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We apply the envelope function approach to abrupt heterostructures starting with the least-action principle
for the microscopic wave function. The interface is treated nonperturbatively, and our approach is applicable to
mismatched heterostructure. We obtain the interface connection rules for the multiband envelope function and
the multiband heterostructure Hamiltonian from the k ·p version of the variational principle. The k ·p hetero-
structure Hamiltonian contains the short-range interface terms which consist of two physically distinct contri-
butions. The first one depends only on the structure of the interface, and the second one is completely
determined by the bulk parameters. We discover new structure inversion asymmetry terms and new magnetic
energy terms important in spintronic applications.
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I. INTRODUCTION

The envelope function method is a powerful tool which
has been widely used to describe and predict various effects
in semiconductors. It is normally applicable to materials with
translation invariance �allowing for the expansion of the
wave function into Bloch functions� and to slowly varying
potentials. There are two competing approaches to extending
this method to abrupt heterostructures1 taking into account
interface-related effects. The first one is to impose appropri-
ate boundary conditions �interface connection rules� on the
envelope wave function at the interface.2–6 Another possibil-
ity is deriving the exact envelope function differential equa-
tions which are valid near the interface and which contain the
interface-related terms.7–9 The second approach is more de-
tailed, and it requires a lot more information on the micro-
scopic structure of the interface. Up to now, it has only been
applied to the lattice-matched heterostructures where the in-
terface is considered as a small perturbation of a reference
periodic crystal �see Ref. 7 for details and review�. In this
case, it has been shown1 that connection rules and differen-
tial equations are equally valid representations of the inter-
face behavior.

In this paper, we present an extension of the envelope
function method which allows to construct the heterostruc-
ture Hamiltonian without treating the interface as a small
perturbation. It turns out that the best approach to the prob-
lem is via the Lagrangian variational principle which en-
codes the Schrödinger equation. The advantage of this
method is that both the Hamiltonian and the boundary con-
ditions at the interface are contained in the averaged varia-
tional functional. The resulting k ·p heterostructure Hamil-
tonian coincides with the ordinary k ·p Hamiltonians on two
sides of the interface. In addition, it contains short-range in-
terface �SRI� terms which are the main subject of our study.
We show that the SRI terms consist of two physically distinct
contributions. The first one is represented by the Hermitian
interface matrix. Its components are directly connected to the
boundary conditions for the envelope functions2 and they are
determined by the microscopic structure of the interface. The

second contribution is completely determined by the bulk
parameters of the materials. It includes new structure inver-
sion asymmetry �SIA� terms and new SRI magnetic terms
that are additional to the well-known Rashba SIA terms and
to the macroscopic magnetic terms, respectively. Taking
them into account is important for various mechanisms of
spin polarization, spin filtering, and spin manipulation which
play a key role in semiconductor spintronic applications.10

The paper is organized as follows. In Sec. II we introduce
the k ·p variational principle, derive the k ·p heterostructure
Hamiltonian and the boundary conditions at the interface. In
Sec. III we illustrate our method by several examples. Sec-
tion IV is devoted to the effects of the external magnetic
field. We summarize the results in Sec. V.

II. DERIVATION OF THE k ·p VARIATIONAL PRINCIPLE

In this section we consider a model of a semiconductor
heterostructure made of two homogeneous semiconductor
layers A and B of characteristic length L. The layers are
joined by a thin boundary region � of the width d�aA ,aB
�L �see Fig. 1�, where aA�aB� is the lattice constant in the
bulk material A�B�, respectively. We work in the single elec-
tron approximation, and we denote by U�r� the effective po-

FIG. 1. Sketch of the planar heterointerface between A and B
semiconductor layers. � denotes the boundary region. UA�UB� is
the crystal potential in A�B�.
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tential for electrons. U�r� coincides with periodic crystal po-
tentials UA,B�r� inside the bulklike regions A and B,
respectively. To focus on the effects caused by the abruptness
of the interface, we do not include any additional long-range
interface-induced potentials in our microscopic model.

We start with the microscopic Lagrangian variational
principle which encodes the stationary single electron
Schrödinger equation. The corresponding Lagrangian density
is of the form,

L��*,�� = �E − U�r�����r��2 −
�2

2m0
����2. �1�

Here m0 is the free electron mass and � is the microscopic
spinor wave function. To simplify the presentation we first
neglect the spin-orbit terms in Eq. �1�. The variational prin-
ciple reads,

�S = ��
�

d3rL��*,�� = 0, �2�

where �� and ��* are independent variations which vanish
at the outer boundaries of the integration region �=A+�
+B. The variational principle implies the microscopic

Schrödinger equation Ĥmicro��r�=E��r� with the Hamil-

tonian Ĥmicro= �p̂2 /2m0+U�r��, where p̂=−i�� is the mo-
mentum operator. The microscopic probability flux density
j= ��*�r�p̂��r�+ p̂*�*�r���r�� /2m0 is conserved: �j=0, the
microscopic wave function � is continuous everywhere in
the heterostructure.

It is our aim to pass from the description in terms of the
microscopic wave function � to the envelope function ap-
proximation. To this end, we use expansions ��r�
=��n

A,B�r�un
A,B within two bulklike regions A and B, respec-

tively. Here the Bloch functions at extremum points of the
bulk energy band structure un

A,B represent the complete basis
in A and B, respectively, and the envelope functions �n

A,B�r�
are smooth in the A and B regions. We do not define any
basis functions and do not use any expansion for � in the
boundary region �. We restrict the k ·p approximation by
direct consideration of NA �NB� components of the envelope
function, which satisfy matrix Schrödinger equations

ĤA,B�k̂��A,B�r� = E�A,B�r� �3�

in A �B� regions. Here ĤA,B= Ĉ+�B̂	k̂	+�2D̂	
k̂	k̂
 are the
standard k ·p Hamiltonians including the terms up to the sec-

ond order in the wave vector operator k̂=−i�. The matrices

Ĉ, B̂	, and D̂	
 �	 ,
=x ,y ,z� are Hermitian NA,B�NA,B ten-

sors of rank 0, 1, and 2, respectively. The Hamiltonians ĤA,B

give a direct description of the NA,B basic bands as well as
the contributions of other remote bands in the second order
of perturbation theory.11 We assume that the NA �NB� solu-
tions of Eq. �3� give a satisfactory description of the bulk
energy structure of A �B� material in the range of energies E
that is of interest to our heterostructure problem. Note that
symmetry of the materials and the number of basic bands NA,
NB in the k ·p approximation can be different on two sides of
the interface. Moreover, parameters of bulk Hamiltonians

ĤA,B can vary significantly across the interface which cannot
be treated as a weak perturbation of the bulk problem.

In order to derive the k ·p version of Lagrangian varia-
tional principle, we represent the variation of the action
�S���*� as �S=�SA+�SB+�S�, where �SA,B

=�	A,Bd3rL��* ,��=�	A,Bd3rLA,B��* ,�� and �S�

=�	�d3rL��* ,��. The bulk multiband Lagrangian densities
LA,B��* ,�� are obtained from the microscopic Lagrangian
by averaging over the unit cells in A and B, respectively,
with taking into account the direct interaction of the NA,B
basic bands and the contributions of other remote bands in
the second order of perturbation theory. They have the form:

L��*,�� = E���2 − �*Ĉ� −
�2

2
�	�*Â	
�
�

−
i�

2
���*B̂� − �*B̂ � ��

+
�2

2
� �* · �K̂ Ã ��� . �4�

Here Â	
= D̂	
+ D̂
	, K̂�=�	
D̂	
, � ,	 ,
=x ,y ,z and xyz
is Levi-Civita anti-symmetric tensor.

Let us first focus on the contribution of the boundary re-
gion �. Integrating by parts �S� we arrive at

�S����*� = − �
�

d3r���*�Ĥmicro − E��� + �Ssur��� ,

�5�

Ssur =
�2

2m0
� d2���*�A����A� − �*�B����B�� . �6�

Here �= �y ,z�, ��=� ·��, where � is the normal vector to
the interface, and ��B�=��b ,�� and ��A�=��−a ,�� are the
values of � at the edges x=b and x=−a, respectively, of the
boundary region � �see Fig. 1�. As the microscopic function
� is an exact solution of the microscopic Schrödinger equa-
tion in � we have �S�=�Ssur. Using a microscopic transfer
matrix model12 one can express Ssur as Ssur���=�*�A�
���a��A�+�ab��B��+�*�B���ab

* ��A�+�b��B��, where
the microscopic interface matrix

T̂sur
micro = 
 �a �ab

�ab
* �b

� �7�

is Hermitian. The same result can be expressed via a qua-

dratic form of envelopes Ssur���=�n
a*�T̂n	

A �	
a + T̂nm�m

b �
+�m

b*�T̂m	
* �	

a + T̂m

B �


b�, where �a=�A�−a ,�� and �b

=�B�b ,��, n ,	=1,2 . . .NA, m ,
=1,2 . . .NM, and

T̂sur = 
T̂A T̂

T̂* T̂B
� =

�2

2m0

 t̂A/a t̂/d

t̂*/d t̂B/b
� �8�

is a Hermitian �NA+NB�� �NA+NB� interface matrix. In gen-

eral, parameters of T̂sur
micro may depend on the electron energy.

However, the key condition for the validity of the k ·p mod-
eling of the heterosctucture is the possibility to neglect the
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contribution of the boundary region � in the charge conser-
vation law2 by taking d /dt	�d3r���2�0. In turn, the charge
conservation in � for arbitrarily state of the system is
equivalent to the condition 	�d�j�0, where � is the inner
surface of the boundary region �. As a consequence, the

energy dependence of the microscopic interface matrix T̂sur
micro

is to be negligible in the range of energies where the k ·p
modeling of the heterosctucture is valid. Under this condi-

tion, the resulting k ·p interface matrix T̂sur is energy inde-

pendent. The structure of T̂sur depends on the symmetry of
both bulk materials and of the interface. It can be constructed
by using the method of invariants7,11 or calculated directly
via the microscopic modeling of the potential U�r� in the
interface region �.

The k ·p version of Lagrangian variational principle has

the form �Skp=�SA+�SB+�Ssur=0, and it contains Ñ=NA
+NB independent variations of the envelope wave functions
��n

A ,��n
B. We rewrite the surface contribution to the

variation of action as �Ssur=��n
a*�T̂n	

A �	
a + T̂nm�m

b �
+��m

b*�T̂m	
* �	

a + T̂m

B �


b�=�	�d3r��x�Lsur, where ��x� is the
Dirac delta-function. The surface Lagrangian is nonlocal and
it is written as

Lsur = �̃*T̂sur�̃, �̃ = 
�A�x − a,��
�B�x + b,��

� . �9�

The effective Lagrangians LA,B together with Lsur contain all
the relevant information about the bulk and interface proper-
ties of the heterostructure. Application of the least action
principle �Skp=0 generates the Schrödinger equation

ĤAB�̃=E�̃ with the complete heterostructure k ·p Hamil-

tonian ĤAB and with the general boundary conditions �GBC�
to be imposed on �a=�A�−a ,�� and �b=�B�b ,��. For ex-
ample, integration by parts of �SA leads to

�SA���n
A*� = − �

A

d3r���n
A*�Ĥnm

A − E��n
A�

+� d2���n
a*
� ·

�LA

� � �n
a*� . �10�

The GBC can be written as


 iV̂��
a

− iV̂��
b
� =

2T̂sur

�

�a

�b � , �11�

or, alternatively, in the form of Ref. 2 as


 �a

iV̂��
a� = T̂tr
 �b

iV̂��
b� . �12�

Here the components of the 2NA�2NB transfer matrix

T̂tr �see Refs. 2 and 3� can be readily expressed via the

components of the surface matrix T̂sur �see also Ref. 13�,
V̂�=� · V̂, and the envelope velocity operator V̂nm�m
=2i /���L /���n

*� can be explicitly written as

V̂ = B̂ + �
�Â	
�k̂	k̂


�k
− ��K̂ � k̂� . �13�

The last term is new in comparison to Ref. 2. The cor-
responding extra term in the envelope flux density

J�r�= 1
2 ��n

*V̂nm�m+�n�V̂nm�m�*� is proportional to

���*K̂�� and does not alter the continuity property � ·J
=0. It is straightforward to verify that J�

��=� ·J���r�
= 1

2 ��n
�*V̂nm�m

� +�n
��V̂nm�m

��*�=const, where � and � label
two functions �� and �� satisfying the same GBC �see Ref.
2�. This ensures that the heterostructure k ·p Hamiltonian

ĤAB acting on �̃ is self-adjoint. It has the form:

ĤAB = 
Ĥh
A + ��x�Ĥsri

A ��x�Ĥsri
AB

��x�Ĥsri
BA Ĥh

B + ��x�Ĥsri
B
� , �14�

where Ĥh
A=��−x�ĤA�� ,x−a�, Ĥh

B=��x�ĤA�� ,x+b�, ��x� is
the Heaviside step function and

Ĥsri
A =

�

2

iV̂�

A −
�

m0a
t̂a�, Hsri

AB = −
�2

2m0d
t̂ ,

Ĥsri
B =

�

2

− iV̂�

B −
�

m0b
t̂b�, Hsri

BA = −
�2

2m0d
t̂*. �15�

We see that there are two physically distinct contributions to
the short-range interface �SRI� terms of the Hamiltonian

ĤAB. The first one arises from the nonlocal surface Lagrang-
ian Lsur and it depends on the properties of the interface via
the energy independent parameters of the GBC. The other

contribution comes from the velocity operator V̂�. It is en-
tirely determined by the bulk parameters and it arises from
the nonvanishing variation of the bulk Lagrangians LA,B at
the interface. The important feature of this contribution is the

presence of the asymmetric K̂ term. In homogeneous semi-

conductors the asymmetric K̂ term does not contribute to Ĥ
in the absence of external fields.7,14 Examples below demon-

strate that the K̂ terms in the Lagrangian of Eq. �4� and in the
velocity operator of Eq. �13� become important if the sym-
metry is broken due to the presence of external fields or
asymmetric interfaces.

III. APPLICATIONS OF THE k ·p VARIATIONAL METHOD

A. �6 conduction band

We consider the effective mass Hamiltonian Ĥ��6�=Ec

+�2k̂2 /2m for the spinor envelope function �� ��= ±1/2�,
where Ec is the bottom of the conduction band and m is the
effective mass. Following our method we introduce the ef-
fective mass Lagrangian density

L = �E − Ec����2 −
�2

2m
����r��2 + LSIA, �16�

which contains the asymmetric term
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LSIA��6� = −
i�2

4m0
g̃ � �*�� � ��� �17�

obtained with K��6�=−�ig̃ /2m0��, where �x, �y, �z are
Pauli matrices, and g̃=g0−g is the difference between the
free electron and the effective electron g-factors. Note that
g̃�0 only if the spin-orbit splitting � of the valence band or
�c of the remote conduction band is taken into account. For
g̃�0, the asymmetric term LSIA��6� produces the magnetic
energy term − 1

2	Bg̃��H� additional to the free electron mag-
netic energy 1

2	Bg0��H� in the bulk Hamiltonian in external
magnetic field H. Here 	B is the Bohr magneton. To focus on
the role of the LSIA term we neglect in this and other ex-
amples the effects of bulk inversion asymmetry.

This is the asymmetric term LSIA��6� �missing in Refs. 5
and 15� which induces the spin dependence of the velocity

operator V̂= �� /m�k̂− �i�g̃ /2m0���� k̂� and thus the spin de-
pendence of the standard boundary conditions �a=�b,

V̂��
a= V̂��

b at the interface. Such spin-dependent boundary
conditions were used and discussed, for example, in Refs. 4,
16, and 17. The short-range interface SIA term in the hetero-

structure Hamiltonian ĤAB of Eq. �14� also results from
LSIA��6�.

Moreover, exactly this term LSIA��6� generates the mac-

roscopic SIA term Ĥso=�R��� k̂��, postulated by Rashba18

for the asymmetric 2D structure. To demonstrate this, we
take into consideration the dependence of g on the potential
V=−�e�Ex, where the average electric field E=E� character-
izes the macroscopic asymmetry. In the eight band model for
cubic semiconductors g=g0−gr−2Ep� /3�Eg−V��Eg−V+��,
where Ep is Kane energy, Eg is the band gap and gr is the
correction from remote bands, and the effective Rashba con-
stant is �R� ��g /�x�x=0��. Using the expression for g in the
14 band model one finds that the correction to �R is propor-
tional to �c.

Let us now discuss the role of T̂sur for �6 electrons. The

widely used standard boundary conditions �a=�b, V̂��
a

= V̂��
b correspond to the limit case of the “ideal” interface

described by the surface matrix

T̂sur =
�2

2m0

 Î2ta/a Î2t/d

Î2t*/d Î2tb/b
� , �18�

where Î2 is 2�2 unit matrix, ta= tb=−t /2 are real numbers,
and a=b→0. However, the effect of the different electron
effective masses in A and B is of the same order of magni-
tude as the effect of the band nonparabolicity.9 The nonpara-
bolicity is caused by the interband interaction and can be
taken into account by assuming the energy dependent elec-
tron effective mass m�E� and energy dependent electron g
factor g�E�. The parameters of the interface matrix ta, tb, and
t remain energy independent real numbers.2,19 However, the
model of the ideal interface with a=b→0 and thus the stan-
dard boundary conditions can not be used if the interband
interaction is taken into account. The width of the interface-
induced interband coupling region is estimated as �a / ta�

=��2 /2Ep
Am0 and �b / tb�=��2 /2Ep

Bm0 �see Ref. 2�. The dis-
continuity of the envelope function �A��B at the interface
produces an additional short-range SIA contribution to the
spin splitting of 2D electron states.20,21 Below we discuss
this effect in more details for the case of asymmetric square
quantum well with infinite potential barriers.

B. �15 and �8 valence band

Another useful example is provided by the degenerate va-
lence band at the � point described by the envelope Hamil-
tonians obtained in Ref. 14. We consider the cases of �=0
and �→�. The remarkable property of the respective enve-
lope Lagrangians obtained according to Eq. �4� is the pres-
ence of the asymmetric term with K��15�=−i�1+3�� /m0I
even in the case �=0:

LSIA��15� = −
i�2

2m0
�1 + 3�� � ��

*�I � ���� . �19�

Here � is the magnetic Luttinger constant, Î is the internal
angular momentum operator �I=1� and ��, �=0, ±1, is the
3 component envelope function. The SIA component of the

velocity operator V̂so= i��1+3�� /m0�I�k� induces a new
short range SIA term in the heterostructure Hamiltonian for
the �15 holes as well as the I-dependent boundary conditions.
This leads to the splitting of the heavy hole subband in asym-
metric structures mediated by the interaction with light hole
states. Note that it is this asymmetric term LSIA��15� which is
responsible for the magnetic energy term �	B�1+3���IH� in
the bulk Hamiltonian of Ref. 14.

In the case of �→�, the top of valence band is fourfold
degenerate corresponding to the J=3/2 subspace of the total
internal momentum J=I+1/2�. We obtain the asymmetric
term in the envelope Lagrangian with K��8�=−i�2/3
+2�� /m0J− iq /m0F, where q is the cubically anisotropic
magnetic Luttinger constant and F= �Fx ,Fy ,Fz���Jx

3 ,Jy
3 ,Jz

3�:

LSIA��8� =
�2

2
� ��

*�K��8� � ���� . �20�

Here ��, �= ±3/2 , ±1/2, is the four component envelope
wave function. The SIA component of the velocity operator

V̂so= i� /m0�� 2
3 +2���J�k�+q�F�k�� produces a new short

range SIA term in the heterostructure Hamiltonian as well as
the asymmetric contribution to the boundary conditions for
the �8 holes �see Refs. 16 and 22�. The very same asymmet-
ric term LSIA��8� induces the magnetic energy terms ��JH�
and �q�FH� in the bulk Hamiltonian of Ref. 14, as well as
the macroscopic SIA term H8v

so =�1�J�k�E+�2�F�k�E
postulated recently in Ref. 23. The cubically anisotropic con-
stant q and, consequently, �2 are proportional to �c and usu-
ally small. Considering the dependence of �=�r+Ep /6�Eg

+V� on V=−�e�Ex, where �r is the contribution from remote
bands, we derive for the first time the effective SIA constant
�1� ��� /�x�x=0 for the �8 valence band:
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�1 =
�e��2

6m0

Ep

Eg
2 . �21�

We find that in contrast to the Rashba constant, �1 is not
proportional to the spin-orbit splittings � or �c. For instance,
for GaAs we obtain �1 / �e�=15.9 Å2 while the calculated
value of the electron Rasba constant �Ref. 16� in the eight
band model is �R / ��e�E�=4.4 Å2.

C. Asymmetric square quantum well with infinite potential
barriers for �6 electrons

We consider the square quantum well with two interfaces
at x=−L and x=L modeled by infinite potential barriers. We
assume, however, that these interfaces are microscopically
asymmetric. This may occur even when two opposite inter-
faces are formed by contacts with the same materials �see
Refs. 24 and 25�. The standard boundary conditions for the
infinite potential barrier read ��±L�=0 and do not allow to
take into account the asymmetry of two interfaces. More-
over, the standard boundary conditions fail if the nonparabo-
licity of electron spectra is taken into account.2,19

The Hamiltonian for the �6 electrons that includes the
band nonparabolicity and the short-range interface terms has
the form:

Ĥwell = Ĥ��6� +
i�2

2m�E�
���x − L� − ��x + L��k̂x

−
�2

2m0a+��x − L� −
�2

2m0a−��x + L� +
�2

4m0
�g0 − g�E��

����x − L� − ��x + L���� � k�x, �22�

where a+=a* / t+ and a−=a* / t−, a*=��2 /2Epm0 and t+ and t−

are real numbers. We use the expressions for the energy-
dependent electron effective mass m�E� and effective
g-factor g�E� obtained in the eight-band model �see, for ex-
ample, Ref. 19�:

1

m�E�
=

1

m0

� +

Ep

3
� 2

Eg + E
+

1

Eg + E + �
�� , �23�

g�E� = g0 − gr −
2Ep

3

�

�Eg + E��Eg + � + E�
. �24�

Here E is calculated from the bottom of the conduction band,
��−1� and gr are the contributions from the remote bands.
The Hamiltonian of Eq. �22� corresponds to the spin-
dependent boundary conditions in the form

��±L� = ± a±
 m0

m�E�
���±L� +

g0 − g�E�
2

�� � k�x��±L�� .

�25�

We direct the in-plain wave vector along y. Then the so-
lutions of the Hamiltonian Eq. �23� can be written as �±1/2
=exp�ikyy��C+ exp�iknx�+C− exp�−iknx��v±1/2, where v±1/2

are the eigenspinors of the Pauli matrix �z, and the constants
C± are to be determined from Eq. �25� and the normalization
condition. Neglecting first the spin-orbit term �ky�z in the

boundary conditions of Eq. �25�, we find the energy spec-
trum from the equation

sin�2knL��1 + 
 m0

m�E�
knb�2

− 
 m0

m�E�
kna�2�

− 
2
m0

m�E�
kna�cos�2knL� = 0, �26�

where a= �a++a−� /2, b= �a+−a−� /2, and kn is related to the
energy E by

E = En +
�2ky

2

2m�E�
, En =

�2kn
2

2m�E�
. �27�

In the asymmetric well with b�0, the spin-dependent term
�ky�z leads to the spin splitting of the electron states at finite
values of the wave vector ky �0. The energies E+ and E− of
the spin-up and spin-down states, respectively, can be found
from Eqs. �26� and �27� by replacements a±→a± / �1± �g0

−g�E��a±ky /2� for E+ and a±→a± / �1� �g0−g�E��a±ky /2�
for E−, respectively. The splitting �SIA=E+−E− between the
energies of the spin-up and spin-down states can be de-
scribed by the effective SIA Hamiltonian

ĤSIA
eff = �SIA�E��zky , �28�

where �SIA=2�SIAky. For the small values of ky, the short-
range SIA constant is derived by using the perturbation
theory as

�SIA =
�2

4m0
�g0 − g�E������− L��2 − ���+ L��2� . �29�

Using the approximate19 normalization condition 	−L
L ���2dx

=1 we obtain

���±L��2 =
4�m0kna±/m�E��2

1 + �m0kna±/m�E��2�4L −
m0a+/m�E�

1 + �m0kna+/m�E��2

+
m0a−/m�E�

1 + �m0kna−/m�E��2�−1

. �30�

In Fig. 2 we show the calculated spin splitting energy of
the first bound electron state in GaAs quantum well as the
function of the well width 2L. The interface parameter is a
=−a*=−0.36 Å, and the asymmetry parameter t=−b /a
=0.25 for set 1 and t=0.5 for set 2. The solid curves calcu-
lated for the in-plane wave vector ky =0.02 Å−1 and dashed
curves for ky =0.04 Å−1. One can see, that in the asymmetric
quantum well with infinite potential barriers and �b /a�=0.5,
the spin splitting is of the same order of magnitude as the
splitting presented in Ref. 16 for AlAs/GaAs/Al0.15Ga0.85As
asymmetric quantum well.

For positive values of the interface parameters a±�0, the
formation of the interface localized Tamm states with En
�0 is possible.2,20 Recently, the interface localized Tamm
states were observed experimentally in the periodic
ZnSe/BeTe 2D heterostructures �Ref. 25�. The interfaces of
the ZnSe quantum well with BeTe barriers are known to be
nonequivalent.25 Therefore, it is instructive to look at the SIA
induced splitting of the interface localized states in asymmet-
ric ZnSe quantum well. In Fig. 3 we show the calculated
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energies of the Tamm states at ky =0.04 Å−1 in asymmetric
ZnSe square well with infinite potential barriers as the func-
tion of the asymmetry parameter t=−b /a. The well width is
2L=40 Å and the interface parameter is a=a*=0.41 Å. The
spin up states are shown by the solid curves and the spin
down states are shown by the dashed curves. The energies of
the Tamm states weakly depend on the well width and are
close to the asymptotic values, that can be found analytically
from Eq. �26� in a wide well which corresponds to L /a
�Ep /Eg.

In the symmetric case b=0, the energies of two Tamm
states GS1 and GS2 at ky =0 are very close and described by2

EGS = −
�2

2m0a2

m�E�
m0

. �31�

For a=a*, the position of EGS is close to the middle of the
forbidden gap. When the asymmetry b�0 is present, the
energies of GS1 and GS2 become different and their
asymptotic values at ky =0 in a wide well are determined
from Eq. �26� as

EGS1 = −
�2

2m0a+2

m�E�
m0

, EGS2 = −
�2

2m0a−2

m�E�
m0

. �32�

At finite value of ky, the energies of the spin up �EGS1
+ , EGS2

+ �
and spin down �EGS1

− , EGS2
− � states become

EGS1
± = −

�2

2m0a+2

m�E�
m0


1 ±
g0 − g�E�

2
a+ky�2

+
�2ky

2

2m�E�
,

�33�

EGS2
± = −

�2

2m0a−2

m�E�
m0


1 �
g0 − g�E�

2
a−ky�2

+
�2ky

2

2m�E�
.

�34�

One can see, that in the symmetric well with b=0, the finite
value of ky �0 induces the interaction between GS1 and GS1
states which also leads to their splitting �see Fig. 3�. The
asymmetry b= �a+−a−� /2�0 splits the energies of EGS1 and
EGS2 states at ky =0 and induces the spin splitting of both
states �SIA�GS1�=EGS1

+ −EGS1
− and �SIA�GS2�=EGS2

+ −EGS2
− at

finite values of ky, so that four Tamm states appear. Since the
respective wave functions are localized near the interfaces,
the spin splitting is very large, and the perturbation theory
cannot be used for evaluation of �SIA. It follows from Eqs.
�33� and �34� that the spin splitting of the Tamm states in the
wide well is given by �SIA�GS1�=2�SIA

+ ky and �SIA�GS2�
=2�SIA

− ky, where

�SIA
± = �

�2

2m0a±2

m�E�
m0

�g0 − g�E�� . �35�

We predict the spin-splitting of the interface localized Tamm
states in ZnSe/BeTe heterostructures to be about 10–50
times larger than the respective splitting of the bound states
in the conduction band.

In the case of the single parabolic band effective mass
approximation with m�E�=m�0�=m, g�E�=g�0�=g, the
boundary conditions given by Eq. �25� and the corresponding
energy spectra can be directly compared with those presented
in Ref. 20. In more details, in Ref. 20 one introduces char-
acteristic momenta p± of the surfaces related to the surface
parameters a± of our model via p±a±=−�m /m0. In the para-
bolic case, both p± and a± do not depend on E. The surface
parameters a± remain energy independent when the nonpara-
bolicity coming from multiband approximation is included
�because the Hamiltonian of Eq. �22� is self-adjoint�,
whereas momenta p±=−�m�E� /m0a± become energy depen-
dent. Note that the multiband consideration is crucial for

FIG. 2. Structure inversion asymmetry spin splitting energy of
the first bound electron state in GaAs asymmetric square well with
infinite potential barriers. The interface parameter is a=−a*=
−0.36 Å. The asymmetry parameter is t=−b /a=0.25 for two lower
curves and t=0.50 for two upper curves. The solid curves are cal-
culated for the in-plane wave vector ky =0.02 Å−1 and dashed
curves for ky =0.04 Å−1.

FIG. 3. Energy position of the interface localized Tamm states in
ZnSe square well of the width 2L=40 Å with infinite potential bar-
riers as the function of the asymmetry parameter t=−b /a. The in-
terface parameter is a=a*=0.41 Å and the in-plain wave vector is
ky =0.04 Å−1. The energy is calculated from the bottom of the con-
duction band. The top of the valence band is at −Eg=−2.79 eV. The
solid curves are for the spin up states and dashed curves for spin
down states.
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proper treatment of the spin splitting of both conduction
band states �see, for example, Ref. 16� and interface local-
ized Tamm states. The single band model only describes
shallow Tamm states with energies close to the conduction
band edge,20 whereas our multiband model successfully de-
scribes the Tamm states with energies in the middle of the
forbidden gap formed by the conduction band electrons and
light holes as well as the large SIA splitting of the Tamm
states in the asymmetric wells �see Fig. 3�.

IV. INTERFACE CONTRIBUTION TO THE MAGNETIC
ENERGY

The variational principle approach allows a straightfor-
ward incorporation of the external magnetic field H into the
model. It is included into the bulk Lagrangian of Eq. �4� by

adding the magnetic energy term g0	B��H� in the matrix Ĉ
and by replacing �→�+ �i�e� /2�c��H�r�. This procedure
produces well-known magnetic energy terms g0	B��H�
+	B�K̂H� in the bulk Hamiltonians. In addition, the devel-
oped approach reveals a new short-range magnetic energy

term in the heterostructure Hamiltonian ĤAB. For example, in
the presence of the in-plane external magnetic field H � z we
obtain the new term in the velocity operators V�� which is

proportional to Hx�K̂z��. In small fields this term can be
treated perturbatively and the parameters of the interface ma-

trix T̂sur remain field independent. The short-range contribu-
tion to the Zeeman energy is proportional to the sum of dis-

continuities of ��*K̂z�� at the interfaces. Unlike the zero
field splitting, this interface magnetic energy contribution is
present even in completely symmetric 2D structures as well
as in spherical dots �see Ref. 19�. For the quantum well con-
sidered above in Sec. III C, the interface contribution to the
magnetic energy is given by

Ĥsur�H� = 1
2gsur�z�	BH� , �36�

gsur = − �g0 − g�E������− L��2 + ���+ L��2�L , �37�

where the values of ���±L��2 are determined by Eq. �30�.
One can see, that even in the symmetric case a+=a− there is
a nonvanishing surface contribution to the electron g factor

gsur = − �g0 − g�E��
2�m0kna/m�E��2

1 + �m0kna/m�E��2 . �38�

Figure 4 shows the dependence of gsur on the well width 2L
for the first bound electron state in GaAs quantum well. For
the interface localized Tamm states discussed above in Sec.
III C the surface contribution to the electron effective
g-factor is large and cannot be described by Eq. �37�. In-
stead, the modification of the interface parameters a+ and a−

in the magnetic field shall be considered. This consideration
will be reported elsewhere.

In large magnetic fields, the magnetic energy term should
be directly included into the boundary conditions. This leads
to the surface renormalization of the effective g factor for
electrons in Landau levels similar to the renormalization sug-

gested previously in Ref. 21 in the framework of the single
band effective mass approximation. However, in the multi-
band approximation the energy dependence of the g factor
causes more complicated dependence of the g factor on the
surface parameters.19

V. DISCUSSION AND CONCLUSION

In conclusion, the variational least action principle allows
to consistently extend the envelope function approach to het-
erostructures with abrupt interfaces. The short-range inter-

face terms in the heterostructure Hamiltonian ĤAB and the
general boundary conditions are equally valid representation
of the interface properties and can be written for any inter-
face between dissimilar materials including the case NA
�NB. For lattice-matched heterostructures �NA=NB=N� the

obtained ĤAB allows direct comparison with previously de-

rived Hamiltonians.7–9 The discretization of ĤAB for numeri-
cal calculations is straightforward and requires no additional
symmetrization.

The least action principle approach reveals the origin of
two physically distinct contributions to the short-range inter-

face terms of the heterostructure k ·p Hamiltonian ĤAB. They
arise from the nonvanishing variation of the Lagrangian in
the boundary region and in the bulklike regions, respectively.
The contribution from the boundary region is the only one
that depends on the properties of the interface and contains
new parameters. These parameters of the interface matrix

T̂sur can be considered as phenomenological parameters of
the k ·p model additional to the bulk parameters. For in-
stance, the surface parameter for the CdSe spherical nano-
crystals was determined from the comparison with experi-
mental data for the electron g-factor in Refs. 19 and 26.

Our approach reveals that all macroscopic and short-range
interface SIA terms as well as the magnetic energy terms in

FIG. 4. Surface contribution to the electron g-factor in the first
bound electron state in GaAs asymmetric square well with infinite
potential barriers. The interface parameters are a=−a*=−0.36 Å,
b=0 for dotted line, t=−b /a=0.25 for solid line and t=0.50 for
dashed line.
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ĤAB originate from the asymmetric term LSIA in the bulk
envelope Lagrangian. This implies, for example, that the
short-range SIA terms do not contain any new unknown pa-
rameters in contrast to the assumption of Ref. 7. We find that
all short-range SIA parameters are directly related to the
magnetic parameters �such as effective electron g-factor and
magnetic Luttinger parameters �, q� that are known from
bulk magneto-optical experiments. The expressions for the
macroscopic Rashba parameters, in turn, can be analytically
derived from the energy dependent expressions for the short-
range SIA parameters. Using this approach, we have derived
for the first time the effective Rashba constant for the �8
holes. Insight into the common origin of all SIA terms and
magnetic energy terms explains the well-known analogy be-
tween the description of the macroscopic spin-orbit effects
and magnetic field effects. The same analogy can be used for
the description of the short-range spin-orbit and magnetic
field effects. The short-range SIA terms in the heterostructure
Hamiltonian are responsible for the interface and surface
contributions to the SIA splitting of electron and hole energy
levels in asymmetric structures4,16,17,20 while the short-range
magnetic energy terms are responsible for the interface and
surface contributions to the electron effective g factor in both
symmetric and asymmetric structures.19,21,27

The short-range SIA contribution to the zero field splitting
becomes more pronounced in the case of the interface be-
tween very dissimilar materials. The general Hamiltonian

ĤAB given by Eqs. �14�–�16� enables one to describe, for
example, an interface-induced � /X intervalley coupling or
interface coupling between �6 electrons and �8 holes. It al-
lows to describe SIA effects in types II and III quantum wells

and to take into consideration the microscopic asymmetry
caused by the nonequivalence of two opposite interfaces. An
ultimate case of the interface between two very dissimilar
material is given by the semiconductor/dielectric interface
modeled by the infinite potential barrier for the electrons. It
was suggested in Ref. 17 that the infinite barrier model does
not describe the spin splitting of the electrons properly be-
cause it neglects the interface contribution to the splitting.17

In contrast, we have demonstrated that the nonvanishing in-
terface contribution to the spin splitting can be described
even in the model of infinite potential barrier. Moreover, us-
ing the infinite barrier model we predict an unusually large
spin splitting of the interface localized Tamm states which is
determined by the interface contribution.

The least action principle approach can also be extended
to the case when the microscopic potential U�r� contains the
long-range contribution that is caused by the presence of the
interface but is not localized in the boundary region � of the
width d�L. Such long-range potential can be, for example,
the multipole Coulomb potentials or strain. The multipole
potentials were considered in Ref. 7 and shown to have no
qualitative effect in two-dimensional systems. The strain po-
tentials can be directly incorporated into the bulklike
Lagrangians in A and B by using the method of invariants.
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