
Voltage switching and domain relocation in semiconductor superlattices

L. L. Bonilla,* R. Escobedo, and G. Dell’Acqua
Grupo de Modelización y Simulación Numérica, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain

�Received 20 October 2005; revised manuscript received 21 February 2006; published 31 March 2006�

A numerical study of domain wall relocation during voltage switching with different ramping times is
presented for weakly coupled, doped semiconductor superlattices exhibiting multistable domain formation in
the first plateau of their current-voltage characteristics. Stable self-oscillations of the current at the end of stable
stationary branches of the current-voltage characteristics have been found. These oscillations are due to peri-
odic motion of charge dipoles near the cathode that disappear inside the SL, before they can reach the receiving
contact. Depending on the dc voltage step, the type of multistability between static branches and the duration
of voltage switching, unusual relocation scenarios are found including changes of the current that follow
adiabatically the stable I-V branches, different faster episodes involving charge tripoles and dipoles, and even
small amplitude oscillations of the current near the end of static I-V branches followed by dipole-tripole
scenarios.
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I. INTRODUCTION

Nonlinear vertical electron transport in semiconductor su-
perlattices �SL� gives rise to a rich variety of dynamical phe-
nomena associated with negative differential conductivity
�NDC�.1–4 In wide miniband SL, NDC due to Bragg scatter-
ing is the origin of self-oscillations of the current through a
dc voltage biased SL.5,6 These oscillations are due to recy-
cling of charge dipoles as in the Gunn effect of bulk GaAs.
In weakly coupled SL, NDC due to sequential tunneling be-
tween quantum wells may cause either stable self-sustained
current oscillations mediated by traveling charge monopoles
or dipoles,7–9 or a sawtooth multistable current-voltage
�I-V� characteristics associated with static field domains.10–12

The observed behavior depends crucially on the SL configu-
ration �widths of wells and barriers, number of SL periods,
boundary conditions in the contact regions�, doping density
and voltage bias.4

Although there remain important gaps in our theoretical
knowledge of nonlinear transport in SL,1,4 a basic difference
between weakly and strongly coupled SL is the type of bal-
ance equations describing them. Weakly coupled SL are de-
scribed by spatially discrete balance equations whereas spa-
tially continuous balance equations determine the nonlinear
behavior of strongly coupled SL.2 Traces of spatial discrete-
ness are the sawtooth I-V characteristics and the current
spikes during self-oscillations and during domain relocation
due to voltage switching; see the review of theory and ex-
periments in Ref. 4.

Recently, the dynamic response of the current and the
field profile to voltage switching has been investigated both
experimentally13–17 and theoretically.18,19 For a SL with a
multistable I-V characteristics, each branch thereof corre-
sponds to having the domain wall separating the low and
high field domains of the field profile �which is a charge
accumulation layer, CAL� placed at a different well of the
SL. We are interested in the transition from one stable sta-
tionary branch of the I-V characteristics to another due to a
step in the applied voltage �V=Vf −Vi �Vi and Vf are the

initial and final voltage values�. Bias steps are turned on
during a short time interval called ramping time, which can
be zero. A bias step increasing the applied dc voltage is re-
ferred to as an up jump ��V�0�, while a bias step decreas-
ing the applied dc voltage is called a down jump ��V�0�.
Bias steps contrast with voltage up-sweeps and down-sweeps
for which the ramping time is infinitely long and the bias
increase or decrease is adiabatic. For down jumps, the relo-
cation process of the domain boundary proceeds via a direct
motion of the CAL in the direction of electron flow. This
behavior is confirmed by single-shot time traces of the cur-
rent response: for values of Vf away from regions of bista-
bility, there is an initial displacement current spike, after
which the current rapidly switches to the stable value. Fur-
thermore, when Vf is near to the bistable region, there is an
additional intermediate period, in which the current fluctu-
ates about a metastable value for a stochastically varying
delay time �d, before rapidly switching to the stable value in
a time �s.

14,15 However, for up jumps, the charge monopole
at the domain boundary would have to move against the
electron flow, and this is only possible for small-amplitude
up jumps. For larger up jumps, the more complex dipole-
tripole scenario occurs: the CAL moves one well against the
electron flow, then a charge dipole comprising one CAL and
one charge depletion layer �CDL� is formed at the cathode
and, together with the old CAL, it moves with the electron
flow. The resulting charge tripole exists until the old CAL
reaches the anode and disappears, leaving only the charge
dipole. The CDL of this dipole reaches the anode while its
CAL moves until its final position at the destination branch
of the I-V characteristics.16,18 For Vf near the end of a
branch, there are pronounced stochastic effects due to shot
noise.15,17

In this paper, we carry out an extensive numerical study
of the dynamical response to voltage switching and unveil
unexpected behavior. We use a discrete sequential tunneling
model whose detailed description can be found in Appendix
A of Ref. 2. Stochastic effects due to shot noise will be
ignored. We find stable self-oscillations of the current at the
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end of stable stationary branches of the I-V characteristics.
These oscillations are due to periodic motion of charge di-
poles near the cathode that disappear inside the SL, before
they can reach the receiving contact. We also want to under-
stand how the dynamical response to voltage switching is
affected by the number of multistable branches of the I-V
characteristics, their extension and the ramping time neces-
sary to change voltage �from Vi to Vf�. Among our results,
we find a different tripole-dipole scenario than that reported
by Amann et al.18 �the first phase of the scenario is different�.
We also find that the ramping time selects the tripole-dipole
scenario for large up jumps. Suppose that there are several
branches of the I-V characteristics in the interval between Vi
and Vf �large voltage switching�. Then there are two critical
ramping times �c1 and �c2, �c2��c1, whose precise values
depend on the SL parameters in Table I and on Vi and Vf. For
the parameters used in our simulations, the critical ramping
times are between 10 and 30 �s. If the ramping time is larger
than �c1, the current follows adiabatically the stable branches
until their end, falls to the next stable branch and repeats this
process until Vf is reached. For ramping times between �c2
and �c1, adiabatic motion over a stable branch is followed by
a tripole-dipole scenario until the following stable branch is
reached. Depending on the number of multistable branches,
sometimes a stable branch is skipped in this process. Last, if
the ramping time is shorter than �c2, the final stable branch is
reached after only one tripole-dipole scenario even for large
voltage steps.

The rest of the paper is as follows. The model we use and
details of its numerical integration are described in Secs. II
and III, respectively. Section IV contains the multistable
I-V characteristics of a SL with realistic configuration and
doping density parameters.8 We show that the width of the
multistability regions increases with voltage while the slope
of the branches �which is the positive differential conductiv-
ity or, in short, PDC� decreases. These features affect sub-
stantially the dynamic response to switching described in
Secs. V and VI. Finally, the main results of the paper are
summarized in Sec. VII.

II. SEQUENTIAL TUNNELING DISCRETE MODEL

In weakly coupled SL, typically the scattering times
�about 0.1 ps� are much shorter than the escape times from
quantum wells �about 0.01 ns for a SL with a 0.1 meV mini-
band width�. In their turn, the latter are shorter than typical
dielectric relaxation times �on the nanosecond time scale�.4
This implies that the dominant mechanism of vertical charge
transport is sequential resonant tunneling and that the tunnel-
ing current across barriers can be considered to be stationary
on the time scale of dielectric relaxation. Nonlinear station-
ary and oscillatory phenomena occurring for voltages in the

first plateau of weakly coupled doped SL have been well
described by the spatially discrete model equations �with
backward finite differences� introduced in Ref. 20 with con-
stitutive relations between sequential tunneling current, elec-
tron densities and electric field of the type calculated in Ref.
21 using stationary nonequilibrium Green functions or in
Ref. 2 �and references cited therein� approximating transfer
Hamiltonian formulas. See the review4 for a recent descrip-
tion and further justification. The model equations consist of
the Poisson and charge continuity equations for the two-
dimensional �2D� electron density ni and average electric
field −Fi at the ith SL period �which starts at the right end of
the �i−1�th barrier and finishes at the right end of the ith
barrier�,

Fi − Fi−1 =
e

�
�ni − ND� , �1�

e
dni

dt
= Ji−1→i − Ji→i+1, i = 1, ¯ ,N . �2�

Here ND, �, −e and −Ji→i+1 are the 2D doping density at the
ith well, the average permittivity, the electron charge and the
tunnelling current density across the ith barrier, respectively.
The width of a SL period is l=d+w, where d and w are the
barrier and well widths, respectively. Time-differencing Eq.
�1� and inserting the result in Eq. �2�, we obtain the follow-
ing form of Ampere’s law:

�
dFi

dt
+ Ji→i+1 = J�t� , �3�

which may be solved with the bias condition for the applied
voltage V�t�,

1

N + 1�
i=0

N

Fi =
V�t�

�N + 1�l
. �4�

The space-independent unknown function J�t� is the total
current density through the SL. The 2N+2 independent
equations of the discrete model are �1� for i=1, . . . ,N, �3� for
i=0, . . . ,N, and �4� for the 2N+2 unknowns ni, Fi �i
=1, . . . ,N�, F0 and J, provided we have N+1 constitutive
relations linking the tunneling current Ji→i+1 �i=0, . . . ,N� to
the electron densities and electric fields. To calculate the tun-
neling currents across SL barriers, we use explicit formulas
provided by the transfer Hamiltonian method when the scat-
tering broadening is much smaller than the subband energies
and chemical potentials,2

TABLE I. Parameters of the 9/4 SL in Ref. 8.

N
ND

�cm−2�
w /d

�nm/nm�
�

�meV�
m*

�10−32 Kg�
EC1

�meV�
EC2

�meV�
EC3

�meV�
Vb

�V�

40 1.5	1011 9.0/4.0 8 8.43 44 180 410 0.982
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Ji→i+1 =
ev�f��Fi�

l
�ni −

m*kBT


�2 ln�1 + exp�−
eFil

kBT
	

	 �exp�
�2ni+1

m*kBT
	 − 1	
�, i = 1, . . . ,N − 1,

�5�

J0→1 = �F0, �6�

JN→N+1 = �FN
nN

ND
. �7�

As boundary tunneling currents for i=0 and N, we adopt
linear relations between current and field as in Ref. 18. In
these formulas, � is the contact conductivity �assumed to be
the same at both contacts for simplicity�, m* the effective
mass, T the temperature, kB and � are the Boltzmann and
Planck constants, respectively, and the “forward tunneling
velocity” v�f� is a sum of Lorentzians centered at the resonant
field values FC= �EC−EC1� / �el�,

v�f��Fi� = �
j=1

n

�3l��C1 + �Cj
�

2m*2 Ti�EC1�

�EC1 − ECj
+ eFil�2 + ��C1 + �Cj

�2 , �8�

Ti��� =
16ki

2ki+1
2 �i

2�ki
2 + �i

2�−1�ki+1
2 + �i

2�−1

�w + �i−1
−1 + �i

−1��w + �i+1
−1 + �i

−1�e2�id
, �9�

�ki = �2m*� , �10�

�ki+1 = �2m*�� + e�d + w�Fi� , �11�

��i−1 =�2m*�eVb + e�d +
w

2
	Fi − �
 , �12�

��i =�2m*�eVb −
ewFi

2
− �	 , �13�

��i+1 =�2m*�eVb − e�d +
3w

2
	Fi − �
 . �14�

In these equations, Cj indicates the jth subband in a well, ECj
is its energy measured from the bottom of the well, �Cj

is the
scattering width, Ti is proportional to the dimensionless
transmission probability across the ith barrier, and eVb is the
barrier height in absence of potential drops. Typical values of
these parameters are shown in Table I.

To carry out numerical integrations of the discrete model,
the explicit formulas �5�–�14� are much better than numeri-
cally calculated tunneling currents such as those obtained in
Refs. 1 and 21 from Green function calculations. Further-
more, explicit tunneling currents are better suited for analysis
of the discrete model equations. These reasons to favor the
previous explicit formulas for the sequential tunneling cur-
rent are not offset by claims that one type of derivation
�transfer Hamiltonian or Green functions� agrees better with

first principles: both derivations involve similarly drastic
simplifications and the resulting formulas agree similarly
well with experiments. It turns out that the type of solutions
of the discrete model depends on the qualitative features of
Ji→i+1 as a function of Fi, ni, and ni+1, not on detailed quan-
titative features. The formulas for Ji→i+1 obtained using dif-
ferent derivation methods yield a tunneling current similar to
that in Fig. 1, which is why we obtain similar results. See
discussions in Ref. 4.

III. NONDIMENSIONALIZATION AND NUMERICAL
INTEGRATION

For numerical treatment, it is convenient to render the
equations dimensionless. We have used the following
definitions:4

Fi =
Fi

FM
, ñi =

ni

ND
, Ji→i+1 =

Ji→i+1

JM
, J =

J

JM
, t̃ =

t

t0


JMt

�FM
,

v�Fi� =
v�f��Fi�

vM
, � =

V

V0


V

�N + 1�FMl
, �̃ = �c�


FM�

JM
, vM =

JMl

eND
. �15�

The values FM and JM are defined as the field and current
density at which the tunneling current Ji→i+1 of �5� reaches
its first relative maximum, provided ni=ni+1=ND. With these
definitions, the model equations are

dFi

dt̃
+ Ji→i+1 = J, i = 0, . . . ,N , �16�

FIG. 1. Tunneling current density for ni=ni+1=ND as a function
of field Fi=F, showing that FM �3.945 kV/cm and JM

�3.1269 A/cm2 for T=5K and the SL values of Table I.
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ñi =
Fi − Fi−1


+ 1, i = 1, . . . ,N , �17�

�
i=0

N

Fi = �N + 1���t�, t � 0, �18�

Ji→i+1 = v�Fi��ñi − �0 ln�1 + e−aFi�eñi+1/�0 − 1���,

i = 1, . . . ,N − 1, �19�

J0→1 = �̃F0, �20�

JN→N+1 = �̃FNñN, �21�

where

 =
eND

�FM
, �0 =

m*kBT


�2ND
, a =

elFM

kBT
, �22�

are dimensionless parameters. Their values for the SL de-
scribed in Table I are given in Table II. Figure 1 shows the
tunneling current density as a function of a homogeneous
field profile Fi=F when the electron densities are set equal to
the doping density in all the SL wells. We observe several
relative maxima, the first of which yields the values of FM
and JM. The field intervals between two consecutive maxima
roughly correspond to plateaus in the I-V characteristics.

In order to numerically solve the discrete model, we first
sum �16� from i=0 to N and use the bias condition �18� to
calculate J. The result is

J =
d��t�

dt̃
+

1

N + 1�
i=0

N

Ji→i+1. �23�

To solve �16�–�21� together with the initial condition

Fi�0� = Fi0, i = 0, . . . N, ��0� = �
i=0

N Fi0

N + 1
, �24�

is equivalent to solving �17�–�21� plus the following equa-
tion instead of �16�:

dFi

dt̃
=

d�

dt̃
+

1

N + 1 �
j=0,j�i

N

J j→j+1 −
N

N + 1
Ji→i+1, i

= 0, . . . ,N . �25�

The new system of equations also satisfies the bias condition
�18�. This can be checked by adding all equations �25� from
i=0 to N which implies that �i=0

N Fi− �N+1�� is a constant,
equal to zero because of the initial conditions. To solve our
dimensionless equations, we have used an embedded Runge-
Kutta method of order 7�8� with step-size control and error
estimate, checking the results independently by means of an
implicit BDF �backward differentiation formula� method of
order 1 to 4, solved by means of Newton-Raphson iterations.
These methods are more accurate than those used by Amann
et al.18

IV. I-V CHARACTERISTICS

We have constructed numerically the first plateau of the
I-V characteristics of the SL whose parameters are compiled
in Table I at a temperature of 5 K and a contact resistivity

TABLE II. Typical scales for T=5 K.

FM

�kV/cm�
JM

�A/cm2�
vM

�m/s�
x0

�nm�
t0

�ns�

�-�

�0

�-�
�c

�� m�
V0

�V�

JMl

eND

�FMl

eND

�FM

JM

eND

�FM

m*kBT


�2ND

lFM

evMND
FMNl

3.945 3.127 1.691 2.494 2.066 5.212 0.111 12.62 0.205

FIG. 2. �Color online� I-V
characteristics of the 40-period
9-4 SL of Ref. 8 obtained by up-
and down-sweeping adiabatic
processes for V� �0,4� V. Param-
eters correspond to Table I at 5 K
and with cathode resistivity of
25.2 � m ��̃=0.5�. The branch
number increases with voltage:
the i th branch has a CAL separat-
ing low and high field domains
which is located at the �N− i
+1�th well.
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1/�=25.2 � m ��̃=0.5�. We depict in Fig. 2 the portion of
the stable static branches obtained by voltage up-sweep from
zero volts to the end of the first plateau and also the portion
obtained by voltage down-sweep from high voltage values.
Note that the upper parts of odd numbered branches �from
the 23rd to the 33rd� do not appear because they correspond
to regions of bistability and are skipped during voltage up-
sweep. Likewise, the central parts of branches 35th to 39th
are not shown because they correspond to regions of trista-
bility and are skipped during voltage up-sweep and down-
sweep. All these curves can be entirely shown by up-
sweeping starting from the parts thereof shown in the figure.
The voltage distribution for different locations of the domain
boundary for a fixed applied voltage in regions of multista-
bility is shown in Figs. 8 and 9 of the review paper,4 which
contains further background discussions and references to
pertinent literature. The basin of attraction of the static
branches shown in Fig. 2 is very small near their ends and it
is mainly in these regions that our high precision numerical
methods make the difference with previous calculations; see
Fig. 3. We have found that the I-V branches may undergo
Hopf bifurcations to small-amplitude oscillatory solutions
near their upper ends, as we explain in Sec. VI.

According to their stability feature, we can distinguish
four different types of I-V branch:

�1� The first branch B1 is singly stable from V=0 until its
upper part coincides with the lower end of branch B2, giving
rise to a narrow region of bistability.

�2� From branch B2 to B21, we observe that the branch
length increases �the extension of B2 is 0.122 V whereas that
of B19 is 0.177 V� while their slope �the PDC� decreases. We
see that the low voltage branches have a steep slope similar
to that below the first maximum of the homogeneous tunnel-
ing current density in Fig. 1, whereas the high voltage
branches have a smaller slope similar to that of the low part
of the ascent to the second maximum in Fig. 1. Why? The
field profile in the low voltage branches is similar to that of

a solution with spatially uniform field, which therefore obeys
Ji→i+1�F ,ND ,ND�=J, thereby corresponding to the first
branch of the curve in Fig. 1. Similarly, high voltage
branches are close to spatially homogeneous field profiles
satisfying the same relation, but now the field profile corre-
sponds to the third branch of Fig. 1. Branches with interme-
diate voltages are a combination of low and high field do-
mains, and therefore their slopes are interpolations between
low and high PDC. The central part of each branch is singly
stable, while their two ends are bistable. As the branch num-
ber increases, the central part shrinks and the bistable regions
including the ends of the branch grow.

�3� Branch B22 is the last one having a central singly
stable region and the first one with a tristability region near
its upper end. In the tristability region, branch B22 coexists
with the central part of branch B23 and the lower part of
branch B24.

�4� Branch B23 is bistable except in its central part and its
upper end where it is tristable. The lower part of this branch
is still bistable.

�5� Branches B24 to B39 are tristable in their central parts
and ends, but they have two bistability regions. As voltage
increases, the tristability regions grow at the expense of the
bistability regions.

�6� The last branch of the first plateau, B40, has a tristable
lower end, a bistable central region and it is singly stable
from there until it reaches the second plateau in its upper
end.

V. LARGE SWITCHING: EVOLUTION OF J„V… ALONG
THE I-V CURVE

In this section, we describe the dynamical response of
the SL to a voltage switching V�t�=Vi+�VtH��r− t� /�r

+�VH�t−�r�, in which �V is constant, and H�t�=1 if t�0,
H�t�=0 if t�0 is the Heaviside unit step function. We select
the initial voltage in the central part of one branch and the
final voltage Vf =Vi+�V in different parts of another stable
branch, so that several branches can be found between Vi and
Vf. We have found different scenarios.

A. Switching from bistable branches: modified tripole-dipole
scenario

Let us choose Vi=0.83 V, in the central singly stable part
of branch B8 and Vf =1.37 V, on the central part of branch
B14. These branches are bistable but they have a central part
for whose voltages no other static solution is stable �the
branch is singly stable there�. Figure 4 shows the dynamical
response of the total current density J�t� to voltage switching
with two different ramping times. For large enough ramping
times �not shown�, the current density J�t� follows adiabati-
cally the I-V characteristics. Below a first critical value of the
ramping time, J�t� cannot reach the upper end of the
branches and it falls to the lower part of the following branch
in the voltage range where both branches are stable. For
each branch crossing, this fall occurs via the following
modified tripole-dipole scenario whose current trace is de-
picted in Fig. 5.

FIG. 3. �Color online� Bistability between branches 5 and 6 of
the I-V characteristics in Fig. 2 �V� �0.55,0.6� V�. The stationary
solution becomes unstable to a small-amplitude oscillatory solution
at the upper end of branch 5.
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Phase 1: The CAL separating low and high field domains
stay in the same well while the current density increases until
it surpasses the critical value at which J=�F intersects the
curve in Fig. 1, J=Ji→i+1�F ,ND ,ND� on the second branch
thereof �Jc�2.9 A/cm2�.

Phase 2: A charge dipole wave is created at the cathode
and it starts moving to the anode while the old CAL also
moves towards the anode. After a short transient during
which the current decreases, the whole structure, a charge
tripole moves rigidly towards the anode.

Phase 3: The old CAL reaches the anode leaving a charge
dipole moving �after a short transient during which the cur-
rent further decreases� rigidly towards the anode at a lower
speed than the tripole.

Phase 4: The front part of the dipole, a CDL, reaches the
anode leaving only the CAL in its back part. The current
density increases to higher values corresponding to the next
stable static solution while the CAL moves towards its final

destination separating low and high field domains of the
stable static field profile.

Phase 2 is characterized by double-peaked current spikes
�corresponding to the well-to-well jumps of the two CAL�
while Phases 3 and 4 exhibit single current spikes; see Fig. 5.
Phases 2, 3, and 4 are exactly as described in Ref. 18 �who
did not describe Phase 4� and corrected in Ref. 16 �who
added Phase 4�. In these previous works, Phase 1 was char-
acterized by a one-well motion of the CAL towards the cath-
ode. Note that experimental observations refer only to the
behavior of the current density, not to the motion of domain
walls, and therefore they cannot discriminate between our
Phase 1 and the different one reported in Ref. 18 To explain
the differences in Phase 1, we note that, according to Fig. 3
of Ref. 22, a CAL may move against the electron flow if the
current is large enough and the doping density is sufficiently
large. However, the critical current for this motion would be
exponentially close to the maximum current for which CAL
exist if the doping density is even larger, thereby eliminating
in practice the possibility for CAL to move against the elec-
tron flow under current bias. In the simulations by Amann et
al., the interval of currents allowing CAL motion against the
electron flow was relatively wide �cf. their Fig. 4�, whereas
we found that it was negligible for the tunneling current and
doping density used in the present calculations. Then the
increase of voltage due to switching is compensated by sim-
ply a current increase in Phase 1, without CAL motion, as
indicated in Fig. 5. When the current surpasses its critical
value �see the current spike over the maximum current value
for static branches in Fig. 4�, Phase 2 begins: a dipole is shed
from the cathode and it moves on towards the anode together
with the old CAL. This and subsequent phases are as in the
previous works.15,18 The behavior of the current can be ex-
plained using singular perturbation ideas as described in the
reviews.2,4 Since the final position of the CAL approaches
the cathode as the voltage increases, the dipole-tripole be-
comes shorter as shown in Fig. 4.

We have seen that switching from B8 to B14 occurs by a
succession of tripole-dipole scenarios. What happens if we
continue decreasing the ramping time? It turns out that we

FIG. 4. �Color online� Total current density during voltage
switching from Vi=0.83 V to Vf =1.37 V �seven branches� for
ramping times: �a� �r=30 �s �dimensionless value, �̃r=2	104�,
and �b� �r=15 �s ��̃r=104�. Thick black line, upper part of the I
-V branches; red thin line, lower part of the static I-V branches; thin
blue line, response curve �V�t� ,J�t��. In �a�, the current follows
adiabatically the I-V curve, whereas in �b�, the ramping time is so
short that the fourth and sixth branches are skipped. The dimension-
less cathode conductivity is �̃=0.5.

FIG. 5. Time trace of the total current density J�t� after sudden
voltage switching characterizing the tripole-dipole scenario. Here
Vi=1.0 V �for t�0� and �V=0.2 V.
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start skipping branches. Note that the tripole-dipole process
is quite fast in Fig. 4�a� and it ends at a voltage smaller than
the bistability interval near the end of the corresponding
I-V branch. At that voltage, only one branch is stable and J�t�
follows this static branch until the next dipole emission.
However, recall that the bistability intervals grow at the ex-
pense of the singly stable central part of the branches as their
voltage increases. When the ramping time is decreased be-
low a critical value �which depends on the branch�, the volt-
age at the end of a process of dipole emission and travel may
be in the bistability range of two branches. The CAL of the
dipole then stops at the position corresponding to the static
branch with lower current which is closer to the cathode than
the CAL of the branch with higher current. This is observed
in Fig. 4�b�. Note that the branches B11 and B13 have been
skipped. Figure 6�b� shows that the corresponding tripole-
dipole process is longer when one branch has been skipped.

B. Same switching range for bistable and tristable
branches

It should be clear from the previous discussion that the
intervals of bistability have great influence on the dynamic

response to voltage switching. To make this clearer, we have
depicted in Figs. 7�a�–7�h� the dynamic response to a voltage
switching of width �V=0.5 V with ramping time �r=30 �s
�as in Fig. 4�a�� for different initial voltages Vi. We observe
that the tripole-dipole scenario occurs for small Vi, branches
start to be skipped as Vi increases, and the tripole-dipole
process disappears at even larger voltages at which the tri-
stability range of the branches is very large. Of course, the
occurrence of the tripole-dipole scenario depends on the
ramping time: it reappears again as the ramping time de-
creases sufficiently.

VI. VOLTAGE SWITCHING TO Vf NEAR THE END OF A
BRANCH

In this section, we report the current response to voltage
switching from Vi to a voltage Vf close to the end of the
same branch. First, we shall select branches near the end of
the plateau, which were the only ones considered in Ref. 18
�see Sec. VI�. Second, we shall select branches near the be-
ginning of the plateau and observe a rather different behav-
ior.

A. High voltages near the end of the I-V plateau

Figure 8 depicts the current response to a voltage switch-
ing starting with a Vi in the bistable part of branch B37, closer
to its end. Keeping a ramping time of 100 ns, we observe
similar behavior to that reported by Amann et al.:18 �i� if
Vf �Vth �the end of the static branch�, the current remains on
the same branch but the time it takes to settle in its final
value increases as Vf approaches Vth; �ii� if Vf �Vth, the final
state is on the next branch, and the transient stage lasts
longer as we approach Vth, cf. Fig. 9�a�. Similarly, the longer
the ramping time is, the longer the transient before the cur-
rent drops to that of the following I-V branch seems to be, as
indicated in Fig. 9�b�. This figure shows the influence of the
ramping time on the current response to voltage switching
with Vf close to Vth for I-V branches near the end of the
plateau. We have selected now branch B35 and changed the
ramping time from small to large for two different Vf close to
Vth, one larger than Vth, the other smaller. For Vf �Vth, we
observe that the current eventually drops to the lower value
on branch B36, but the transient stage lasts longer as the
ramping time increases. For Vf �Vo�Vth, the basin of attrac-
tion of B35 is so small that the current eventually drops to its
final value on branch B36. However, the way in which this
happens depends strongly on the ramping time: �i� if the
ramping time is too small, the current drops rapidly and the
final state is on branch B36 is reached soon; �ii� for interme-
diate ramping times, the current oscillates about the static
branch B35 before it falls to branch B36; and �iii� for large
ramping times, the current seems to settle down to the static
value on branch B35 and it resists much longer before it even-
tually drops down to branch B36.

A distinct feature of the current response to voltage
switching with Vf near the end of a static branch is that, in
case �i�, the final stable state for Vf �Vth very close to Vth,
may be oscillatory, not stationary. This is suggested by the

FIG. 6. Field profiles corresponding to Fig. 4 during relocation
of the domain wall. �a� Detail of the emission and the travel of the
CAL during the second relocation stage in Fig. 4�a�. �b� The fourth
branch in Fig. 4�b� has been skipped, therefore the fourth CAL is
missing and there is no relocation stage.
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oscillations in Figs. 8 and 9, and further confirmed by the
linear stability analysis of the Appendix. There it is shown
that the static branch loses stability at some Vo�Vth because
the real part of two complex conjugate eigenvalues becomes
positive for Vo�V�Vth. This is clearly seen in Fig. 10,
which depicts the eigenvalues of the linear stability problem
about the static branch B35 for 20 different voltage values
close to Vth. For this branch, Vo�3.5547 V.

B. Current response to switching near the end of low voltage
branches

Figure 11 shows that switching near the end of low volt-
age I-V branches is more complex than that described previ-
ously. It turns out that the current drop to the next branch
may occur via the tripole-dipole scenario, unlike in the nu-
merical simulations by Amann et al. �who always selected

high voltage static branches having intervals of tristability�,
but according to the experimental observations by Rogozia et
al. �cf. Fig. 9 of Ref. 16�. Another discrepancy between the
numerical simulations of Ref. 18 and experiments is that the
current spike accompanying dipole emission is much taller in
the simulations �twice the maximum current of the static
branches instead of the experimentally observed 20% in-
crease�. In our simulations, the current spike accompanying
dipole emission is much smaller than in the previous calcu-
lations by Amann et al., but this is due to the different cath-
ode conductivity and critical current for dipole creation.

The appearance of the tripole-dipole scenario during volt-
age switching occurs up to voltages corresponding to
branches starting to display tristability. If we fix Vf suffi-
ciently close to Vth, Vf �Vth, and change the ramping time,
we observe a peculiar behavior. For all ramping times, the
relocation of the domain wall separating the low and high

FIG. 7. �Color online� Voltage switching with �V=0.5 V and ramping time �r=30 �s for different Vi on the I-V characteristics: �a�
Vi=0.5 V, �b� Vi=1 V, �c� Vi=1.5 V, �d� Vi=2 V, �e� Vi=2.5 V, �f� Vi=3 V, �g� Vi=3.5 V, �h� Vi=4 V, �V=1.5 V. In �a�, �b�, �g�, and �h�,
the current follows the I-V curve along the upper part of each branch, whereas J ranges from 6 to 16 A/cm2. In �c�, a branch �the fifth� is
skipped for the first time. In �d� and �e�, branches 3 and 5 are skipped. In �f�, the upper part of the fifth branch is reached but the sixth is
skipped.
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field parts of the field profile happens via the tripole-dipole
scenario, as shown in Fig. 12�a�. However the time td at
which the tripole-dipole scenario starts is not a monotone
function of the ramping time: it seems that td may have local
maxima and minima as a function of �r. We have observed
that td increases with �r up to �r�2.2 �s. Then td decreases
with �r up to at least 7 �s. Then td increases again for larger
�r, as indicated in Fig. 12�a�. We have checked that td is
again smaller for a ramping time of 100 �s than for �r
=30 �s.

To ascertain the origin of the nonmonotonic behavior of td
as a function of the ramping time, we observe that, as the
voltage increases with time, the current becomes oscillatory
before the tripole-dipole scenario begins. The shape of the

current oscillations and their local period also change as the
time elapses, which is clearly seen in Figs. 11 and 12�b�. The
latter figure also shows that, for similar ramping times, the
current may drop to the lower I-V branch or continue oscil-
lating for a longer time. Figure 13 depicts the field profiles
during the oscillations of the current shown in Fig. 12�b� for
Vf �Vth. We see that the current oscillations correspond to
the periodic formation of a small field pulse at the cathode
and its advance towards the anode over a few SL periods
before it shrinks and vanishes. Eventually as the voltage in-
creases with time, a dipole succeeds in growing sufficiently
to detach itself from the cathode region and trigger a tripole-
dipole event, bringing down the current to its stable value in
the next I-V branch. Figure 14 shows that the same mecha-
nism is responsible for similar small amplitude current oscil-
lations for Vf �Vth.

Another clue to the different current response to switching
at low voltage values is offered by linear stability analysis of

FIG. 8. Current response to voltage switching from Vi=3.68 V
to five different values of Vf near Vth ��1� 3.74, �2� 3.747, �3�
3.747 2732, �4� 3.7474, and �5� 3.76 V�. The ramping time is �r

=100 ns and we have set t=0 at the end of voltage switching. Note
the oscillatory behavior for Vf =3.747 V.

FIG. 9. Current response to voltage switching for Vi=3.5 V, two
different values of Vf and three different ramping times in each
case: �a� Vf =3.555 V�Vth, for �r=1 ns, 1 �s, and 100 �s. �b� Vf

=3.5545 V�Vth, for �r=0.1 �s, 1 �s, and 100 �s. In all cases, we
set t=0 at the end of voltage switching. For �r=100 �s, the current
undergoes a small-amplitude oscillation in the case of Fig. 9�b�.

FIG. 10. Evolution of the 41 eigenvalues determining linear
stability of the static branch B35 for 20 values of the applied voltage
from V=3.54 to 3.56 V.

FIG. 11. �Color online� Current response to voltage switching
between branches 5 and 6 of the I-V characteristics in Fig. 2 for
Vi=0.56 V, ramping time �r=10 �s, and four different values of Vf

near Vth: �1� 0.59, �2� 0.591, �3� 0.59203, and �4� 0.593 V. Note that
curve �3� is shifted down 0.2 A/cm2 for the sake of clarity.
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the I-V static solution branches. At low voltages, they have a
stationary instability at a voltage smaller than Vth. At that
voltage, a stationary branch bifurcates and this secondary
branch undergoes a Hopf bifurcation to a small amplitude
oscillation. The field profiles for these oscillatory solution
correspond to the periodic emission and motion of a small
field pulse �charge dipole� confined to the region near the
cathode, which is very similar to the confined Gunn effect in
bulk n-GaAs and ultrapure p-Ge.23 Figures 15�a� and 15�b�
show that the eigenvalue determining the linear stability of
the static branch B5 is real and it vanishes at a certain voltage
smaller than Vth. The other eigenvalues with large real parts
are complex and have negative real parts. The gap in Fig.
15�b� corresponds to the oscillatory instability observed in
the numerical simulations of the discrete model. It is plau-
sible that the stationary branch that bifurcated from B5 has a
secondary oscillatory instability at that voltage, but a more
detailed study is necessary before this can be ascertained.
Thus we may have the following succession of bifurcations
from the static branch B5 as the voltage increases towards
Vth: �i� stable B5, �ii� small amplitude static branch issuing
from B5, �iii� Hopf bifurcation from the bifurcating static
branch, �iv� annihilation of the oscillation before or at Vth
�the end of B5�. During voltage sweeping, the current should
go through this succession of bifurcations and there is no

FIG. 13. Evolution of the electric field profile corresponding to
Fig. 12�b�, where Vi=0.56 V and Vf =0.592 03 V�Vth, for the two
�very similar� ramping times �a� �r=2.1994 �s and �b� �r

=2.1995 �s. In �a�, the CAL is emitted after a short oscillatory
transient. In �b�, a CAL is emitted from the cathode, it disappears in
the interior of the sample and this behavior is repeated periodically.
This is similar to Gunn effect oscillations confined to one part of the
SL.

FIG. 12. �Color online� Current response to voltage switching
between branches 5 and 6 of the I-V characteristics in Fig. 2 for
Vi=0.56 V. �a� Vf =0.593 V�Vth and seven different ramping
times from 1 to 25 �s. �b� Details of current response for Vf

=0.592 03 V�Vth and three short ramping times: 0.1, 2.1994, and
2.1995 �s.

FIG. 14. Evolution of the electric field profile corresponding to
curve number �6� in Fig. 12�a�, which has longest oscillatory inter-
val before a CAL is emitted from the cathode �ramping time �r

=20 �s�. �a� Detail of the oscillatory transient regime. �b� Detail of
the profile near the cathode �closest 15 wells� when the CAL is
finally emitted.

BONILLA, ESCOBEDO, AND DELL’ACQUA PHYSICAL REVIEW B 73, 115341 �2006�

115341-10



reason why the time td should be a monotone function of the
ramping time �r.

VII. CONCLUSION

The relocation of the domain boundary in weakly coupled
doped SL is substantially affected by the ramping time over
which the voltage is switched and by multistability of the
initial and final static I-V branches involved in switching. Let
us consider voltage switching leaving several I-V branches
between the initial and final voltages. If the ramping time is
very long, the current simply follows adiabatically the
change in voltage during switching, much as in up and down
voltage sweeping. If the ramping time is very short, each
branch jump during switching is achieved by a modified
tripole-dipole scenario: a CDL is formed at the cathode, it
moves towards the anode producing a second CAL behind it.
Together with the old CAL, the resulting charge tripole

moves towards the anode until the first CAL and the CDL
reach it. Then the remaining CAL moves to its final position
corresponding to the new static I-V branch. For intermediate
ramping time, and provided the I-V branches have wide in-
tervals of bistability, the tripole-dipole scenario may be
skipped, thereby occurring every other branch jump. If the
final voltage after switching is very close to the end of a
I-V branch, the current eventually drops to its value at the
following static branch, but it can remain a long time on the
initial static branch �or it oscillates about it in case there is an
oscillatory instability� if the ramping time is sufficiently
long. The time at which the tripole-dipole scenario begins
and the current drops to its stable value at the next I-V
branch is not a monotone function of the ramping time.
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APPENDIX: LINEAR STABILITY OF THE STATIC I-V
BRANCHES

Let ��Fi
*�i=0

N ,J*� a stationary solution of �16�–�21� under
dc voltage bias ��t̃��, "t̃. In these equations, we shall
eliminate the electron density in favor of the field by using
the Poisson equation. Then the tunneling current is a function
of the electric field profile such that

Ji→i+1��Fi
*�� = J*, i = 0, . . . ,N , �A1�

�
i=0

N

Fi
* = �N + 1�� . �A2�

Let ��f i�t̃��i=0
N , j�t̃�� a disturbance from the static solution,

Fi�t̃� = Fi
* + �f i�t̃�, J�t̃� = J* + �j�t̃� . �A3�

Then, the linear equations about the static field profile and
the static current density are

dfi

dt̃
= j�t̃� − f i� �Ji→i+1

�Fi
�

�*�
− f i−1� �Ji→i+1

�Fi−1
�

�*�

− f i+1� �Ji→i+1

�Fi+1
�

�*�
, i = 0, . . . ,N , �A4�

up to O��� terms. We have set ���= �Fi
* ,Fi−1

* ,Fi+1
* �.

Let us now assume f i�t̃�=e�t̃ f i, j�t̃�=e�t̃ j. Then we obtain

�f i = j − f i� �Ji→i+1

�Fi
�

�*�
− f i−1� �Ji→i+1

�Fi−1
�

�*�

− f i+1� �Ji→i+1

�Fi+1
�

�*�
, �A5�

which can be written in matrix form as �f= j−A · f, with
ai,l�=

�Ji→i+1

�Fl
����,

FIG. 15. �a� Evolution of the 41 eigenvalues determining linear
stability of the static branch B5 for 20 values of the applied voltage
from V=0.56 to 0.6 V. The insets show the overall picture with all
the eigenvalues and a zoom of the region near the imaginary axis.
�b� Real part of the eigenvalues as a function of voltage. The gap in
the figure corresponds to the oscillatory instability.
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��
f0

f1

]

fN

� =�
j

j

]

j
� −�

a0,0 a0,1 0

a1,0 a1,1 a1,2

a2,1 a2,2

� aN−1,N

0 aN,N−1 aN,N

�
	�

f0

f1

]

fN

� . �A6�

The boundary conditions for i=0 and i=N yield a0,0= �̃,
a0,1=0, aN,N−1=−�̃FN

* /, and aN,N= �̃�ñN
* +FN

* /�. On the
other hand, the bias condition �18� becomes

�
i=0

N

fi = 0. �A7�

Then �f+A · f= j implies f= ��I+A�−1 · j. Equation �A7�
means that the sum of the entries of the vector f is zero,
therefore we have

�
i=0

N

��I + A�−1 · 1 = 0, �A8�

because j�0. The left-hand side of �A8� is polynomial of
degree N in �, having therefore N zeros. For computational
purposes, it is better to rewrite the system �A6� and �A7� in
the form �f=B · f. This can be achieved adding the rows in
�A6� and using �A7�,

��
i=0

N

fi = �N + 1�j − �a0,0 + a1,0�f0 − �a0,1 + a1,1 + a2,1�f1 − ¯

�A9�

− ¯ − �ai−1,i + ai,i + ai+1,i�f i − ¯ − �aN−1,N + aN,N�fN = 0.

�A10�

Defining si=ai−1,i+ai,i+ai+1,i, i=1, . . . ,N−1, s0=a0,0+a1,0,
and sN=aN−1,N+aN,N, we have

j =
1

N + 1�
i=0

N

sif i, �A11�

and therefore

�
j

j

]

j
� =

1

N + 1�
s0 s1 s2 ¯ sN

s0 s1 s2 ¯ sN

] ] ] ]

s0 s1 s2 ¯ sN

��
f0

f1

]

fN

� , �A12�

which is of the form j= 1
N+1S · f. Substituting this expression

in �A6�, we obtain a matrix equation of the type �f=B · f,
namely

��
f0

f1

]

fN

� = � 1

N + 1�
s0 s1 s2 ¯ sN

s0 s1 s2 ¯ sN

] ] ] ]

s0 s1 s2 ¯ sN

�
−�

a0,0 a0,1 0

a1,0 a1,1 a1,2

� aN−1,N

0 aN,N−1 aN,N

���
f0

f1

]

fN

� .

�A13�

The matrix B is equal to the matrix S / �N+1�, except in its
three main diagonals, where bi,j =sj / �N+1�−ai,j,

��
f0

f1

]

fN

� =�
b0,0 b0,1 b0,2 ¯ b0,N

b1,0 b1,1 b1,2 ¯ b1,N

] ] ] � ]

bN,0 bN,1 bN,2 ¯ bN,N

��
f0

f1

]

fN

� .

�A14�

The �N+1�	 �N+1� matrix B has a zero eigenvalue �add its
rows�, and its other eigenvalues are the zeros of the polyno-
mial �A8�. They have been depicted in Fig. 10.
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