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The charge transfer from an adatom to a semiconductor substrate of one-dimensional quantum dot array is
evaluated theoretically. Due to the Van Hove singularity in the density of electron states at the band edges, the
charge transfer decay rate is enhanced nonanalytically in terms of the coupling constant g as g4/3. The optical
absorption spectrum for the ionization of a core level electron of the adatom to the conduction band is also
calculated. The reversible non-Markovian process and irreversible Markovian process in the time evolution of
the adatom localized state manifest themselves in the absorption spectrum through the branch point and pole
contributions, respectively.
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I. INTRODUCTION

Thanks to recent advances in nanotechnology, various
types of artificial low-dimensional semiconductor structures
have been fabricated.1 The quantum confinement of electrons
in these structures greatly modifies the density of states of
carriers resulting in complete different electronic and optical
properties from the bulk system.2,3 Recently one-dimensional
quantum wires and quantum-dot arrays have been manufac-
tured in various ways,1,4 and the formation of one-
dimensional minibands has been theoretically and experi-
mentally investigated.5–7 It has been found that the Van Hove
singularity of the density of state inherent with the one di-
mensionality causes a characteristic electronic transport.8,9

In this paper, we consider the charge transfer between an
adatom localized state and a one-dimensional miniband as-
sociated with a quantum wire or quantum-dot array. The
charge transfer between an adatom and a substrate semicon-
ductor has been extensively studied.10 We will show that the
low dimensionality greatly modifies the charge transfer pro-
cess from the adatom to the semiconductor quantum-dot ar-
ray due to the singularity of the density of states. The physi-
cal situation we consider in this paper is shown in Fig. 1�a�
where an adatom is attached to a semiconductor quantum-dot
array surface �hereafter we simply call it a superlattice�.

The charge transfer of an electron from adatom to the
miniband of the superlattice is caused by the hybridization of
the adatom wave function with the miniband which can be
described by the bilinear coupling between the adatom local-
ized state and the bound state of a single quantum dot in
which the adatom is situated. The situation may be described
by one-dimensional version of Newns-Anderson model
which has been extensively used to investigate the charge
transfer process between the adatom and the semiconductor
substrate.10,11 As shown below, the one-dimensional Newns-
Anderson model we consider here is equivalent to the
Friedrichs Hamiltonian which we have investigated in our
previous letter.12

In this recent letter we reported a vast increase in the
decay rate of an excited dipole molecule traveling in an one-

dimensionally confined electromagnetic waveguide when the
cutoff frequency of the waveguide is near the characteristic
frequency of the dipole.12 This vast increase is a direct con-
sequence of a singularity in the density of photon states at
the cutoff frequency. Due to this singularity, standard pertur-
bation analysis breaks down and hence one cannot apply
Fermi’s golden rule to evaluate the decay rate in the vicinity
of the singularity. We have shown that in this case the decay
rate of the excited dipole depends nonanalytically as g4/3 on
the coupling constant g. In the present article, we report that
the same nonanalytic enhancement of the decay rate �includ-
ing the g4/3 law� can be found in our system, despite the fact
that the density of electron states of the miniband of the
superlattice is different from the density of states of photon
states in a waveguide.

FIG. 1. �a� An adatom attached to a 1D quantum-dot array, and
�b� level structures of the adatom localized state and the bound state
in each quantum well. The width of each well is a few nm to
100 nm. The adatom is located at the n=0th well. The two optical
absorption transitions from the core level �c� with Tdc and T0c are
also shown by the arrows.
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Although the exponential decay law for the unstable state
has been observed ubiquitously in nature, quantum mechan-
ics predicts that there should be a deviation from the expo-
nential decay law for the unstable state.13 It has been shown
that, irrespective of any specific form for the interaction, the
time evolution of the surviving amplitude of an unstable state
deviates from the exponential law on short and long time
scales due to the existence of the lower bound on the energy,
i.e., the branch point effect. Wilkinson et al. have recently
succeeded in measuring the branch point effect in super-
cooled sodium atoms,14 even though the time scale in which
the deviation from the exponential decay law appears is very
short. Thus separation of the pole and branch point effects in
the time evolution of the unstable state is essential to our
understanding of the decay process, as has been done for a
system composed of an excited atom coupled to a radiation
field.15,16 The separation of the two effects is also useful
because the reversible non-Markovian process in the decay
process �due to the branch point effect� is directly related to
the quantum Zeno effect.17–20

Our goal is to present an actual experimental method that
enables us to separately evaluate the pole and branch point
effects for the decay process of the unstable state in this
system. In this article, we consider the optical absorption
process in which a core electron of the adatom with discrete
energy is transferred to the continuous conduction band. It
will be shown here that the spectral shape is influenced by
the Markovian process due to the pole effect and also by the
non-Markovian process due to the branch point effect.

The Friedrichs model presented here is equivalent to that
known as the Fano model which was originally developed to
explain the absorption spectrum for the autoionization pro-
cess in the He atom.22 It is well known that this absorption
spectrum has an asymmetric spectral profiles due to quantum
interference between different optical transition paths. The
appearance of the quantum interference indicates that the
quantum coherence, which is a source of the memory effect,
plays a key role in the decaying process of the excited state.
As will be shown in the present paper, since the branch point
effect which accounts for the non-Markovian decaying pro-
cess with a memory effect is intensified by the singularity in
the density of states, the absorption spectral profile provides
us with the information on the extent of the persistence of the
quantum coherence in the decaying process.

In Sec. II we present the model and show the nonanalytic
enhancement of the decay rate for the unstable state. We
decompose the absorption spectrum into contributions from
the pole and branch point effects in Sec. III. In Sec. IV we
summarize our results and provide some discussion.

II. MODEL AND NONANALYTIC ENHANCEMENT
OF DECAY RATE

We consider a one-dimensional �1D� semiconductor su-
perlattice with an adatom on the surface, as shown in Fig.
1�a�. The width of each potential well is a few nm to 100 nm.
One can make this device, for example, with GaAs/GaAlAs
heterostructures.1,5 The superlattice consists of N�1 identi-
cal quantum wells, and each well is assumed to have a single

bound state �ñ��ñ=−N /2 to N /2� of equal energy, where the
tilde is used to distinguish the site representation from the
wave number representation below. A miniband is formed in
the superlattice due to the electron tunneling through the
potential barrier.2,6,7,23 We assume only nearest neighbor tun-
neling occurs with a transition probability of −B

2 . The 1D
superlattice is then represented by the one-dimensional tight
binding model, and we have a continuous miniband of width
2B in the limit of N→�. In addition to the miniband we
consider an adatom localized state �d� with energy E0; we
also consider an inner core level �c� with energy Ec. Both of
these states are associated with the adatom impurity located
at the n=0 site. The adatom localized state �d� is hybridized

with the �0̃� state with coupling strength gB.
Taking �=1 hereafter, the electronic Hamiltonian HE is

then written as

HE = Ec�c��c� + E0�d��d� −
B

2 �
�m,n�

�m̃��ñ� + gB��d��0̃� + �0̃��d�� ,

�1�

where �¯� means taking nearest neighbor sum in Eq. �1�. By
introducing the wave number representation

�k� �
1

�N
�

n=−N/2

N/2

exp	ikn
�ñ� , �2�

we can rewrite HE in the form of the Friedrichs model

HE = Ec�c��c� + Ed�d��d� + �
k

Ek�k��k�

+
1

�N
�

k

gB��d��k� + �k��d�� , �3�

where Ek=−B cos k. Note that our Hamiltonian does not in-
volve the so-called counterrotating term as in the case of
matter-field interaction systems. Nevertheless this form is ex-
act, since the number of electron cannot change through the
interaction in the system. We impose periodic boundary con-
ditions, leading to k= 2�j

N , where j is an integer running from
−N
2 to N

2 . The energy dispersion relation gives a divergence in
the density of states at either band edge,

��Ek� =
1

�

1

�B2 − Ek
2

. �4�

For the 1D Friedrichs model, the electronic Hamiltonian
HE is diagonalized in terms of the so-called Friedrichs solu-
tion which results in the spectral representation21

HE = Ec�c��c� + �
i=1

2

Ei��i���i� + �
k

Ek��k
F���k

F� , �5�

where ��i��i=1,2� are two stable eigenstates with energies
Ei, and ��k

F� with energy Ek �where �Ek � �B� is given by
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��k
F� = �k� +

1
�N

gB

�+�Ek���d� +
1

�N
�

k���k�

gB

Ek − Ek� + i	
�k��� ,

�6�

with

1

�+�z�
= Gdd

+ �z� � �d�
1

�z − HE�+ �d�

=
1

z − E0 −
1

N
�k

g2B2

z − Ek
�+ , �7�

and a positive infinitesimal 	. The Green function Gdd
+ �z� is

analytically continued from the upper half complex Ek plane
to the lower half plane. Here, we do not write explicit forms
of ��i�, since we will not use them in this paper.21 In the limit
of N→�, the summation over the wave number turns to the
continuous integral, and then the self-energy term in Eq. �7�
reads


�z� �
1

N
�

k

g2B2

z − Ek
→

1

2�
�

−�

�

dk
g2B2

z − Ek

= �
−B

B

dEk��Ek�
g2B2

z − Ek
=

g2B2

�z2 − B2
. �8�

By substituting the right-hand side of Eq. �8� into �+�z�
and taking the square of the dispersion relation we obtain a
quartic equation in z. From the form of the quartic equation,
it is readily seen that the solutions are symmetric about the
origin E0=0. By applying the standard method for solving a
quartic equation, one can find the explicit solutions of the
dispersion equation �+�z�=0. The solutions consist of the

pole zd� Ẽ0− i� of Gdd
+ �z� in the lower half complex plane in

the second Riemann sheet corresponding to the unstable de-
caying state, and the poles on the real axis corresponding to
the stable states, Ei�i=1,2�. For illustration, we plot in Fig.

2�a� Ẽ0 and Ei for g=0.5 as a function of
E0

B with thick
dashed and solid lines, respectively. For arbitrary E0, there
always exist two stable solutions outside the electronic mini-
band. Note that there is a critical value E� at which the
unstable state with imaginary part ��0 appears. The un-
stable state exists for all �E0 � �E�, as indicated by the arrows
in Fig. 2�a�. In Fig. 2�b� we plot the decay rate �

B of the
unstable solution for g=0.1 as a function of

E0

B . The maxi-
mum value of �=�max occurs at E0= ±B.

Since the explicit form of the full solution is complicated,
we present an approximate calculation of the maximum
value �max of � at

E0

B = ±1 and the critical value E� of E0
where the unstable solution appears. To estimate �max we put
E0=B in the dispersion equation. After a simple manipula-
tion we obtain

� = 1 + �− 1�2/3 g4/3

�� + 1�1/3 , �9�

where �� z
B . The zeroth order solution �for g=0� is �=1. We

use this as our starting point and solve iteratively to find

�max

B
=

�3g4/3

24/3 +
g8/3

28/3�3
+ O�g16/3� , �10�

where the third order contribution �g4j/3 with j=3� vanishes.
To estimate E� near E0=B we put z=E0+gz1 where

�0 and z1 are unknown variables which are independent of
g. Then, by keeping only the predominant contribution to the
dispersion equation, we obtain

� − Ē0 �
g2

�Ē0 + 1�� − 1
, �11�

where Ē0�
E0

B . Squaring this equation yields

f��� = �� − Ē0�2�� − 1� −
g4

Ē0 + 1
� 0. �12�

The function f��� represents a cubic curve. By taking the
derivative of f��� and setting f����=0, we find the threshold

value of Ē0=
E�

B �1 at which the complex solutions of
f���=0 appear. This leads to the first two terms in the fol-
lowing expression for E�:

FIG. 2. �a� Ei /B and Ẽ0 /B vs E0 /B for g=0.5, which are shown
by the thick solid and dashed lines, respectively. The location of the
critical values ±E� /B are indicated by the arrows. The thin line is
y=E0 /B. �b� � /B vs E0 /B for g=0.1. The maximum value of
�max /B occurs at E0 /B= ±1.
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E�

B
= 1 +

3g4/3

2
−

g8/3

8
+ O�g12/3� . �13�

For precision, we have presented the second order correction
that is obtained from the exact solution of the original quartic
equation. The values of � and E� are nonanalytic in g for
g=0, and hence one cannot obtain these results from a series
expansion in g using ordinary perturbation analysis.

It should be noted that the g4/3 law for the decay rate is
rather universal around the edge of the continuous spectrum.
Indeed, if the integration over the wave number in the self-
energy is a Cauchy integral that is a double-valued function
on z, as is the case in Eq. �7�, then the edge of the miniband
will give a square root type of essential singularity in the
self-energy. In addition, if this singularity leads to a diver-
gence at the edge, one can show that the g4/3 effect appears
in the vicinity of the singularity. Indeed, this is also the case
for the dipole molecule traveling inside the waveguide men-
tioned above.12

In terms of the solutions of the dispersion equation ob-
tained here, we may evaluate the time evolution of the sur-
viving amplitude of the adatom localized state defined by
P�t����d �exp	−iHEt
 �d��2. Indeed, aside from the persistent
oscillation attributed to the two stable states, there are two
contributions to the time evolution of the surviving ampli-
tude; one comes from the pole contribution over the wave-
number integral, where the location of the pole is given by
the solution of the dispersion relation �+�Ek�=0 in the com-
plex Ek plane discussed above, and the other comes from the
two branch point contributions that are located at the edges
of the miniband at ±B. As usual, the pole contribution leads

to an exponential decay exp	−i�Ẽ0− i��t
, while the branch

point leads to a power law decay. If the condition 1−
�E0�
B

�g is satisfied, we have a well-separated time scale between
the exponential and power law decay in the decay process of
the localized state. The exponential law for the decay process
is thus a good approximation for a time scale on the order of
t� 1

� . However, once this condition is no longer fulfilled, the
time separation becomes obscure and we must take into ac-
count the branch point effects in the time evolution. It is,
however, a cumbersome task to evaluate the integral associ-
ated with the branch point in the time evolution. In the next
section, we will evaluate the optical absorption spectrum in-
stead, to separate the contribution of the Markovian effect
from the non-Markovian effect. It should be generally easier
in experiment to observe the absorption spectrum than a time
evolution of the state �d�.

III. ABSORPTION SPECTRUM

A. Spectral representation and the separation of the pole
and branch point contributions

Here we consider the optical absorption by a transition
from an inner core level of the adatom to the conduction
electronic states of the 1D semiconductor superlattice, as
shown in Fig. 1�b�. There are two optical transition paths
from the core level �c� with large transition amplitudes: One
is that from the core level �c� to the localized state �d� and the

other is from the core level �c� to the ñ=0 site �0̃�. The
transition probabilities are denoted by Tdc and T0c, respec-
tively. The contributions of the transitions to the other bound
states �ñ� are small, so we neglect the contributions in this
paper, though it is not difficult to include those effects.

We consider here a single mode of the optical light field
with frequency �. The total Hamiltonian is then written as

Htotal = HR + HE + HRE, �14�

where the electronic Hamiltonian HE is given in Eq. �3� and

HR = �a†a , �15a�

HRE = �Tdc�d��c� + T0c�0̃��c��a + H.c. �15b�

�T̂a + a†T̂†. �15c�

The HR represents a monochromatic light field where a�a†� is
the annihilation �creation� operator of the field, and HRE de-
scribes the interaction between the light field and the elec-
tronic system under the rotating wave approximation.

In the initial state of the absorption process, we have a
core electron in the �c� state and a single photon with energy
�; we write this initial state as �c ;1� with energy Ec+�,
where 1 denotes the photon number for the mode �. After
the absorption process the energy of the photon is transferred
to the electronic system. The final states then take the form
��i ;0��i=1,2� or ��k

F ;0�, with the energies Ei or Ek respec-
tively.

When the value of Ec+� falls in between −B and B, the
state �c ;1� is resonant with the electronic continuum ��k

F�. As
a result, the energy transfer from the light field to the elec-
tronic system occurs. Hereafter we take −Ec as the origin of
the light energy: �+Ec→�.

The decay rate of �c ;1� is then determined by the pole
location of the Green’s function for �c ;1� as

Gcc
+ �z� � �c;1�

1

	z − Htotal
+ �c;1� . �16�

The decay rate �abs��� is a function of �, and thus we iden-
tify the absorption spectrum as F�����abs���. In the weak
coupling limit of Tdc and T0c, the absorption spectrum F���
reduces to

F��� = − lim
	→0+

Im �
k

���k
F�T̂�c��2

� − Ek + i	
�17a�

=− lim
	→0+

Im �
k

���k
F��Tdc�d� + T0c�0̃���2

� − Ek + i	
.

�17b�

The matrix element in Eqs. �17� may be obtained by using
Eq. �6�,

�d��k
F� =

gB
�N

1

�+�Ek�
�18a�
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�0̃��k
F� =

1
�N

1 +

+�Ek�
�+�Ek�

� ,

=
1

�N

�Ek − E0�
�+�Ek�

, �18b�

where the self-energy 
+�z� is give in Eq. �8�.
Substituting Eqs. �18� into Eq. �17b�, we then have

F��� = − Im
1

N
�

k

1

� − Ek + i	

1

�+�Ek��−�Ek�

�Tdc
2 + T0c

2 �Ek − E0�2

g2B2 + 2TdcT0c
�Ek − E0�

gB
� ,

�19�

where �−�z� is analytically continued from the lower half
plane. As done in Eq. �8�, transforming the summation over
the wave number into the integral in the limit of N→�, the
explicit form of F��� is obtained as

F��� =
g2B2�B2 − �2

�B2 − �2��� − E0�2 + g4B4

�Tdc
2 + T0c

2 �� − E0�2

g2B2 + 2TdcT0c
�� − E0�

gB
� .

�20�

Now we shall decompose the absorption spectrum F���
into the pole and the branch point contributions. For this
purpose, we first rewrite F��� in terms of the contour inte-
gral by using the relation

1

2�
�

−�

�

dk . . . = �
−B

B

dEk��Ek� . . .

=
1

2�i
�

−B

B

dEk
1

g2B2 	�+�Ek� − �−�Ek�
 . . . ,

�21�

where¼ represents a function of k. By taking the limit of
N→� and applying these relations to Eq. �19�, F��� may be
cast into the form of a contour integral,

F��� = Im
1

2�i
�

�

1

� − Ek + i	

1

��Ek�
dEk, �22�

where the contour � is shown in Fig. 3�a�. As shown in
Fig. 3, the contour � can be deformed to that shown in Fig.
3�b�, where the cross denotes the pole location at Ek=zd

= Ẽ0− i�. Along �, the solid and dashed lines are in the first
and second Riemann sheets, respectively, so that ��Ek� takes
the corresponding value of �+�Ek� and �−�Ek� in Eq. �22�,
respectively.

In order to extract the pole contribution from Eq. �22�, we
evaluate the residue around the pole, and obtain

F0��� = Im
1

2�i
�

pole

dEk
1

� − Ek + i	

g2B2

�+�Ek�

�Tdc
2 + T0c

2 �� − E0�2

g2B2 + 2TdcT0c
�� − E0�

gB
�
�23a�

=− Im
Nd

� − zd
Tdc

2 + T0c
2 �zd − E0�2

g2B2 + 2TdcT0c
�zd − E0�

gB
� ,

�23b�

where Nd is given by

Nd
−1 =

d

dzz − E0 −
g2B2

N
�

k

1

�z − Ek�+�
z=zd

�24a�

=1 +
zd�zd − E0�

zd
2 − B2 . �24b�

Subtracting the pole contribution from Eq. �22�, we can write
the branch point contribution as

F1��� = Im
1

2�i
�

��
dEk

1

� − Ek + i	

1

��Ek�
, �25�

where the contour �� is depicted in Fig. 3�c�. The total ab-
sorption spectrum is then decomposed to F���=F0���
+F1���.

Though the exponentially decaying unstable state corre-
sponding to the pole in the second Riemann sheet cannot be
identified in the Hilbert space, it is possible to identify it
outside the Hilbert space. One of the authors �T.P.� et al.
have shown that the Friedrichs solution can be decomposed

FIG. 3. The contours of the integral for F��� Eq.�22� �a� and its
deformation �b�, and the integral for F0��� Eq. �23a� �c�.
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into the unstable state ��d� �and ��̃d�� and the dressed field

states ��k� �and ��̃k�� in the generalized Hilbert space24

�
k

��k
F���k

F� = ��d���̃d� + �
k

��k���̃k� . �26�

One can prove that this decomposition has one-to-one corre-
spondence with the F0 and F1 spectral components. It should
be noted that the factor Nd in Eqs. �24� is now recognized as
a normalization constant of the unstable decaying state so
that ��̃d ��d�=1, and then Nd= �d � �̃d���d �d�.

B. Fano profile

In order to clarify the enhancement of the branch point
effect due to the singularity of the density of states in the
absorption spectrum, we first show in Fig. 4 the calculated
results for an artificial situation with T0c=0. We take B
=1.0 and Tdc=1.0 in all calculations in the present work. In
Fig. 4, the results for g=0.2 are shown for �a� E0=−0.1 and
�b� E0=−0.98. Solid lines are the total absorption F��� cal-
culated by Eq. �20�, while the dashed and the chain lines are
the pole contribution F0��� in Eq. �23b� and the branch point
contribution F1��� in Eq. �25�, respectively. In Fig. 4�b�, the
spectra are magnified around ��−B, while the overall spec-
trum is shown in the inset.

When 1−
�E0�
B �g 	Fig. 4�a�
, the pole contribution F0���

is dominant in F���; the F1��� contribution is very small
except for the tiny increase around the band edges. In this

case, Nd�1 and �Ẽ0−E0��gB in Eq. �23b�, resulting in a

sharp Lorentzian spectrum of F0��� as shown in Fig. 4�a�.
The fact that F0��� is dominant in the entire energy region
of −B���B, suggests that the time evolution of the ada-
tom localized state almost completely obeys the exponential
decay law, i.e., the Markovian process is predominant, as
mentioned in the end of the previous section.

As E0 gets close to the band edge 	Fig. 4�b�
, the decay
rate of the unstable state is nonanalytically enhanced �as dis-
cussed in Sec. II� and the energy shift of �Ẽ0−E0� becomes
large due to the singularity in the density of states of the
miniband at the band edges, as shown in Fig. 2. Therefore
the spectral width of F0��� gets wider and the shift of the
peak position from E0 becomes visible as shown in Fig. 4�b�.
Furthermore, it is found from Eq. �24b� that the divergence
in the density of states enhances the second term in Eq.
�24b�, and thus Nd is largely reduced from 1 while Im	Nd

remains negligibly small. Consequently, the relative ratio of
the branch point contribution of F1��� to the pole contribu-
tion F0��� becomes larger than in Fig. 4�a�. As discussed at
the end of the previous section, the relative increase of the
branch point contribution indicates that the time separation
between the exponential and the power law decays becomes
obscure in the time evolution of the surviving amplitude.
Therefore, the non-Markovian process with memory effect
becomes significant, which maintains the quantum coherence
in the decaying process. The reduction of Nd�=�d � �̃d�
���d �d�� also indicates that the unstable state ��d� �or ��̃d��
contains a larger contribution from the electronic continuum
components of �k�. This suggests that the contribution of the
continuum to the dressing cloud is more significant. As
shown below, the persistence of quantum coherence in the
decay process, or the large dressing effect, manifests the
quantum interference between the different optical transition
paths once the other absorption transition T0c is introduced.

Next we consider the actual case in which both optical
transition paths are allowed: T0c�0 and Tdc�0. We show in
Fig. 5�a� the calculated results of F��� for the same param-
eters as in Fig. 4�a� except that T0c=1.0 here. The pole con-
tribution F0��� and the branch point contribution F1��� are
shown in Figs. 5�b� and 5�c�, respectively. All these spectra
are depicted by the solid lines. In each panel, the spectra are
further decomposed into the spectral components due to the
first, second, and the third terms in 	¼
 of Eq. �20� or Eq.
�23b�. These terms are attributed to the d-d diagonal compo-

nent, 0̃-0̃ diagonal component, and the interference term be-
tween these two in Eq. �17b�. These are shown by the bro-
ken, dotted, and chain lines, respectively.

Introduction of T0c changes the symmetric Lorentzian
spectral shape of F��� shown in Fig. 4�a�, and yields an
asymmetric spectral shape around ��E0 shown by the solid
line in Fig. 5�a�. As seen from Fig. 5�a�, this is caused by the
interference term of Eq. �20� shown by the chain line in the
figure. Around �� ±B the F��� shows a sharp rise which
reflects the divergence in the density of states, though F���
remains finite around �� ±B and F�±B�=0. It can be seen
in Fig. 5�b� that F0��� is the dominant contribution to F���
for ��E0 and we see that the antisymmetric spectral shape
of the interference component of F0��� �chain line� is the

FIG. 4. The calculated F��� �solid line�, F0��� �dashed line�,
and F1��� �chain line� for g=0.2, and Tdc=1.0 and T0c=0: �a� E0

=−0.1B and �b� E0=−0.98B. The thin vertical lines indicate the
position of E0. In �b�, the horizontal axis is expanded around ��
−B, while the overall spectrum is shown in the inset.
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origin of the asymmetry in F���. In fact, neglecting Im	Nd

in Eqs. �23�, which is appropriate except for �E0��B, the
interference term in F0��� is approximately given by

F0
inter��� =

2TdcT0c

gB
Re	Nd
�

�� � − Ẽ0

�� − Ẽ0�2 + �2
+

Ẽ0 − E0

�� − Ẽ0�2 + �2� .

�27�

When the condition 1−
�E0�
B �g is satisfied, it holds that

Re	Nd
�1 and Ẽ0−E0�1. As a result, only the first term of
Eq. �27� contributes to F0

inter 	Fig. 5�b�, chain line
, leading to
the antisymmetric spectral shape of the interference compo-
nent of F0���. The asymmetric spectral shape obtained when
the branch point effect is neglected is represented by the
well-known Beutler-Fano profile.22

However when E0 lies close to the band edges, �Ẽ0−E0�
becomes large, the second term of Eq. �27b� can no longer be
neglected, which increases the interference component of
F0��� compared to the d-d diagonal component. We show in

Fig. 6 the calculated results for the same parameters as in
Fig. 4�b� where E0=−0.98B, except that we take Tdc=1.0. As
seen in Fig. 6�b� the interference component of F0��� �chain
line� is enhanced compared with that in Fig. 5�b�. As men-
tioned above, in this case quantum coherence plays a key
role in the decay process, which is clearly reflected through
the enhancement of the interference effect in the absorption
spectrum.

IV. SUMMARY AND DISCUSSIONS

In the present work, we have evaluated the charge transfer
rate from an adatom impurity on a 1D semiconductor super-
lattice. The decay rate is dramatically enhanced due to two
square root forms of singularities in the density of states. In
the vicinity of the singularities at either edge of the band
spectrum, the decay rate becomes a nonanalytic function of
the coupling constant g at g=0 as it can only be expanded in
powers of g4/3. The time evolution of the localized adatom
state is governed by the pole and branch point contributions
to the decay rate, which account for the exponential and
nonexponential decay, respectively.

We have demonstrated that the absorption spectrum from
the inner core level of the adatom to the conduction states is

FIG. 5. �Color online� The calculated F��� �a�, F0��� �b�, and
F1 �c� for the same parameters for Fig. 5�a� except T0c=1.0: The

spectra are decomposed into the d-d diagonal �dashed line�, 0̃− 0̃
diagonal �dotted line�, and the interference terms �chain line�.

FIG. 6. �Color online� The parameters here are the same as in
Fig. 5�b� except that T0c=1.0.
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an appropriate probe to observe both contributions. While
the branch point effect is usually small, it becomes important
when the adatom localized state is resonant with the mini-
band of the 1D superlattice in the vicinity of the singularity
in the density of states. In the case where the branch point
effect is significant, the quantum coherence in the decay pro-
cess becomes exaggerated. This explains the enhancement of
the quantum interference in the absorption spectrum.

The advantage of using the semiconductor superlattice is
that it is easy to vary the parameters in an electronic system.
Using modern nanotechnology, we can vary the parameter
values widely, in order to systematically investigate the ef-
fect on the decay process. Other spectroscopic techniques,
such as the resonant optical light scattering spectrum, may

also be used to investigate the time evolution of the unstable
state in detail, which we are now studying.
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