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We have described electron spin dynamics in the presence of the spin-orbit interaction and disorder using the
spin-density matrix method. Exact solution is obtained for an arbitrary two-dimensional spin-orbit Hamiltonian
and arbitrary smoothness of the disorder potential. Spin current depends explicitly on the disorder properties,
namely the smoothness of the disorder potential, even in the ballistic limit when broadening by scattering is
much smaller than the spin-orbit-related splitting of the energy spectrum. In this sense, universal intrinsic spin
current does not exist.
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I. INTRODUCTION

Spin-orbit coupling brings about a number of interesting
effects, one of which is generation of a spin flux in the plane
perpendicular to the charge current direction. This phenom-
enon occurs in the paramagnetic system and has been very
well known for quite a long time, see Ref. 1. It results from
the fact that in the presense of spin-orbit coupling, the scat-
tering by impurities has an asymmetric character.2 Extrinsic
contribution exists only beyond the Born approximation in
the scattering amplitude and leads to an accumulation of the
spin density near the sample surface.1

It has been recently claimed3,4 that an analogous phenom-
enon can exist even without scattering by impurities, i.e., in
the ballistic regime, the corresponding contribution being
called intrinsic. Later several papers appeared in which the
effect of scattering by impurities was taken into account for
the Rashba model,5–10 besides, the extrinsic contribution was
described11,12 to explain the recent experiment done by Aw-
schalom’s group,13 see also Ref. 14.

Here we study the dependence of the intrinsic contribu-
tion to the spin current on the form of the Hamiltonian and
properties of the disorder potential using the spin-density
matrix method.15 We have considered an arbitrary Hamil-
tonian, for example the generalized two-dimensional �2D�
Rashba Hamiltonian with an arbitrary momentum depen-
dence of the spin-orbit term or the 3D Luttinger Hamil-
tonian, and the arbitrary smoothness of the disorder poten-
tial. In the case of the generalized 2D Rashba model and the
arbitrary smoothness of the disorder potential, an exact solu-
tion for spin current in the ballistic limit ���1 is obtained,
where � is the spin splitting of the electron spectrum and � is
the transport scattering time. Spin current depends explicitly
on the disorder properties, namely the smoothness of the
disorder potential, even in the ballistic limit. In this sense,
universal intrinsic spin current does not exist. The problem
of 2D holes with the p3 spin-orbit term has been numerically
considered recently by several groups.16,17 Analytically it
was studied in Ref. 18 for the �-scattering case. The case of
the arbitrary smoothness of the disorder potential has been
analytically considered very recently in Refs. 19–21; some
results were also reported in Ref. 22. Below we will compare
the results obtained here with those from Ref. 20. I also refer

the reader to the introductory part of that paper where a
complete list of references on spin current is presented.

II. SPIN CURRENT, KINETIC EQUATION

A. Hamiltonian

We consider the generalized 2D Rashba model, which can
be applied, for instance, for the case of 2D holes. The Hamil-
tonian of the problem is

H�p̂� =
p2

2m
+

�pN

2
�� · �� �p�, 	M�p� =

p2

2m
+ M�pN, �1�

where � is the spin-orbit coupling constant, �x=cos�N
�,
�y =sin�N
�, �z=0, 	M�p� are the eigenvalues, and
M = ±1/2 are the helicity values. The eigenfunctions are

�Mp = �
�=±1/2

D�M
�1/2���� �u� = �

�=±1/2
e−i�N
d�M

�1/2��

2
�u�,

where D�M
�1/2���� � is the rotation matrix,2 
 is the angle of p, N

is the winding number, and u� is the eigenfunction of the �̂z
operator.

B. Spin current

We will calculate the qyz component of the spin current.
This quantity is defined as

qyz = �sEx

= Tr� d2p

�2�2 f̂�p�
1

2
�ŜzV̂y + V̂yŜz�

= −
1

2
� d2p

�2�2

py

m
�f+−�p� + f−+�p�� . �2�

Here f̂�p� is the Wigner spin-density matrix, V̂y is the y com-

ponent of the velocity operator, and Ŝz= �1/2��̂z is the spin
operator. The last expression in Eq. �2� is given in the helic-
ity basis. The different components of the spin-density ma-
trix have the following relations to the average spin compo-
nents:
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	Sz
 � �f+− + f−+� ,

	S� · �n� · �� �
 � �f+− − f−+� ,

	S� · �� 
 � �f++ − f−−� , �3�

where n is the unit vector normal to the 2D plane �z axis�.

C. Kinetic equation

The general expression for the quantum kinetic equation
in the case of spin-orbit interaction, when the Hamiltonian
and the Wigner distribution function are matrices over the
spin indexes, was derived, for example, in Refs. 15 and 19.
In our case, this equation is simple and reads

� f̂�p�
�t

+ eE
� f̂�p�

�p
+

i

�
�H�p̂�, f̂� = St� f̂�p�� . �4�

Here e is the charge of the carriers. The last term on the
left-hand side is the commutator and the expression for the
collision term is given below. Now we write Eq. �4� in the
helicity basis where the Hamiltonian is diagonal. When do-
ing that, we should take into account the fact that eigenfunc-
tions �Mp depend on the direction of the momentum p, thus

the matrix elements of the derivative � f̂ /�p in this basis do
not coincide with the quantities �fMM� /�p,

� � f̂

�p
�

MM�
=

�fMM�

�p
−

i

�
�â, f̂�MM�, aMM� = i��Mp

�
��M�p

�p
.

We see that there appears the commutator of the vector ma-

trix â with f̂ . Thus for Eq. �4� in the linear response regime
�E x�, we obtain

eE cos 

�fMM

�0�

�p
�MM� −

iN

2

sin 


p
eE�fM�M�

�0� �p� − fMM
�0� �p��

+
i

�
�	M�p� − 	M��p��fMM��p� = St� f̂�p��MM�. �5�

Here fMM
�0� �p� is the equilibrium Fermi function correspond-

ing to the helicity value M. The collision term in the helicity
basis has the form19,23

St� f̂�p��MM� =� d2p1

�2��2 �
M1M1�

���„	M1
�p1� − 	M�p�…

+ �„	M1�
�p1� − 	M��p�…�KM1M1�

MM� ��pp1
�

· fM1M1�
�p1� − �„	M1

�p� − 	M1�
�p1�…

��KM1�M1�
MM1 ��pp1

� · fM1M��p�

+ fMM1
�p� · KM1�M1�

M1M���pp1
��� , �6�

where the kernel in the Born approximation in the scattering
amplitude is

KM1M1�
MM� ��pp1

� =


�
�U�p − p1��2 · niDMM1

�1/2� ��pp1
�DM�M1�

�1/2����pp1
� .

�7�

Here ni is the 2D impurity density and U�p−p1� is the Fou-
rier component of the impurity potential. The quantities
DMM1

�1/2� ��pp1
� depend only on the scattering angle �=
−
1,

D1/2,1/2
�1/2� = D−1/2,−1/2

�1/2� = cos�N�/2� ,

D1/2,−1/2
�1/2� = D−1/2,1/2

�1/2� = − i sin�N�/2� . �8�

III. SOLUTION

In this paper, we consider only the case of small spin-orbit
splitting, � /EF�1, �=�pF

N, and we will be keeping only the
terms linear in this small parameter. Note that expanding Eq.
�6� with respect to this parameter, for the collision term in
the spin basis we obtain the expression that is identical to
that given by Eq. �23� of Ref. 19. We will be solving the
problem in the helicity basis, which is much more conve-
nient and the solution can be obtained much easier. More-
over, we will consider only the ballistic case, ��� /�, when
one expects the intrinsic value for the spin current. In the
case when the impurity potential has azimuthal symmetry, it
is possible to obtain a solution for the scattering potential
with an arbitrary correlation length R. The most simple cases
correspond to the following situations: �i� m�̃ /��1/R, �ii�
1/R�m�̃ /�, �̃=�pF

N−1; � /m�̃ is the spin-orbit length. We
will see that these two cases correspond to different answers
for the spin current. The first case means a relatively short-
ranged potential and was considered in Refs. 19 and 20. Note
that it includes the limit of small-angle scattering when
m�̃ /��1/R�kF.

As we consider the ballistic case here, ��� /�, the prob-
lem can be greately simplified, namely, in the collision term,
Eq. �6�, we can neglect all the nondiagonal components of
the spin-density matrix since only diagonal components can
be proportional to �, which follows from Eq. �5�. Moreover,
since on the left-hand side of Eq. �5� there are only the first
harmonics of the angle, the following solution obeys the sys-
tem of Eqs. �5� and �6�:

f++�p� = f++�p�cos 
, f−−�p� = f−−�p�cos 
 , �9�

f+−�p� = f+−�p�sin 
, f−+�p� = f−+�p�sin 
 . �10�

It can be immediately seen from Eq. �6� with help from the
fact that the scattering kernel

W��� =
ni

2�3 �U����2, U��� = U��p1
� − p� ��

= U��p2 + p1
2 − 2pp1 cos �� �11�

is the even function of the scattering angle �. Indeed, from
Eqs. �5� and �6� we obtain
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eE
�f+

�0�

�p
=

a1p

V+�p�
f++�p� −

p+

V−�p+�
�a2f++�p� − a3f−−�p+��

− m2�̃� d�

2

dW���
dp

sin2�N�

2
���1 − cos ��

�f++�p���=0, �12�

eE
�f−

�0�

�p
=

a1p

V−�p�
f−−�p� +

p−

V+�p−�
�a3f++�p−� − a2f−−�p��

+ m2�̃� d�

2

dW���
dp

sin2�N�

2
���1 − cos ��

�f++�p���=0, �13�

iN
eE

p
�f+

0 − f−
0� +

i

�
�	+ − 	−��f+−�p� + f−+�p��

= + ia4� p

V+�p�
f++�p� −

p

V−�p�
f−−�p�

+
p−

V+�p−�
f++�p−� −

p+

V−�p+�
f−−�p+��

− im2�̃� d�

2

dW���
dp

�sin � sin�N��f++�p���=0.

�14�

In writing these equations, we used Eqs. �8�. The coefficients
ai in the above equations are given by the expressions

a1 =� d�

2
W����cos � − 1��1 + cos N�� ,

a2 =� d�

2
W����1 − cos N�� ,

a3 =� d�

2
W���cos ��1 − cos N�� ,

a4 =� d�

2
W���sin � sin N� ,

a5 =� d�

2
W����1 − cos �� . �15�

Note that here the scattering angle has an arbitrary value and
is not assumed to be small. f+

0�p� , f−
0�p� are the equilibrium

Fermi functions, which correspond to the helicity �; V±�p�
= p /m±N�̃ /2 are the velocity values for a given p for �
bands. The other quantities entering Eqs. �12�–�14� are de-
fined in the following way:

p± = p ± m�̃, V−�p+� =
p

m
−

�̃

2
�N − 2� ,

V+�p−� =
p

m
+

�̃

2
�N − 2�, �̃ = �pF

N−1. �16�

The quantities V−�p+�, V+�p−� are the velocities in the bands
�, � for the momenta p+, p−; see Fig. 1. These values of the
momenta are connected in Eqs. �12�–�14� because of the en-
ergy conservation under the elastic scattering. In writing Eqs.
�16�, we took into account that m�̃� pF, where pF is the
Fermi momentum.

Equations �12�–�14� are written for a given value of p. We
see that the elastic scattering by impurities leads to admix-
ture of the spin-density matrix components, which corre-
spond to p+, p− values of the momentum. Different combi-
nations of the ratio of the momentum and the velocity values
like p /V+�p� or p+ /V−�p+� are just different density of state
values corresponding to different points in the momentum
space involved in the transitions; see Fig. 1. From the form
of the coefficients in Eq. �15�, we see that different terms in
Eqs. �12�–�14� have a simple physical meaning, namely, they
are just “transport” kinetic coefficients multiplied �weighted�
by the corresponding overlap factors sin2�N� /2�,
cos2�N� /2�, or sin�N� /2�cos�N� /2� depending on the type
of transition, i.e., whether it is intraband or interband scatter-
ing; see Eq. �8� and Fig. 1. The very last term on the right-
hand side in each of the equations �12�–�14� has a somewhat
different origin. We can see that the scattering transitions
within the band �� or �� and between the bands correspond
to different values of the p1 momentum entering the kernel of
the collision term, see Eq. �11�. In the case of the intraband
transitions p1= p, while for the interband transitions its value
is either p+ or p−. Thus, in the linear order with respect to �̃
we obtain

W�p → p±� − W�q� = ±
dW�q�

dp

m�̃

2
,

W�q� = W�2p�sin
�

2
�� . �17�

Note that the quantity W�q� is the value of the scattering
kernel for the case of intraband transition when the modulus
of the momentum is conserved, p1= p, and the modulus of
the transferred momentum is q=2p�sin � /2�. Hence, we have
taken into account the correction to W��� in the correspond-
ing terms of Eqs. �12�–�14�, keeping only the correction of

FIG. 1. Schematics of the � energy bands. Momenta p , p± , pF
±

are shown; see the text.
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the first order in �, i.e., all the prefectors in the terms that
already contain the derivative dW�q� /dp are taken at �=0.
See, for example, the last term in Eq. �12�, where we also
used the fact that at �=0, f++�p�= f−−�p�, and is given by Eq.
�21�; see below.

All the quantities entering Eqs. �12�–�14� can be ex-
pressed through the corresponding values at p. Writing Eqs.
�12� and �13� for the momenta values p±, and using the re-
lations

� �f+
0�p�
�p

�
p=p−

=
�f−

0�p�
�p

V+�p−�
V−�p�

, � �f−
0�p�
�p

�
p=p+

=
�f+

0�p�
�p

V−�p+�
V+�p�

,

we obtain

f−−�p+� = f++�p��1 −
m�̃NC

Ap
� −

�m�̃f++�p���=0

2A

da1

dp

−
�̃Ẽ

2Ap
�N − 1� ,

f++�p−� = f−−�p��1 +
m�̃NC

Ap
� +

�m�̃f++�p���=0

2A

da1

dp

+
�̃Ẽ

2Ap
�N − 1� , �18�

where Ẽ is given by Eq. �21� and A ,C are expressed through
coefficients ai by the formulas A= �a1−a2−a3� /2,
C=a1+a5,

A =� d�

2
W����cos � cos N� − 1� ,

C =� d�

2
W����cos � − 1�cos N� . �19�

While deriving Eqs. �18�, we used the expansions

W�p− → p−� = W�q� − m�̃
dW�q�

dp
,

W�p+ → p+� = W�q� + m�̃
dW�q�

dp
, �20�

where the right-hand side of these equations is written for the
momentum value p. Note the difference in the coefficients in
Eqs. �20� compared to Eq. �17�. Using the equation

��f++�p� + f−−�p����=0 = −
Ẽ

ma5
, Ẽ = eE

�f0

�p
, �21�

which can be easily found from Eqs. �12� and �13�, with
f0 being the equilibrium Fermi function at �=0, we find
the final expression for the quantity in question,
�f+−�p�+ f−+�p��, in the case m�̃ /��1/R,

N
eE

p
�f+

0 − f−
0�

+
m�̃Ẽ

2a5
�a4

A
�da1

dp
+

2N

p
a2 −

2�N − 1�
p

a5� −
da4

dp
�

= −
�	+ − 	−�

�
�f+−�p� + f−+�p�� , �22�

where ai are defined by Eq. �15�.

A. Some limiting cases

Let us check some limiting cases from Eq. �22�.
�i� We start with the simplest case of the �-correlated

potential, when scattering is isotropic, i.e., W��� is a con-
stant. Then at N�1, the coefficient a4=0, and from Eq. �22�
we immediately obtain a simple result,

NeE

p
�f+

0 − f−
0� −

m�Ẽ

p
�N,1 = −

�	+ − 	−�
�

�f+−�p� + f−+�p�� .

�23�

With the help of Eqs. �2� and �10� for the spin conductivity at
N�1, we obtain

�s = −
eN

8�
. �24�

Note that this result also follows trivially from the diagram-
matic calculations since the vertex correction is identically
zero. It happens because of a very simple reason, namely, the
vector vertex contains the first harmonics but the Green’s
functions contain only the third one �at N=3�, and their over-
lap is zero, as it happens here with the coefficient a4.

�ii� N=1. We know5–10 that in this case for an arbitrary
scattering �not necessarily small angle or isotropic�, we
should obtain a zero value for qyz. Indeed, in this case we
have a4=−A, a1=−a4, a2=a5, and from Eq. �22� we easily
obtain

eE

p
�f+

0 − f−
0� −

m�

p
eE

�f0

�p
= −

�	+ − 	−�
�

�f+−�p� + f−+�p�� .

�25�

Expanding the first function on the left-hand side of this
equation with respect to �, we obtain a zero value for the
spin current.

�iii� Now consider the small-angle scattering case, ��1.
Then from Eq. �22� it follows that

NeE

p
�f+

0 − f−
0� −

m�̃Ẽ

p

2N�N3 − N + 1�
�N2 + 1�

− N
�N2 − 1�
�N2 + 1�

m�̃Ẽ
1

a5

da5

dp

= −
�	+ − 	−�

�
�f+−�p� + f−+�p�� . �26�

Finally, we need to calculate the quantity �1/a5��da5 /dp� in
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the limit of small-angle scattering. For this quantity, we ob-
tain

1

a5

da5

dp
=

1

p

�
0

� dq

2

�W�q�
�q

qq2

�
0

� dq

2
W�q�q2

= −
3

p
, �27�

where q= p���. With the help of Eq. �27�, we finally obtain
for the spin conductivity

�s = −
eN

8�
�1 +

�− 5 + 2N − 2N3 + 3N2�
�N2 + 1� �

=
eN

4�

�N2 − 1��N − 2�
�N2 + 1�

. �28�

The first term �unity� inside the square brackets originated
from the first term on the left-hand side of Eq. �26�. The
result we obtain, i.e., Eq. �28�, coincides exactly with the
corresponding result of Ref. 20.

�iv� Finally, we consider the case of a very smooth scat-
tering potential when the impurity radius obeys the inequal-
ity 1 /R�m�̃ /��kF.22 Physically, it means that elastic tran-
sitions between different bands �with opposite helicity� are
forbidden since the quantity W���, see Eq. �11�, is exponen-
tially small for these transitions. Then in Eqs. �12�–�14� we
should drop all the terms containing p± quantities �and also
derivatives dW /dp�, and with the use of the fact that in the
case considered ��1, the final result reads

eEN

p
�f+

0 − f−
0� + NeE� �f+

0

�p
−

�f−
0

�p
�

= −
�	+ − 	−�

�
�f+−�p� + f−+�p�� . �29�

Integrating in Eq. �2� between the points pF
± = �m�̃ /2+ pF,

see Fig. 1, we obtain for the spin conductivity

�s = −
eN

8�
�N − 1� , �30�

which for N=3 is twice as large compared to the �-scattering
case.22

IV. CONCLUSION

In conclusion, we have studied how intrinsic spin current
depends on the form of the Hamiltonian and the scattering
potential properties. As an example, we have investigated the
generalized 2D Rashba model when the spin-orbit term con-
tains an arbitrary dependence on the electron momentum. We
have found an exact analytic solution for the intrinsic spin
current in the ballistic limit, when spin-orbit splitting is
much larger than the disorder-induced broadening. In con-
trast to the case of a common, linear in momentum Hamil-
tonian, the intrinsic current does not necessarily vanish.
However, even in the ballistic limit indicated above, its value
depends explicitly on the disorder properties. More precisely,
the result, being independent of the spin-orbit coupling con-
stant, is different for a different correlation radius of the dis-
order potential. The situation is similar for the other Hamil-
tonians. For example, we have also studied this problem for
the Hamiltonian of 3D holes.24 In the diagrammatic lan-
guage, it means that even in the ballistic limit the vertex
correction is always as important as the contribution of the
empty loop and physically it is not correct to consider them
separately. In this sense, universal intrinsic spin current does
not exist.
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