry of the wave function which
demands a sign change whenever two identical fermions
�electrons or holes� are swapped in the system. However, in
some configurations, especially in planar cavities, a widely
accepted hypothesis of bosonic behavior of excitons and the
derived polaritons has been investigated for effects such as
the exciton boser,21 polariton amplifier22–24 and polariton
lasers.25,26 The internal structure of the exciton which gives
rise to both deviations from the Bose-statistics and interac-
tions of the electron-hole pairs is then expressed as an effec-
tive repulsive force in a bosonized Hamiltonian �due to Cou-
lomb interaction and Pauli effect in the form of phase-space
filling or exchange interaction27,28�.

This bosonic approach for excitons met early opposition
in favor of an analysis in the electron-hole basis.29–31 Comb-
escot and co-workers investigated the possibility of
bosonization of excitons32–35 and concluded against it. They
point out its internal inconsistency, as the same interaction
binds the underlying fermions, and therefore defines the ex-
citon, while also being responsible for exciton-exciton scat-
tering; this is inconsistent with the indistinguishability of the
particles. These authors introduce the “proteon” as the para-
digm for Bose-like composite particle and propose a formal-
ism �“commutation technics”� which essentially relies on
evaluating quantum correlators in the fermion basis with op-
erators linked through the single exciton wave function. The
importance of Fermi statistics of the underlying constituents
has also been pointed out by Rombouts and co-workers in
connection to atomic and excitonic condensates.36,37 In both
cases the composite “boson” creation operator reads

B† = 
k

�k�k
†�−k

† �8�

in terms of �k, �k the fermion operators

	�k,�k�
† 
 = �k,k�, 	�k,�k�
 = 0 �9�

�same for �k�, respectively, for an electron and hole �or pro-
ton in the atomic case37� of momentum k. This operator cre-
ates excitons with the center-of-mass momentum K=0 in a
system with translational invariance. It was appreciated long
ago17 that the operators B† and B are no longer exact bosonic
operators, but instead satisfy

�B,B†� = 1 − D , �10�

where D is a nonzero operator, though with small matrix
elements at low exciton densities.

Our approach is based on a definition similar to Eq. �8�
for the exciton operator. Instead of analyzing the deviations
in the commutation relationship �10� we derive the matrix

elements of the operator B†. The direct analysis of these
matrix elements allows us to trace departures from Bose-
statistics and to investigate the transitions between bosonic
and fermionic behaviors of excitons in QDs. We shall com-
pare our results with those of Refs. 32–37. For convenience,
we will refer to these two sets of publications through the
names of their first authors, keeping in mind that they are
coauthored papers, as listed in the references.

III. FORMALISM

We consider a QD, which localizes the excitation in real
space. Thus our main departure from Combescot and Rom-
bouts is that our exciton creation operator, X†, is expressed in
real space and without the zero center-of-mass momentum
restriction,

X† = 
ne,nh

Cne,nh
�ne

† �nh

† , �11�

where �ne
and �nh

are fermion creation operators, cf. Eq. �9�,
for an electron and a hole in states �	ne

e � and �	nh

h �, respec-
tively:

�ne

† �0� = �	ne

e �, �nh

† �0� = �	nh

h � , �12�

with �0� denoting both the electron and hole vacuum fields.
We carry out the analysis in real space with the set of basis
wave functions

	ne

e �re� = �re�	ne

e � and 	nh

h �rh� = �rh�	nh

h � �13�

with re and rh the positions of the electron and hole, respec-
tively. Subscripts ne and nh are multi-indices enumerating all
quantum numbers of electrons and holes. The specifics of the
three-dimensional confinement manifests itself in the dis-
crete character of ne and nh components.

We restrict our considerations to the direct band semicon-
ductor with a nondegenerate valence band. Such a situation
can be experimentally achieved in QDs formed in conven-
tional III-V or II-VI semiconductors, where the light-hole
levels lie far, in energy, from heavy-hole ones due to the
effects of strain and size quantization along the growth axis.2

Therefore only electron-heavy hole excitons need to be con-
sidered. Moreover, we will neglect the spin degree of free-
dom of the electron-hole pair and assume all carriers to be
spin polarized. This can be realized by pumping the system
with light of definite circular polarization, as spin-lattice re-
laxation is known to be very inefficient in QDs.

The �single� exciton wave function �	� results from the
application of X† on the vacuum. In real space coordinates:

�re,rh�	� = 	�re,rh� = 
ne,nh

Cne,nh
	ne

e �re�	nh

h �rh� . �14�

At this stage we do not specify the wave function �that is,
the coefficients Cne,nh

�, which depends on various factors
such as the dot geometry, electron, and hole effective masses
and dielectric constant. Rather, we consider the n excitons
state which results from successive excitation of the system
through X†:
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�
n� = �X†�n�0� . �15�

We later discuss in more detail what approximations are be-
ing made here. For now we proceed by normalizing this
wave function

�n� =
1

Nn
�
n� , �16�

where, by definition of the normalization constant

Nn = ��
n�
n� . �17�

The creation operator X† can now be obtained explicitly.
We call �n the nonzero matrix element which lies below the
diagonal in the excitons representation:

�n = �n�X†�n − 1� , �18�

which, by comparing Eqs. �15�–�18� turns out to be

�n =
Nn

Nn−1
. �19�

We now undertake to link �n with the coefficients Cne,nh
,

which assume a specific form only when the system itself
has been characterized. The general relationship is more eas-
ily obtained in the real space than with the operator repre-
sentation �11�. Indeed the non-normalized n-excitons wave
function assumes the simple form of a Slater determinant


n�re1
, . . . ,ren

,rh1
, . . . ,rhn

� = det
1�i,j�n

�	�rei
,rhj

�� , �20�

explicitly ensuring the antisymmetry of 
n upon exchange of
two identical fermions �holes and electrons�, as results from
the anticommutation rule �9� in the nth power of operator X†,
cf. Eq. �11�.

The determinant can be computed explicitly, by expansion
of its minors which results in the recurrent relation

N n
2 =

1

n

m=1

n

�− 1�m+1mN n−m
2 �

j=0

m−1

�n − j�2, �21�

with N0=1 and m the irreducible m-excitons overlap inte-
grals, 1�m�n:

m =� ��
i=1

m−1

	*�rei
,rhi

�	�rei
,rhi+1

��
�	*�rem

,rhm
�	�rem

,rh1
�dre1

¯ drem
drh1

¯ drhm
.

�22�

The determinant can also be solved by direct combinatorial
evaluation, counting all combinations which can be factored
out as products of m. The result expressed in this way reads:

N n
2 = 

�=1

p�n�

Cn����
m=1

N

m
���m�, �23�

where p�n� is the partition function of n �number of ways to
write n as a sum of positive integers, i.e., as an integer par-
tition of n� and ���i� is the number of times that i�N ap-
pears in the �th partition of n. The coefficients Cn read

Cn��� � n!�− 1�n+m=1
n ���m��

	ni
 �n − 
j=1

i−1

nj

ni

� �ni − 1�!
���i�!

,

where the product is taken over the integers ni which enter in
the �th partition of n, i.e., n=ini.

The procedure to calculate the matrix elements of the cre-
ation operator is as follows: One starts from the envelope
function 	�re ,rh� for a single exciton. Then one calculates all
overlap integrals m as given by Eq. �22�, for 1�m�n
where n is the highest manifold to be accessed. Then the
norms can be computed, the more practical way being recur-
sively with Eq. �21�. Finally the matrix elements �n are ob-
tained as the successive norms ratio, cf. Eq. �18�. Once �n
are known the emission spectra can be calculated with ease.
We note here that the numerical computation of the m and
�n values needs to be carried out with great care. The can-
cellation of the large numbers of terms involved in Eq. �21�
requires a very high-precision evaluation of m.

Although derived from the formulation in real space �20�,
the recurrent relation �21�, or its analytical solution �23�, is a
property of fermion pairs, so it applies to the fermionic op-
erators in Eq. �8� as well. The core of the mathematical re-
sults contained in these two expressions has in fact been
obtained by Combescot32 through direct evaluation with the
operator algebra involved in B†. The only difference with her
approach and ours is that her corresponding quantity m
�which she notes �m� appears as a series in the �reciprocal
space� wave function

�m = 
k

��k�2m �24�

as opposed to the overlap integral �22�.
With such a simple expression as Eq. �24�, Combescot

et al. have been able to obtain approximate analytical forms
for 1s states of excitons in both three dimensions �3D� and
two dimensions �2D�. The sum over reciprocal space is ap-
proximated as an integral in the continuum limit, and since
�k depends on k= �k� only, this becomes k��k�2m

→�Vk��k�2mdk with Vk=4�k2 or 2�k, respectively, yield-
ing32

�m = zm−116
�8m − 5�!!
�8m − 2�!!

in 3D, �25�

�m =
2ym−1

3m − 1
in 2D, �26�

with z and y dimensionless parameters involving the ratio of
Bohr radius aB to the size of the system. In Ref. 32, this
continuous approximation is used even when the system size
becomes so small that the quantization becomes noticeable,
as a result of which a negative norm is obtained even for a
well-defined wave function. However, the authors interpret
incorrectly this negative norm as the result of an unphysical
exciton wave function and thus the breakdown of the bosonic
picture. To demonstrate this, we have computed numerically
the values of �m by direct summation of Eq. �24� and used
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them to evaluate normalization constants Nn. Some results of
the computation are shown in Fig. 2. The inset shows the
dependence of N1��1 vs the ratio of crystal size L to 3D
exciton Bohr radius aB. The continuous approximation Eq.
�25� gives �1=1, shown by the dashed line in the inset. The
solid line displays the value of �1 computed exactly with Eq.
�24�: it approaches 1 when L /aB→� but departs strongly
from 1 as the size of the system reduces, since the real wave
function changes as the system shrinks about it. At the very
least this needs to be taken into account by correcting the
normalization constant of �k, as otherwise an unphysical re-
sult may arise. The main part of the figure shows the two-
excitons normalization N2 calculated by both methods. We
find that for all L /aB, the exact N2 never becomes negative
in clear constrast with the behavior obtained with the ap-
proximated value �25�. Hence it is not possible to use the
appearance of a negative norm as a criterion for bosonic
breakdown.

IV. LIMITING CASES

We shall not attempt in this paper to go through the
lengthy and complicated task of the numerical calculation of
the exciton creation operator matrix elements for a realistic
QD. Rather, we consider here a model wave function which
can be integrated analytically and illustrates some expected
typical behaviors. Before this, we comment briefly on the
limiting cases of Bose-Einstein and Fermi-Dirac statistics
and how they can be recovered in the general setting of this
section.

This will be made most clear through consideration of the
explicit case of two excitons �n=2�. Then the wave function
reads


2�re1
,re2

,rh1
,rh2

�

= 	�re1
,rh1

�	�re2
,rh2

� − 	�re1
,rh2

�	�re2
,rh1

� �27�

with its normalization constant �17� readily obtained as

N 2
2 =� �
2�re1

,re2
,rh1

,rh2
��2dre1

¯ drh2
= 2 − 22,

�28�

where 2, the two-excitons overlap integral, reads explicitly

2 =� 	�re1
,rh1

�	�re2
,rh2

�	�re1
,rh2

�	�re2
,rh1

�dre1
¯ drh2

.

�29�

This integral is the signature of the composite nature of
the exciton. The minus sign in Eq. �28� results from the Pauli
principle: two fermions �electrons and holes� cannot occupy
the same state. Assuming 	�re ,rh� is normalized, N1=1, so
according to Eq. �19�,

�2 = �2 − 22. �30�

Since 0�2�1 this is smaller than or equal to �2, the cor-
responding matrix element of a true boson creation operator.
This result has a transparent physical meaning: since two
identical fermions from two excitons cannot be in the same
quantum state, it is “harder” to create two real excitons,
where the underlying structure is probed, than two ideal
bosons. We note that if L is the QD lateral dimension, 2
��aB/L�2�1 when L�aB. Thus in large QDs the overlap of
excitonic wave functions is small, so �2��2 and the bosonic
limit is recovered. On the other hand, in a small QD, where
Coulomb interaction is unimportant compared to the dot po-
tential confining the carriers, the electron and hole can be
regarded as quantized separately:

	�re,rh� = 	e�re�	h�rh� . �31�

In this case all m=1 and subsequently all �m=0 with the
exception of �1=1. This is the fermionic limit where X†

maps to the Pauli matrix �+, cf. Eq. �6�.
We now turn to the general case of arbitrary sized QDs,

interpolating between the �small� fermionic and �large�
bosonic limits. We assume a Gaussian form for the wave
function which allows one to evaluate analytically all the
required quantities. As numerical accuracy is not the chief
goal of this work we further assume in-plane coordinates x
and y to be uncorrelated to ease the computations. The wave
function reads

	�re,rh� = C exp�− �ere
2 − �hrh

2 − �ehre · rh� �32�

properly normalized with

C =
�4�e�h − �eh

2

�
�33�

provided that �eh� �−2��e�h ,0� with �e, �h�0. The � pa-
rameters allow one to interpolate between the large and small
dot limits within the same wave function. To connect these
parameters �e, �h, and �eh to physical quantities, Eq. �32� is

FIG. 2. Normalization constant N2 vs ratio of crystal size L to
3D exciton Bohr radius aB. The dashed line shows the result using
the approximated expression �25� for �m and the solid line using the
exact evaluation of the sum on the mesh in reciprocal space. The
negative value of the norm used as a criterion for boson wave
function breakdown in Ref. 32 is an artifact of this approximation.
With the genuine wave function, our procedure yields a nonarbi-
trary way to consider how the wave function vanishing norm affects
the bosonic character of the excitation. Inset displays N1 vs L /aB

computed on mesh �solid� and according to Eq. �25� �dashes�.
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regarded as a trial wave function which is to minimize the
Hamiltonian HQD confining the electron and hole in a qua-
dratic potential where they interact through Coulomb
interaction:15

HQD = 
i=e,h

� pi
2

2mi
+

1

2
mi�

2ri
2� −

e2

��re − rh�
. �34�

Here pi is the momentum operator for the electron and hole,
i=e, h, respectively, me, mh the electron and hole masses, �
the frequency which characterizes the strength of the confin-
ing potential, e the charge of the electron, and � the back-
ground dielectric constant screening the Coulomb interac-
tion. This Hamiltonian defines the two length scales of our
problem, the 2D Bohr radius aB and the dot size L:

aB =
��2

2�e2 , �35a�

L =� �

��
, �35b�

where �=memh / �me+mh� is the reduced mass of the
electron-hole pair. To simplify the following discussion we
assume that me=mh, resulting in �e=�h=�. The trial wave
function �32� separates as 	�re ,rh�=C��R���r� where r
=re−rh is the radius-vector of relative motion and R= �re

+rh� /2 is the center-of-mass position:

��R� =
�2�2� + �eh�

��
exp�− R2�2� + �eh�� , �36a�

��r� =
�2� − �eh

�2�
exp�− r2�2� − �eh

4
�� . �36b�

Equation �36a� is an eigenstate of the center-of-mass en-
ergy operator and equating its parameters with those of the
exact solution yields the relationship 2�+�eh=2/L2. This
constraint allows one to minimize Eq. �36b� with respect to a
single parameter, a=−�eh /2+1/ �2L2�, which eventually
amounts to minimize 4aB/a2+aBa2 /L4−2�� /a. Doing so
we have obtained the ratio −�eh /� as a function of L /aB
displayed in Fig. 3. The transition from bosonic to fermionic
regime is seen to occur sharply when the dot size becomes
commensurable with the Bohr radius. For large dots, i.e., for
large values of L /aB, the ratio is well-approximated by the
expression

− �eh/� = 2 − �aB/L�2 �37�

so that in the limit aB/L→0, Eq. �32� reads 	�re ,rh�
�exp�−���ere−��hrh�2� with vanishing normalization con-
stant. This mimics a free exciton in an infinite quantum well.
It corresponds to the bosonic case. On the other hand, if L is
small compared to the Bohr radius, with �eh→0, the limit
�31� is recovered with 	�exp�−�ere

2�exp�−�hrh
2�. This corre-

sponds to the fermionic case.
One can readily check that Eq. �32� gives, in the case

�eh→−2��e�h, an exciton binding energy which is smaller
by only 20% than that calculated with a hydrogenic wave

function, which shows that the Gaussian approximation
should be tolerable for qualitative and semiquantitative re-
sults. Moreover, its form corresponds to the general shape of
a trial wave function for an exciton in an arbitrary QD,38

with the only difference that we take the Gaussian expression
instead of a Bohr exponential for the wave function of the
relative motion of the electron and hole. This compromise to
numerical accuracy allows one on the other hand to obtain
analytical expressions for all the key parameters, starting
with the overlap integrals �22� which take a simple form in
terms of multivariate Gaussians:

m = C2m� exp�− xTAx�dx� exp�− yTAy�dy , �38�

where

xT = �xe1
,xe2

, . . . ,xem
,xh1

,xh2
, . . . ,xhm

� , �39a�

yT = �ye1
,ye2

, . . . ,yem
,yh1

,yh2
, . . . ,yhm

� �39b�

are the 2m dimensional vectors which encapsulate all the
degrees of freedom of the m excitons-complex, and A is a
positive definite symmetric matrix which equates Eqs. �22�
and �38�, i.e., which satisfies

xTAx = 2�e
i=1

m

xi
2 + 2�h 

i=m+1

2m

xi
2

+ �ehxmxm+1 + �eh
i=1

m

xixm+i + �eh
i=1

m−1

xixm+i+1

�40�

and likewise for y �to simplify notation we have not written

FIG. 3. Ratio of parameters −�eh and � �with �=�e=�h� as a
function of L /aB. For large dots where L�aB, −�eh /��2 which
corresponds to the bosonic limit where the electron and hole are
strongly correlated. For shallow dots where L�aB, −�eh /��0 with
electron and hole quantized separately. The transition is shown as
the result of a variational procedure, with an abrupt transition when
the dot size becomes comparable to the Bohr radius.
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an index m on x, y and A, but these naturally scale with m�.
The identity for 2m-fold Gaussian integrals

� exp�− xTAx�dx =
�m

�det A
�41�

allows us to obtain an analytical expression for m, although
a cumbersome one. The determinant of the matrix A reads

det A = �eh
2m

k=0

m


l=0

m−k

�− 1��m/2�+kAm�k,l���e�h

�eh
2 �k

. �42�

Here we introduced a quantity

Am�k,l� = Am� �k,l� + 
i=1

m

�Am−i� �k,l − i� − Am−i−1� �k,l − i��

�43�

and

Am� �k,l� = 
�=1

p�l� �
i

��
l �i��!

�
i

��
l �i�!

� m − l


i

��
l �i� ��m − l − 

i

��
l �i�

k − 
i

��
l �i� � ,

�44�

with k� �1,m�, l� �0,m�, and p�l� and ���i� already intro-
duced as the partition function of l and the number of oc-
curence of i in its �th partition. For the case k=0 the finite
size of the matrix implies a special rule which reads
Am�0, l�=4�m,l�m�2,0. Together with Eqs. �33�, �41�, and
�42�, expression �38� provides the m in the Gaussian ap-
proximation. One can see the considerable complexity of the
expressions despite the simplicity of the model wave func-
tion. Once again, even a numerical treatment meets with dif-
ficulties owing to manipulations of series of large quantities
which sum to small values. We had to turn to exact algebraic
computations to obtain �n coefficients free from numerical
artifacts. Before we present the numerical results, we once
again turn to the limiting case of a large QD �L�aB� where
the bosonic behavior may be expected, putting again for sim-
plicity �e=�h=�. When Eq. �37� holds, rather lengthy alge-
braic manipulations yield

m �
�2aB/L�2�m−1�

m2 . �45�

This approximation is valid for small values of aB/L and for
m�L /aB. In computations of �n with n�L /aB, the denomi-
nator in Eq. �45� plays a minor role and

�n = �n�1 − 2�n − 1��aB/L�2. �46�

Thus in the small-n limit the matrix elements of the exciton
creation operator are close to that of bosons and the correc-
tions arise proportionally to the parameter n�aB/L�2.

Figure 4 shows the behavior of �n for different values of
�eh interpolating from the bosonic case ��eh=−2��e�h� to the
fermionic case ��eh=0�. The crossover from bosonic to fer-
mionic limit can be clearly seen: for �eh close to −2��e�h,
the curve behaves like �n, the deviations from this exact

bosonic result becoming more pronounced with increasing n.
The curve is ultimately decreasing beyond a number of ex-
citations which is smaller the greater the departure of �eh

from −2��e�h. After the initial rise, as the overlap between
electron and hole wave functions is small and bosonic be-
havior is found, the decrease follows as the density becomes
so large that Pauli exclusion becomes significant. Then exci-
tons cannot be considered as structure-less particles, and fer-
mionic characteristics emerge. With �eh going to 0, this be-
havior is replaced by a monatonically decreasing �n, which
means that it is “harder and harder” to add excitons in the
same state in the QD; the fermionic nature of excitons be-
comes more and more important.

An important quantity for single mode particles, espe-
cially in connection to their coherent features, is the �normal-
ized� second order correlator g2 whose physical meaning10 is
to characterize the probability of joint detection of particles
at times t and t+� and which in our case reads

FIG. 4. �a� Matrix elements �n of the exciton creation operator
X† calculated for n�15 for various trial wave functions. The top
curve shows the limit of true bosons where �n=�n and the bottom
curve the limit of true fermions where �n=�n,1. Intermediate cases

are obtained for values of �eh from −1.95��e�h down to −0.2��e�h,
interpolating between the boson and fermion limit. �b� Magnified
region close to the fermion limit. Values displayed are everywhere
given in units of ��e�h.
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g2�t,�� =
�X†�t�X†�t + ��X�t + ��X�t��

��̂�t����̂�t + ���
, �47�

where �̂ is the exciton number operator which satisfies

�̂�n� = n�n� �48�

with �n� the bare exciton state with n electron-hole pairs, cf.
Eqs. �15� and �16�. At our energy diagram level, we can only
compute zero-delay �=0 correlations and there is no dynam-
ics so t→�. Equation �47� reduces to g2�0� a quantity, which
is one of great physical and experimental relevance. It will
be sufficient for our description to consider Fock states of
excitons only, although an extension to other quantum states
is straightforward. The matrix representation in the basis of
states �n� reads X†2X2= ��i−1

2 �i
2�i,j�0�i,j with �i=0 if i�1, so

that for a Fock state with n excitons,

g2�0� =
�n−1

2 �n
2

n2 . �49�

Note that regardless of the model, g2�0�=0 for n=1. General
results are displayed in Fig. 5. They correspond to the exci-
ton field which is the one of most interest to us, and could be
probed in a two-photons correlation experiment with the
light emitted directly by the exciton. We compare the result
to the pure bosonic case where �n=�n and therefore g2�0�
= �n−1� /n so that g2→1 with increasing number of particles
which expresses the similarity of an intense Fock state with a
coherent state �especially regarding their fluctuations�. In our
case, however, the underlying fermionic structure results in
an antibunching of excitons, i.e., the probability of finding
two excitons at the same time is lowered at high exciton
densities. Close to the fermionic limit, this antibunching is
very pronounced and it is very unlikely to have more than
one exciton in the system.

V. COUPLING TO A SINGLE RADIATION MODE OF A
MICROCAVITY

We now present the emission spectra of the coupled
cavity-dot system when the exciton field is described by the
creation operator X†. The procedure is straightforward in
principle and is a direct extension of the concepts discussed
at length in the Introduction. The Hamiltonian assumes the
same form as previously, but now with X as we defined it for
the matter-field b:

H = ���a†a + �̂� + �g�aX† + a†X� . �50�

As Eq. �50� conserves the total number of excitations �=n
+m, it can be decoupled by decomposition of the identity as

1 = 
�=0

�


n=0

min�N,��

�n,� − n��� − n,n� , �51�

where N is the smaller index n for which �n becomes zero.
In the Gaussian wave function approximation without inter-
action, no �n ever becomes exactly zero, in which case N
→� and the upper limit in the second sum of Eq. �51� is �.

Inserting Eq. �51� twice in Eq. �50� yields H= ��=0
� H�

with

H� = ��� + �g��n
�� − n + 1�n,m+1 + H.c.�1�n,m�min�N,��

�52�

in the basis of bare photon-exciton states:

H� = 	�0,��, �1,� − 1�, . . . , �min�N,��,� − min�N,���
 .

�53�

If �n does not vanish, the basis has �+1 states in this mani-
fold with the last state �� ,0� having all photons transferred in
the excitonic field. In the case where �n vanishes, the exci-
tonic field saturates and the further excitations are con-
strained to remain in the photonic field.

Following the nomenclature laid down in the Introduc-
tion, we write the dressed state �� ,��� for the �th eigenstate
of the manifold with �=n+m excitations �n excitons +m
photons� and cn

�,�= �n ,�−n �� ,��� its decomposition on bare
states of this manifold, i.e.,

��,��� = 
n=0

min�N,��

cn
�,��n,� − n� . �54�

We compute the emission spectra corresponding to transi-
tions between multiplets, with matrix elements Iend
= ����� ,�−1�a�� ,����2 for emission of a photon from the
cavity and Ilat= ����� ,�−1�X�� ,����2 for direct exciton emis-
sion into a noncavity mode. Then

Iend = � 
n=0

min�N,�−1�

�cn
��,�−1�*cn

�,��� − n�2

, �55�

Ilat = � 
n=1

min�N,��

�cn−1
��,�−1�*cn

�,��n�2

. �56�

FIG. 5. Second order correlator g2�0� of the excitonic field for
Fock states �n� given by Eqs. �15� and �16� as a function of
�eh /��e�h which interpolates between the fermionic �−0.5, −1, and
−1.5� and bosonic �−1.9, −1.95, −1.99� limits. Upper line corre-
sponds to pure bosons ��eh=−2��e�h�. With increasing fermionic
character the antibunching is very pronounced at high intensities.
Close to the fermionic limit, g2 is always very small and vanishes
quickly.
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In cavity QED terminology, Iend and Ilat correspond to end-
emission and lateral-emission photodetection, respectively,
while in luminescence of a microcavity, one observes the
linear combination of the two contributions simultaneously.
Ilat reflects most the behavior of the excitonic field. To sepa-
rate the two, one can make use of the scattering geometry; in
a pillar structure, for instance, the cavity photon emission is
predominantly through the end mirrors, so Ilat could be de-
tected on the edge of the structure. These measurements dis-
play the most interesting features and we focus on them.

Figure 6 shows the calculated emission spectra Ilat of a
QD embedded in a cavity. All the spectra are broadened by
convolution with a Lorentzian of width �=0.2g. Figures
6�a�–6�c� are, respectively, the results close to the bosonic
limit ��eh=−1.99��e�h�, in between ��eh=−��e�h�, and
close to the fermionic limit ��eh=−0.05��e�h�. Each curve is
labeled with the number of excitations in the manifold, re-
flecting the intensity of the pumping field. Figure 6�a� shows
a pronounced Rabi doublet in the case n=1 �vacuum field
Rabi splitting� in accordance with the general theory set out
in the Introduction. Higher manifolds reveal nonbosonic be-
havior, with a reduced Rabi splitting doublet when n=2, and
the onset of a multiplet structure when n=5, where small
peaks appear at E����±2g�. The increase of dot confine-
ment in the case �eh=−��e�h in Fig. 6�b� makes deviations
from bosonic behavior more pronounced, so even for n=2 a
multiplet structure is observable. For higher manifold num-
bers, more lines appear, and a decrease of the splitting of the
central Rabi doublet occurs. Further strengthening the con-
finement to �eh=−0.05��e�h makes the manifestations of
fermionic behavior very clear; for n=2, a quadruplet struc-
ture is seen, with the central two peaks almost merged. The
situation is similar to the Mollow triplet of the exact fermi-
onic limit, even more so for an increase of manifold number
from n=2–10, where the separation of the side peaks grows
and the central ones merge further. It can be seen from Fig. 6
that the decrease of the QD size and the corresponding
change of the exciton quantization regime �with �eh ranging
from −2��e�h to 0� manifests in the emission spectra as a
transition from a Rabi doublet to a Mollow triplet. The in-
crease of the excitation power �at fixed QD size� leads quali-
tatively to the same effect; fermionic behavior becomes more
pronounced with the increase of the excitation power and
decrease of the QD size.

Having demonstrated how our model interpolates between
Fermi and Bose statistics, we now investigate in further de-
tail the intermediate regime by following the evolution of a
single manifold between the two limits. In Fig. 7 the eigen-
values are displayed for the seventh manifold, also shown in
Fig. 1 for bosons and fermions. Eigenvalues are plotted as a
function of �eh running from −2��e�h, which recovers the
left-hand side of Fig. 1, to 0, which recovers the right-hand
side. Other manifolds behave in qualitatively the same way.
In all cases, the n+1 equally spaced energies of the dressed
bosons link to the two energies of the dressed fermions as
follows: the upper energy ���+��g of the Bose limit links
to the upper energy ���+���g of the Fermi limit, and the
symmetric behavior occurs with the lower limit, linking

FIG. 6. �Color online� Spectra for various intensities of the light
field at specific values of �eh: �a� close to the bosonic limit with
�eh=−1.9��e�h for n=1 �solid red�, 2 �dashed blue�, and 7 �dotted
black� featuring a broadened and redshifted Rabi doublet as the
intensity increases and the onset of a multiplet structure, �b� inter-
mediate case: �eh=−��e�h for n=2 �solid black� and 10 �dashed
blue� demonstrating a complicated multiplet structure, and �c� close
to the fermionic case with �eh=−0.05��e�h for n=2 �solid black�
and 10 �dashed blue� featuring a quadruplet structure going towards
Mollow triplet at high intensities.
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���−��g with ���−���g. More interestingly, the inter-
mediate energies degenerate from the equal spacing of the
Bose limit towards ��� near the Fermi limit, with a discon-
tinuity when �2 becomes zero and only two eigenenergies
remain. Physically, this discontinuity arises because for any
�eh�0, formally, an infinite number of excitations can be
fitted in the QD, i.e., �n never becomes exactly zero, see Fig.
4. With �eh approaching zero these modes couple to light
more and more weakly, thus the energies of the dressed states
become close to the bare energy ���. When �eh=0 the fer-
mionic regime is recovered and only two dressed eigenstates
with energies ���±���g survive.

Although the eigenvalue structure of the dressed excitons
in the general case is simple and uniform, as is seen in Fig. 7,
the multiplet structures which arises from it is, as has been
seen in the spectra previously investigated, rich and varied.
In the general case where −2��e�h��eh�0, two adjacent
manifolds contain, respectively, n+1 and n levels, transitions
between any pair of which are possible. One may expect
n�n+1� lines in the emission spectra with a range of intensi-
ties and positions. The phenomenological broadening we
have introduced leads to the decrease of the number of re-
solvable lines. In all cases the n=1 to n=0 transition pro-
vides only two lines, with constant energies throughout, be-
cause with only one exciton present the question of bosonic
or fermionic behavior is irrelevant. To access the conse-
quences of exciton statistics, one must, unsurprisingly, reach
higher manifolds.

In Fig. 8 we show the evolution of the spectra between the
boson and fermion limits. The two panels are different pro-
jections of the same data, namely the multiplet structure as a
function of �eh� �−2��e�h ,0� for n=12. The Rabi doublet is
seen to evolve into a Mollow triplet going through a complex

and intertwined set of peaks whose splitting and relative
heights vary with the value of �eh considered. The spectrum
obtained is therefore a direct probe of the underlying exciton
quantum statistics.

As a final comment, we note that if Eq. �46� was to hold
for all n, it would yield, apart from a renormalization by �N,
the Dicke model,39 which has been widely used to describe
various strong light-matter coupling phenomena.40,41 In our
model it is recovered when m=1/N�m−1�, a case that we
have investigated in Ref. 42.

At the heart of the Dicke model lies the creation operator
J+ for an excitation of the “matter field” which distributes the
excitation throughout the assembly of N identical two-level
systems described by fermion operators �i, so that b† in Eq.
�2� maps to J+ with

FIG. 7. Energy diagram of the dressed excitons over the interval
�eh� �−2��e�h ,0� for the seventh manifold. The extremal values
recover the diagrams of Fig. 1 with n+1 equally spaced energy
levels in nth dressed boson manifold �far left� and twofold energy
diagram with square root splitting for dressed fermions �far right�.
The two outer boson energies connect smoothly to the two fermion
energies while the n−1 other one degenerates into a central line
which disappears right when the system hits the Fermi limit �this
point, �eh=0, is shown by the circle�.

FIG. 8. Transition from Fermi to Bose limits as observed in the
optical emission spectra. �a� Superpositions of spectra for �eh

=−2��e�h in front of the figure to �eh=0 at the back, recovering,
respectively, the Rabi doublet and Mollow triplet. In the intermedi-
ate region, intricate and rich patterns of peaks appear, split, merge,
or disappear. �b� Same data as in �a�, but as a density plot on
logarithmic scale, to discriminate the peaks, their positions, and
splitting as well as their relative intensities. All spectra are normal-
ized to a maximum intensity equal to 1.
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J+ = 
i=1

N

�i
†. �57�

One checks readily that J+ and J−=J+
† thus defined obey an

angular momentum algebra with magnitude N�N+1� �and
maximum z projection of Jz equal to N�. In this case the Rabi
doublet arises in the limit where the total number of excita-
tions � �shared between the light and the matter field� is
much less than the number of atoms, ��N, in which case
the usual commutation relation �J− ,J+�=−2Jz becomes
�J− /�N ,J+ /�N��1, which is the commutation for a bosonic
field. This comes from the expression of a Dicke state with �
excitations shared by N atoms given as the angular momen-
tum state �−N /2+��. Therefore the annihilation/creation op-
erators J−, J+ for one excitation shared by N atoms appear in
this limit like renormalized bose operators �Na, �Na†, result-
ing in a Rabi doublet of splitting 2�g�N. Such a situation
corresponds, e.g., to an array of small QDs inside a micro-
cavity such that in each dot electron and hole are quantized
separately, while our model describes a single QD which can
accommodate several excitons. The corresponding emission
spectra are close to those obtained here below the saturation
limit ��N, while the nonlinear regime N�1, ��1 has pe-
culiar behavior, featuring non-Lorentzian emission line
shapes and a nontrivial multiplet structure, like the “Dicke
fork.”42

VI. CONCLUSIONS AND PROSPECTS

The spectrum of light emitted by quantum dot excitons in
leaky modes of a microcavity—which could be typically lat-
eral emission—is a signature of the quantum statistics of
excitons. A multiplet structure has been theoretically pre-
dicted with various features which can help identify the ex-
citon field statistics. We provided the formalism to obtain the
spectra expected for a general dot in various geometries
based on the form of the single exciton wave function. We
investigated a generic case analytically through a Gaussian
approximation. The richness and specificity of the resulting
spectra provides a means to determine, through the peak
splittings and strength ratios, the parameter �eh that measures
how close excitons are to ideal fermions or bosons. Although

heavy numerical computations are required for realistic
structures, physical sense motivates that in small dots a
Fermi-like behavior of excitations with separately quantized
electrons and holes is expected, while in larger dots behavior
should converge towards the Bose limit. These trends should
be observable in the nonlinear regime �where more than one
exciton interacts at a single time with the radiation mode�:
depending on whether Rabi splitting is found, or if a Mollow
triplet or a more complicated multiplet structure arises, one
will be able to characterize the underlying structure of the
exciton field.

We have left the discussion of the interaction between
excitons out of the scope of the present paper considering the
effects which arise solely from Pauli exclusion principle. The
effect of interactions, through screening of Coulomb poten-
tial by the electron-hole pairs, has been discussed in Refs. 37
and 43. These papers demonstrate that the interactions will
make fermionic behavior more pronounced, since the pres-
ence of other excitons screens the Coulomb interaction
which binds electron and hole and leads to the increase of the
Bohr radius. The question whether interactions will predomi-
nate over Pauli exclusion lies beyond the scope of this paper
and we postpone it for a future work. Our preliminary esti-
mations show that even at moderate excitonic density the
effect of screening is small and does not lead to strong quali-
tative deviations.44

To summarize, we have studied the effect of Pauli exclu-
sion on the optical emission spectra of microcavities with
embedded QDs in the strong coupling regime. We derived
general expressions for the exciton creation operator which
allow systematic computation of the light-matter coupling.
The crossover between bosonic behavior—observed in large
QDs as Rabi doublet—to the fermionic behavior—observed
in small QDs as Mollow triplet—has been demonstrated.
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