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By use of an optical coherent-control technique we demonstrate and analyze the control of transitions
involved in the generation of four-wave-mixing signals in a semiconductor quantum well for the two different
four-wave-mixing directions and for different sequences of the excitation pulses. Results are presented for
frequency- as well as for time-resolved signals. A doubling of the coherent switching frequency is found which
occurs if the laser pulses performing the control process contribute quadratically to the wave-mixing signal. A
direct comparison between experiment and microscopic theory reveals how the coherent-control process acts
on the coherent polarization of the exciton-biexciton system in all different configurations. An additional
interpretation of the experimental results based on a simplified few-level model is able to provide an intuitive
understanding of the relevant processes which govern the coherent control of the excitonic and biexcitonic
wave-mixing polarizations.
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I. INTRODUCTION

In the past decade the coherent dynamics of exci-
tonic excitations in semiconductors has been a field of in-
tense research because of its importance for the under-
standing of semiconductor laser dynamics1 as well as for the
possibility to investigate fundamental properties of quantum-
mechanical many-particle systems such as Coulomb-
correlation effects.2–10 The latter ones manifest themselves
especially in nonlinear optical signals, and their coherent dy-
namics can be investigated by different experimental
ultrafast-spectroscopy techniques such as pump-and-probe or
wave-mixing spectroscopy.2,3

In various experiments the dependence of spectrally re-
solved wave-mixing signals—i.e., nonlinear signals gener-
ated by effects of at least third order in the electric field—on
various parameters has been analyzed to distinguish between
different processes which contribute to the nonlinear exci-
tonic response of a semiconductor.6,11–17 The response is
strongly governed by many-particle processes like biexciton
formation, excitation-induced dephasing, or local-field con-
tributions. These contributions have been analyzed both ex-
perimentally and theoretically as a function of the polariza-
tion states of the excitation pulses as well as of the
polarization state of the nonlinear signal itself, the absolute
and relative intensities of the laser pulses, and their spectral
positions.18–28 In this way, even contributions resulting from
high-order Coulomb correlations have been shown to play an
important role for the creation of the coherent optical re-
sponse of a semiconductor in spectrally resolved four- and
six-wave-mixing experiments and simulations.3,4,12–14,29–32

Recently, not only the observation of the coherent dynam-
ics of the optically generated excitonic polarization but also
its targeted manipulation on ultrashort time scales has been
subject to intense research. Excitonic polarizations, popula-

tions, and the spin orientation of the excitons have been
shown to be controllable in the coherent regime.30,32–40 In a
similar way, the optical generation and manipulation of
charge currents, spin-polarized currents, and pure spin cur-
rents without net charge currents have been subject to exten-
sive experimental and theoretical investigations.41–43 In zero-
dimensional semiconductor quantum-dot systems which
possess a �-function-like density of states the coherent ma-
nipulation of the optical transitions in the exciton-biexciton
system has even been exploited to demonstrate a simple
quantum logic gate.44

In the present work we focus on excitonic transitions in
two-dimensional quantum-well systems which are used to
generate a nonlinear polarization—i.e., a nonlinear optical
response of the semiconductor to an exciting laser field. Our
work directly demonstrates the coherent control of the rel-
evant optical transitions of the exciton-biexciton system in a
quantum well during the generation of a nonlinear four-
wave-mixing signal. This is achieved experimentally by use
of a coherent-control technique which utilizes a pair of col-
linearly propagating phase-locked laser pulses which excite
the sample exclusively at the heavy-hole exciton and
exciton-biexciton resonances. The experimental results are in
good agreement with simulations based on a fully micro-
scopic theory which accounts for all optical effects up to
third order in the electric field.45,46 A qualitative understand-
ing for all essential dependences of the signals can be ob-
tained from a phenomenological model based on a simplified
few-level system. The results provide insight into the nature
of the elementary processes which govern the coherent ma-
nipulation of the nonlinear excitonic polarization on ul-
trashort time scales. Compared to our previous work47,48 we
observe and analyze the signals not only with respect to a
phase shift. Since we use a wide-band-gap quantum-well
sample with a sharper exciton resonance than in previous
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experiments and extremely low excitation densities, we are
able to present qualitatively features in the coherent-control
signal. In particular, we find a doubled switching frequency
of the signal for the four-wave-mixing direction 2k1-k2. In
our previous experiments both the higher excitation
densities47 and the much larger inhomogeneous broadening
of the exciton resonance48 had obscured this important fea-
ture. Additionally, we are now able to present real-time-
resolved measurements of the coherent wave-mixing polar-
ization which not only complement our spectrally resolved
measurements but provide additional insight into the way of
action of the coherent control in the exciton-biexciton sys-
tem. In particular, these investigations allow for a precise
analysis of the relative phases of the coherent polarizations
after the coherent-control process. For the limiting case of
ultrafast coherent dynamics at low excitation densities,
which is realized in all our present experiments, a complete
microscopic theory is available within the density matrix for-
malism via the use of the method of dynamics controlled
truncation.45,46 This allows us to perform a conclusive quan-
titative comparison of our experiments with the theory which
provides additional information about the coherent-control
process. The combined experimental and theoretical treat-
ment enables us, e.g., to unambiguously identify the precise
switching frequency of the signals at the ground-state–to–
exciton and exciton–to–biexciton transitions. All results
taken together provide a detailed picture of the action of the
coherent control in the exciton-biexciton system in semicon-
ductor quantum wells which may find its application in the
targeted manipulation of semiconductor systems in quantum
optics.

II. EXPERIMENTAL SETUP

The time-integrated, spectrally resolved degenerate tran-
sient four-wave-mixing �FWM� experiments were carried out
on a 10-nm ZnSe single quantum well which is embedded
within ZnSSe cladding layers and was pseudomorphically
grown by molecular-beam epitaxy on a �001� GaAs sub-
strate. For the experiments which were performed in trans-
mission geometry at a temperature T=4 K the substrate had
been carefully removed by wet chemical etching. The heavy-
hole exciton resonance is separated from the free-electron–
hole continuum by a binding energy of �20 meV. For the
ground-state–to–exciton transition �GET� we find a transition
energy of EGET=2.813 eV. From linear transmission as well
as wave-mixing spectroscopy a linewidth of �0.8 meV was
deduced.

A sketch of the setup of the coherent-control experiment
is shown in Fig. 1. A phase-locked pulse pair with an internal
time distance tint is generated by use of an actively stabilized
Michelson interferometer with a temporal resolution of 40
attoseconds and hits the sample from a direction k1. In the
following, the basic temporal separation of the pulses on a
femtosecond time scale will be denoted by tint

0 whereas the
fine-tuning on an as time scale will be referred to as
�tint—i.e., tint= tint

0 +�tint.
An additional single pulse incident from a different direc-

tion k2 is delayed by a time tdel with respect to the first pulse

of the pulse pair with a mechanical delay line �see Fig. 1�.
The interplay of the polarizations induced by the k1 and k2
pulses leads to diffracted signals. We have recorded FWM
signals in both directions 2k2-k1 and 2k1-k2, respectively. In a
simple picture the first direction corresponds to the first order
of diffraction of the single pulse, the second to the first order
of diffraction of the pulse pair. For both directions tdel will be
positive if the single k2 pulse arrives at the sample last.49 By
use of Pockels cells in each laser beam path the polarization
states of the k1 and k2 pulses are set to a cross-linear �xy�
configuration.

All laser pulses have the same intensity and are generated
by a frequency-doubled, self-mode-locked titanium-sapphire
laser which produces nearly transform-limited pulses with a
temporal width of 120 fs �full width at half maximum�. The
spectral position of the pulses is chosen such that the spec-
trum covers both the exciton and exciton-biexciton transi-
tions. The FWM signal is spectrally resolved by a grating
spectrometer with a resolution of ��=0.03 nm ��E
=0.2 meV at E=2.81 eV� and finally recorded with a liquid-
nitrogen-cooled charge-coupled-device �CCD� camera. Addi-
tionally, real-time-resolved measurements of the transients of
the FWM signal were performed by use of an up-conversion
technique. The sum-frequency generation of the signal and
an infrared reference pulse �wavelength 880 nm, temporal
width �80 fs� in a BBO crystal was used to perform a cross-
correlation measurement as a function of the delay between
the signal and reference pulse tupc. In this case the measured
signal corresponds to a convolution between the signal and
reference pulse which gives the real-time-resolved transients
of the signal in a good approximation on time scales much
larger than 80 fs �temporal width of the infrared pulse�. It
was found in the experiments that by use of the up-
conversion technique tint

0 could be adjusted with an accuracy
of 25 fs.

The excitonic transitions which are involved in the gen-
eration of the wave-mixing signal can be visualized by con-
sidering the schematic energy diagram for the exciton-
biexciton system in Fig. 2. Starting from the unexcited
ground state of the semiconductor an excitonic polarization
can be created by the absorption of a photon at the energy
position of the exciton transition. In general, an excitation
with left or right circularly polarized photons leads to two
degenerate exciton states with opposite spin orientations.
Starting from the excitonic states the absorption of a second

FIG. 1. Experimental setup for the coherent control experi-
ments. The FWM signal is recorded in both directions 2k2-k1 �first
order of diffraction of the single pulse� and 2k1-k2 �first order of
diffraction of the pulse pair� which are not equivalent.
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photon with a spin being opposite to that of the first one can
lead to the excitation of the bound-biexciton state. Conse-
quently, the energy corresponding to this second transition
�exciton-biexciton transistion �EBT�� is EEBT=EGET−EB and
therefore less than the photon energy corresponding to the
GET �EB denotes the biexciton binding energy and amounts
to=4.8 meV for the sample used in this work�. Since for all
experiments and simulations discussed here the excitation
pulses in directions k1 and k2 are cross-linearly polarized, the
signal at the GET is strongly reduced and its strength is just
comparable to that at the EBT,19,27,50 which is favorable for
the investigation of the simultaneous coherent control of the
GET and EBT.

III. MICROSCOPIC THEORY

The FWM experiments with coherent control of the GET
and EBT were simulated by use of a fully microscopic
theory. The theory is formulated using the density-matrix
approach based on the dynamics-controlled truncation
�DCT� scheme.45,46 We shall consider the so-called coherent
limit of the theory which applies when incoherent parts of
the dynamics such as, e.g., couplings to a phonon bath can be
disregarded.51,52 On this level of the theory one has to follow
the time evolution of two types of dynamical variables: the
single-pair transition amplitude Y and the correlated two-pair

transition amplitude B̄. In terms of expectation values of

Fermi operators ĉj �d̂j� for the annihilation of an electron
�hole� in the Wannier state at site j in the conduction �va-
lence� band �cj

��vj
� these variables can be defined as

Y2
1 � �Ŷ2

1� � �d̂1ĉ2� , �1�

B̄24
13 � �Ŷ2

1Ŷ4
3� − Y2

1Y4
3 + Y4

1Y2
3. �2�

The coupled DCT equations for Y and B̄ describe the coher-
ent dynamics exactly up to third order in the laser
fields.45,46,52 In particular, it is worthwhile to note that the
Coulomb interaction is treated nonperturbatively which is
crucial not only for the occurrence of the Coulomb-related
discrete exciton and biexciton resonances but also for the
Coulomb-correlated continuum where the standard perturba-
tion treatment in terms of the second-order Born approxima-
tion is known to lead to artificial divergences.53,54 The DCT

approach overcomes these divergence problems and allows
one to calculate the relative weights of excitonic and biexci-
tonic contributions to nonlinear signals without adjustable
parameters. To be specific, we have used for our numerical
implementation the memory kernel formulation described in
detail in Ref. 55. For the present paper, we have used a
kernel that has been calculated for a two-dimensional quan-
tum well with infinite barrier confinement. The kernel has
been determined within a truncated basis set where all states
on the 1s-exciton parabola are taken into account. This trun-
cation of the basis set has been extensively tested in Ref. 15
and found to be a reliable approximation under the condi-
tions considered here. The reliability of our level of theory is
further confirmed by its success in describing many different
signals in excellent agreement with corresponding
measurements.9,27,53–58 In addition, we have checked numeri-
cally that the six-particle correlations which have been cru-
cial for certain features of wave-mixing experiments3,4,12,30,32

are of minor importance for the present excitation conditions
and can therefore be disregarded. The resulting nonlinear
equations of motion have been solved numerically for the
excitation conditions used in the measurements. In principle,
the calculated solution implicitly contains repeated interac-
tions with the laser fields up to infinite order. However, in
our experiments we have kept the intensities so low that no
deviations from the ��3� limit were detectable. Consequently,
we have performed the calculations with low-pulse areas in
order to match the experimental conditions. Also in accor-
dance with the experimental conditions we have accounted
for an inhomogeneous broadening of 0.7 meV by sampling
over a Gaussian ensemble of gap energies with correlated
shifts of single- and two-pair energies. However, it turned
out that, apart from slight quantitative improvements of the
agreement with the measurements, the inhomogeneous
broadening had no noticeable effect on the qualitative behav-
ior discussed below, which is not too surprising considering
that the broadening is still moderate.

IV. RESULTS AND DISCUSSION

For the analysis of the coherent control of the nonlinear
excitonic polarization different but fixed values of tdel and tint

0

were chosen, and the wave-mixing signal was recorded and
simulated as a function of the fine-tuning �tint over a period
of 3 fs. For linear excitonic polarizations this procedure
should result in a continuous change between constructive
and destructive interference which should make the corre-
sponding optical signal oscillate like a cosine function. The
questions to be answered in this section are now, how does
the nonlinear excitonic polarization behave in this case, and
how does the coherent-control scheme affect the signal cre-
ated by the bound-biexciton state?

The experiments and simulations shown in this paper
were performed with tint

0 =Tbeat /2, where Tbeat=h /EB is the
beating period of the coherently excited exciton-biexciton
system. From our measurements we determine a value of
Tbeat /2=0.425 ps. The choice of this special value of tint

0 is
motivated by the following consideration. If we consider two
arbitrary and independent transitions having the same energy

FIG. 2. Schematic energy diagram of the exciton-biexciton
system.
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separation EB as the exciton-biexciton system—i.e., the reso-
nance frequencies being separated by ��=EB/	—then
Tbeat /2 would correspond to a time delay at which the two
respective coherent polarizations would oscillate with a
phase difference of 
. Consequently, destructive interference
for one of the two polarizations would simultaneously imply
constructive interference for the other one if the coherent-
control scheme with two phase-locked pulses were applied to
the system of independent transitions. This would result in a
phase shift of 
 between the spectrally resolved coherent-
control signals being recorded as a function of �tint. In the
following, it will be analyzed to what extent the control of
the two correlated transitions GET and EBT exhibits simi-
larities or differences compared to the case of the control of
independent transitions.

Since in our setup the wave-mixing polarization is excited
by the interplay of three laser pulses �the pulse pair in direc-
tion k1 and the single pulse in direction k2�, we have to
distinguish four cases for the creation of the polarization and
its coherent control: the single k2 pulse can arrive at the
sample before or after the pulse pair, and in both cases wave-
mixing signals are generated and can be measured for the
two different directions 2k2-k1 and 2k1-k2. The case where
the single pulse arrives between the pulses of the phase-
locked pair does not result in a principally different behavior
which has been shown before.48

The experimental results for all four configurations are
shown in Figs. 3 and 4 �top rows� together with the results of
the microscopic simulations �bottom rows�. In Fig. 3 the sig-
nals for the FWM direction 2k2-k1 are depicted in which the
phase-locked pulse pair contributes linearly. Figure 4 shows
the corresponding results for the FWM direction 2k1-k2 in
which the pulse pair contributes quadratically to the signal.
The left columns in both figures represent the situations in
which the single pulse hits the sample after the pulse pair.
Those cases in which the single pulse hits the sample before
the pulse pair are shown in the right columns.

A. Results for the FWM direction 2k2-k1

We will first concentrate on the results presented in Fig. 3
for the FWM direction 2k2-k1. The right-hand-side results
have been obtained for a value tdel=−0.1 ps �tdel�0—i.e.,
single pulse first�. The data of the left column were obtained
for tdel= +1.0 ps� tint �single pulse last�. Additional experi-
ments and simulations performed for other values of tdel �not
shown here� clearly confirm that the signatures of the
coherent-control traces do not change as long as the principal
relationship tdel� tint or tdel�0 is kept, respectively. The in-
tensities of the spectrally resolved FWM signals are shown
in the contour plots over two orders of magnitude encoded in
a grey scale where white corresponds to maximum intensity.
Their cosinelike oscillations as a function of �tint exhibit a
period of about 1.5 fs corresponding to that expected for a
polarization with an energy E	2.813 eV. As is evident from
Fig. 3, adjusting tint

0 to tint
0 =Tbeat /2 results in FWM signals at

the GET and EBT which show their maxima and minima
simultaneously if tdel� tint but exhibit a relative phase shift of
�=
 if tdel�0. Experiment and microscopic theory are in
excellent agreement. A further analysis reveals that the signal
at the GET shifts by half a period if tdel is changed from
tdel� tint to tdel�0 whereas the minima and maxima of the
signal at the EBT stay fixed �compare left and right columns
of Fig. 3�. Additionally, in the left column both signals os-
cillate with the frequency corresponding to the GET while in
the right column the signal at the GET oscillates with the
frequency corresponding to the EBT and the signal at the
EBT oscillates with the frequency corresponding to the GET.
This can be unambiguously shown by inspecting the values
of �tint for which the theory curves exhibit minimum inten-
sity.

It has been pointed out many times by different authors
that a quantitative simulation of FWM signals emitted after
resonant excitation at the exciton energy requires a micro-
scopic description which accounts for correlated two-pair
continua.7–10,27,53–58 Indeed, the excellent agreement between
our microscopic theory and the measurements confirms once
again that this level of theory is capable of capturing all

FIG. 3. Spectrally resolved FWM signals with coherent switch-
ing detected in direction 2k2-k1. The signals are shown as a function
of �tint for tint

0 =Tbeat /2. Top row: experimental results. Bottom row:
microscopic simulation. Left �right� column: single k2 pulse arrives
at the sample after �before� the pulse pair. The FWM intensity is
shown in contour plots with the gray scale covering two orders of
magnitude on a logarithmic scale. GET �EBT�: spectral position of
exciton �exciton-biexciton� transition.

FIG. 4. Spectrally resolved FWM signals �logarithmic scale�
with coherent switching detected in direction 2k1-k2. Top row: ex-
perimental results. Bottom row: microscopic simulation. Left �right�
column: single k2 pulse arrives at the sample after �before� the pulse
pair. tint

0 =Tbeat /2.
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essential features of such experiments. In this way our cal-
culations also give firm evidence that the observed features
are mainly caused by coherent third-order ���3�� processes in
the quantum well. However, it can be hard to develop an
intuitive understanding of the pertinent physics based on a
purely numerical solution. To bridge this gap it turns out to
be instructive to consider a phenomenological few-level
model for the qualitative interpretation of the measurements
in addition to the microscopic analysis. When applied to the
exciton-biexciton system many aspects of the corresponding
nonlinear dynamics have been successfully addressed by us-
ing few level models similar to the level scheme shown in
Fig. 2 �cf. Refs. 5, 18, 20, and 59–61�. The formal relation
between the microscopic theory and few-level approaches
has been established in Ref. 62, providing a further justifica-
tion for the latter within certain limits. Indeed, with those
features which do not crucially depend on the presence
of the continua it is often even possible to obtain good
quantitative fits of corresponding measurements,5,18,20,59–61

especially when the few-level description is extended by fur-
ther phenomenological additives such as a local field
parameter.20,59,61 Here, we are not looking for a good quan-
titative fit; instead, we are looking for the most simple level
of theory which still describes the most striking qualitative
features of our experiments. In order to obtain compact ana-
lytical results we shall concentrate for the present discussion
on a fixed linear excitation. This allows us to further reduce
the level scheme from Fig. 2 and to consider a model with
only three discrete states: the ground state �0�, the single-
exciton state 
X�, which is reached by the linear excitation,
and the biexciton state 
B�. We shall denote the off-diagonal
density matrix elements that represent the GET and
EBT signal contributions by YGET��
0��X
� and YEBT

��
X��B
�, respectively. The corresponding FWM signals

measured in direction 2k�-kj are proportional to the Fourier
components YGET

2k�-kj and YEBT
2k�-kj where 2k�-kj can be either

2k2-k1 or 2k1-k2. These transition densities obey to leading
order in the laser field the following equations of motion
which have been derived disregarding any dephasing in or-
der to keep the discussion simple:

�i
�

�t
− �GET�YGET

2k�-kj = �GETEk�2YGET
k� Y

GET
kj*

− �EBTEkj*B2k� + O�E5� , �3�

�i �
�t

− �EBT�YEBT
2k�-kj = − �EBTEk�YGET

k� Y
GET
kj*

+ �GETEkj*B2k� + O�E5� , �4�

where �GET and �EBT describe the dipole coupling �assumed
to be real� for the exciton and exciton–to–biexciton transi-
tions and �GET and �EBT are the corresponding transition
frequencies. YGET

k� and Y
GET
kj describe the linear response to

the laser excitations Ek� and Ekj in k� or kj direction. Finally,
B2k� is the 2k�-Fourier component of the two-photon coher-
ence �TPC� B��
0��B
�.

Both the GET and EBT are driven by two types of source
terms: the first ��Ek�YGET

k� Y
GET
kj* � represents the Pauli block-

ing while the second ��Ekj*B2k�� involves the excitation of
the biexcitonic TPC B2k�. Recalling that Y

GET
kj �B2k�� is zero

before the arrival of a pulse in kj �k�� direction it follows
immediately from Eqs. �3� and �4� that the Pauli blocking
�TPC� term does not contribute to the third-order signal
when the k� �kj� excitation is completed before any pulse
from the other direction strikes the sample. Thus, for a given
direction and time ordering �tdel� tint or tdel�0� there is only
a single contribution to each of the transition densities YGET

2k�-kj

and YEBT
2k�-kj. Of course, this feature of the phenomenological

model makes the discussion particularly transparent, but it
should be kept in mind that microscopic models do not share
this property because mean-field contributions and two-pair
correlations add to the signals for both time orderings.

1. Pulse sequence: Single pulse last

It is straightforward to solve Eqs. �3� and �4� analytically
for the case of ultrafast ��-pulse� excitation.63 Let us first
discuss the signal in 2k2-k1 direction for the configuration
tdel� tint �single pulse last�, where only the Pauli blocking
nonlinearity contributes. We find

YGET
2k2-k1 = AGET�t,tdel��1 + e−i�GETtint� , �5�

YEBT
2k2-k1 = AEBT�t,tdel��1 + e−i�GETtint� , �6�

where AGET and AEBT are complex amplitudes that depend
only on the real time t and the delay tdel. Their explicit form
is unimportant for the following discussion of the depen-
dences on the control delay time tint and therefore not given.
The control delay tint enters the expression for both GET and
EBT in the same way via the factor �1+e−i�GETtint� which,
depending on the value of tint, results either in constructive or
destructive interference. Physically, this can be understood
by noting that for this configuration each of the phase locked
k1 pulses in a first step creates a contribution to the linear
transition amplitude YGET

k1 . Then, in a second step the k2 pulse
generates the FWM signal in the 2k2-k1 direction which es-
sentially tests the value of YGET

k1 after the second pulse. The
factor �1+e−i�GETtint� simply reflects the phase difference ac-
cumulated by the free oscillation of YGET

k1 between the first
and second k1 pulses. Since the pulse pair contributes lin-
early in this FWM direction, destructive interference for the
GET will result in no FWM signal at all because the
quantum-well system will be in the unexcited ground state
after the two phase-locked pulses have reached the sample.
If, on the other hand, the pulse pair is adjusted for construc-
tive interference at the GET, the interplay with the polariza-
tion induced by the k2 pulse �this pulse always induces con-
tributions at the GET and EBT since its spectrum always
covers both resonances� will create a FWM signal at the
energy positions of both the GET and EBT. Thus, in this
configuration the control of the FWM signal results from the
interference of the linear polarizations YGET

k1 created in the
first step by the two control pulses. This also explains why
both transitions �GET and EBT� change with varying tint si-
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multaneously from destructive to constructive interference,
both with the same frequency �GET. This is exactly the be-
havior observed in our measurements as well as in the nu-
merical solution of the microscopic model �cf. left panels of
Fig. 3�.

2. Pulse sequence: Single pulse first

For the configuration tdel�0 where the k2 pulse hits the
sample first, a 2k2-k1 FWM signal can be generated only if
the single pulse induces a TPC. Only in this way can two k2
photons be stored in the quantum-well system until the ar-
rival of the phase-locked pulse pair. The corresponding GET
and EBT FWM signals are then, according to Eqs. �3� and
�4�, generated by the TPC nonlinearities �Ek1*B2k2. The tem-
poral behavior of the TPC sources in the ultrafast pulse limit
consists of two short impulses because of the factor Ek1*.
Thus, each of the two control pulses creates a GET and an
EBT FWM signal which then oscillate with the respective
frequencies �GET and �EBT. In contrast to the case tdel� tint
the control of the 2k2-k1 FWM signal for tdel�0 results from
the constructive or destructive interference of the third-order
polarizations that are created by the two control pulses. This
has important consequences. For example, the GET FWM
signal oscillates in real time with the frequency �GET. Con-
sequently, the phase of the FWM signal generated by the first
k1 pulse will change due to the oscillation until the arrival of
the second k1 pulse by an amount of ��=�GETtint. In a linear
interference experiment such as realized for the linear polar-
izations YGET

k1 discussed above, the phase �� accumulated by
the oscillation of the first transition would completely deter-
mine the phase difference between the two transitions that
are brought to an interference. Thus, the period for one cycle
from constructive via destructive and back to constructive
interference would be given by the oscillation period
2
 /�GET. In contrast to this, the FWM transitions are gen-
erated in a nonlinear process. Due to the coupling �Ek1*B2k2,
the initial value of an FWM signal generated by a given k1
pulse is proportional to the value of the TPC B2k2 at the
arrival time of the pulse. Thus, the oscillation of B2k2 with
frequency �TPC=�GET+�EBT leads to an additional phase
difference of −�TPCtint between the initial values of the FWM
polarizations that are generated by the two k1 pulses. This is
reflected by the analytical solution of Eq. �3�. Indeed, the tint
dependence of the GET for times t� tint turns out to be

YGET
2k2-k1 � �1 + e−i�EBTtint� for t � tint,tdel � 0. �7�

The analogous analysis for the EBT yields

YEBT
2k2-k1 � �1 + e−i�GETtint� for t � tint,tdel � 0. �8�

Thus, the simplified phenomenological model explains why
in the microscopic calculations for this configuration the
FWM signal at the GET is modulated with a frequency cor-
responding to the EBT and vice versa. Moreover, for tint
=Tbeat /2 this difference of the modulation frequencies en-
ables a separate switching of the FWM signals at the GET
and EBT with a phase difference of ��=
 as experimentally
demonstrated in the right column of Fig. 3 in accordance
with the corresponding microscopic simulation.

B. Results for the FWM direction 2k1-k2

For the other FWM direction 2k1-k2 a completely differ-
ent behavior of the coherent-control signals is found �see
Fig. 4�. This is of course expected since now the pulse pair
which is responsible for the coherent control of the transi-
tions enters quadratically in the generation of the FWM sig-
nal; i.e., two photons from the pulse pair together with an
additional photon from the single k2 pulse are used to create
a signal photon. For the results shown in the left column
�single pulse last� the delay was set to tdel= +0.7 ps; in the
right column the experiment and simulations were performed
with tdel=−0.1 ps �single pulse first�.

1. Pulse sequence: Single pulse last

Again, if the single pulse hits the sample last, no phase
shift between the signals at the two resonances is found; i.e.,
the FWM signals at the GET and EBT are switched on and
off simultaneously �left column, tdel� tint�. Note that this be-
havior is qualitatively identical to the same sequence of the
excitation pulses for the other FWM direction �compare left
columns of Figs. 3 and 4�. However, now a doubling of the
switching frequency as a function of �tint compared to the
results for the FWM direction 2k2-k1 occurs at the spectral
positions of both the GET and EBT. A related phenomenon is
known from atomic physics where control time dependences
were found which did comprise a frequency doubled compo-
nent when two-photon transitions are directly coherently ma-
nipulated by use of a phase-locked pulse pair.64

In order to interpret these results with our phenomeno-
logical three-level model we first note that according to Eqs.
�3� and �4� the signal in the 2k1-k2 direction for tdel� tint
results only from the TPC nonlinearity which implies that the
pulse pair now excites the TPC B2k1 and then the FWM
signals are later generated when the k2 pulse arrives. Thus,
this time the controlled FWM signals actually reflect the con-
trol of the TPC. The control of a TPC is, however, qualita-
tively different from the control of a single-photon coher-
ence. In the latter case the controlled signal is the linear
superposition of the signals that would be obtained sepa-
rately from each of the two pulses. Of course, also each of
the two pulses of the pair alone would create a TPC, but
nevertheless the controlled TPC signal does not equal the
sum of these two TPC contributions. Instead, there is an
additional pathway that needs to be taken into account. This
is most easily seen by looking at the equation of motion for
B2k1 which reads

�i
�

�t
− �TPC�B2k1 = − �EBTEk1YGET

k1 + O�E4� . �9�

According to Eq. �9� the TPC is driven by sources propor-
tional to Ek1YGET

k1 . Thus, in addition to the sources formed by
one of the pulses and the linear polarization YGET

k1 generated
by the same pulse there is a further contribution to B2k1

driven by a source where the second k1 pulse interacts with
the polarization created by the first one. Again, it is easy to
derive explicit expressions for the resulting GET and EBT
FWM signals. The fact that the control of both FWM signals
is governed by the control of B2k1 is reflected by identical tint
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dependences of the GET and EBT. Thus, the three-level
model explains the observed simultaneous switching of these
signals. A closer look reveals that both FWM polarizations
are proportional to the control factor

F�tint� =
1

2
+

1

2
ei�TPCtint + ei�EBTtint. �10�

This factor contains a term that oscillates with frequency
�TPC=�GET+�EBT which is about twice the value of either
�GET or �EBT. For tint	Tbeat /2 we have ei�EBTtint	
−ei�GETtint and therefore the control factor can be combined to

F�tint� →
tint	Tbeat/2

1 −
1

2
�1 + ei�GETtint�2. �11�

The experiments monitor the intensity emitted in a FWM
direction, and thus it is the absolute square of the factor in
Eq. �11� which determines the tint dependence in our mea-
surements. Taking the absolute square of Eq. �11� yields


F�tint�
2 =
3

2
−

1

2
cos�2�GETtint� . �12�

This should be compared with the absolute squares of the
corresponding factors in Eqs. �7� and �8� which read


1 + e−i�Xtint
2 = 2�1 + cos��Xtint�� , �13�

where �X is either �EBT or �GET. Thus, in agreement with
the numerical studies within the microscopic model, our
simple model indeed predicts a frequency doubling for the
modulation of the control signal as it is observed in our
experiments �cf. Fig. 4 �left panels��.

2. Pulse sequence: Single pulse first

The right column of Fig. 4 shows the 2k1-k2 FWM signals
for the configuration in which the single pulse arrives at the
sample before the pulse pair. As for tdel�0 in the 2k2-k1
direction, a phase shift between the signals at the GET and
EBT occurs. However, the switching frequency of the signal
at the EBT is again doubled whereas the signal at the GET is
modulated just with the fundamental frequency �compare
with right column of Fig. 3�. Also for the configuration
2k1-k2 an overall excellent qualitative agreement between
experiment and microscopic simulation can be seen. Apply-
ing the three-level model to this case we find the following
dependences on the control delay tint:

YGET
2k1−k2 � �1 + ei�GETtint�2 for t � tint,tdel � 0, �14�

YEBT
2k1−k2 � F�tint� for t � tint,tdel � 0, �15�

where F�tint� is the control factor defined in Eq. �10�. In this
configuration the control is caused by an interference of the
FWM signals produced by the first and second k1 pulses via
the Pauli blocking nonlinearity �i.e., the term �Ek1YGET

k1 YGET
k2*

in Eqs. �3� and �4��. Again, the control signal is not the linear
superposition of the FWM signals that would have been pro-
duced if each of the k1 pulses acted alone. This can be easily
deduced from Eqs. �3� and �4� by noting that the second k1
pulse of the pair generates two signal contributions resulting

from the coupling to the polarizations created by the first and
second pulses.

Taking the absolute square of Eq. �14� we find that the
corresponding signal intensity is modulated by a factor of
4�1+cos��GETtint��2. Even though due to the squaring this
factor has a Fourier component oscillating with twice the
frequency �GET, it has its maxima and minima at the same
positions as the factor 2�1+cos��GETtint�� which according to
Eq. �13� corresponds to the absolute square of Eq. �7�. In this
sense the model predicts a modulation of the signal with the
fundamental frequency of the GET. It can thus explain why
the measurements shown in the right panel of Fig. 4 do not
exhibit a frequency doubling even though the pulse pair en-
ters the signals quadratically. The squaring of the factor
�1+ei�GETtint� which reflects the nonlinear character of the
control affects the shape of the modulation but not the period
between subsequent maxima or minima. In the EBT result
the occurrence of frequencies different from �GET motivates
why the GET and EBT signals are not in phase. Furthermore,
as discussed before, the control factor F which for tint
	Tbeat /2 combines to the result in Eq. �11� explains the ob-
served frequency doubling, which is also well reproduced
within the microscopic approach.

C. Real-time-resolved FWM

To get even more insight into the way of action of the
coherent control of the exciton-biexciton system we have
performed additional experiments and simulations with real-
time resolution. In the theory, of course, the complex signal
amplitudes in the real-time and frequency domain are con-
nected by a Fourier transformation. However, as the experi-
ments measure only the intensities phase information gets
lost which under certain circumstances can be reconstructed
from a combination of both measurements.65,66 Therefore,
time and frequency domain measurements contain comple-
mentary information.

The present investigations were carried out for both FWM
directions. In Fig. 5 we show the results for the direction
2k2-k1 in which the important features are most distinctly
visible. The results for the direction 2k1-k2 �not shown here�
are quite similar but experimentally less well resolvable due
to the doubled switching frequency of the FWM signal in the
coherent-control experiments. In Fig. 5 the measured �right
column� and simulated �left column� real-time transients of
the FWM signal are shown as a function of �tint for tint

0

=Tbeat /2. In order to facilitate the comparison of the qualita-
tive features we have scaled the tupc axis of the theoretical
results in Fig. 5 such that the beating period coincides with
the experiment. This scaling accounts for a slight difference
of the biexciton binding energy in experiment and theory
�see the GET and EBT resonances in Figs. 3 and 4� being
due to the idealized modeling of the confinement barriers as
well as to the restriction of the basis set to the 1s-exciton
states.67 As a consequence, in the theory the period of the
exciton-biexciton beats possesses a value being slightly dif-
ferent from that in the experiment. The �tint axes of Fig. 5
can be directly compared to the ones of Fig. 3, thus provid-
ing a direct comparison between the spectrally and real-time-
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resolved data. The real-time transients can be obtained as
vertical cuts along the tupc axis through the contour plots. The
top row gives the results for a positive delay �k2 pulse arrives
last�, the bottom row for a negative delay �k2 pulse arrives
first�. For the first case the spectrally resolved FWM signals
at the GET and EBT simultaneously reach their maximum
and minimum values as a function of �tint. The peak inten-
sity of the transients is clearly affected by the coherent-
control process; however, the overall shape of the transients
stays constant. If a significant signal can be measured, the
transients always show a strong beating which is due to the
coherent excitation of both the GET and EBT by the ul-
trashort laser pulses. Additionally, the phase of the exciton-
biexciton beats stays constant for all measured values of
�tint. The transients are affected by the coherent control di-
rectly after the creation of the coherent FWM polarization—
i.e., directly after the arrival of the single k2 pulse. This sup-
ports the explanation that for this FWM direction and
sequence of the excitation pulses �k2 last� the k2 pulse essen-
tially tests the linear polarization induced by the interplay of
the phase-locked k1 pulses.

The behavior of the transients changes completely if the
sequence of the pulses is reversed such that the single pulse
hits the sample first �bottom row�. It can be clearly seen that
the nonlinear FWM signal starts to build up directly after the
arrival of the first k1 pulse at tupc=0 but does not show a
variation as a function of �tint until the second pulse of the
pair arrives at tint

0 =Tbeat /2. Only for tupc� tint
0 a coherent ma-

nipulation of the nonlinear FWM signal can be clearly ob-
served which supports the interpretation of this process as a
coherent control of the FWM polarization.

In contrast to the results presented in the top row of Fig. 5
the signal in the bottom row clearly shows a change of both
the amplitude and phase of the exciton-biexciton beats super-
imposed to the transients. This is a clear indication that in

this case the GET and EBT are separately addressed by the
coherent control. In the spectrally resolved measurements
this behavior results in the already mentioned phase shift
between the coherent-control signals at the energy positions
of the GET and EBT. The real-time transients, however, re-
veal even more information because the transients at inter-
mediate positions between constructive or destructive inter-
ference for either of the two resonances clearly show a phase
shift of ��=
 of their respective beat structure �compare the
position of the black “holes” which occur in the contour
plots directly before and after the maximum signal�. Due to
this phase shift of the beat structure, the transients for these
different values of �tint are not equivalent whereas the re-
spective spectra do not show any qualitative difference. For
these values of �tint the spectra just show comparable FWM
intensities at both resonances. This result confirms again the
complementarity of real-time and frequency-domain infor-
mation. The real-time transients provide an independent and
direct proof that the GET and EBT can be separately ad-
dressed in coherent-control experiments.

V. CONCLUSIONS

In conclusion, we have presented a detailed experimental
and theoretical investigation of the optical coherent control
of the exciton-biexciton system in a semiconductor quantum
well. The coherent manipulation of a nonlinear wave-mixing
polarization was analyzed for different sequences of the ex-
citation pulses and for the two different four-wave-mixing
directions 2k1-k2 and 2k2-k1 which are not equivalent since,
in addition to the single k2 pulse, a phase-locked pulse pair is
applied from direction k1. Frequency-domain measurements
were supplemented by real-time results which give access to
complementary information. The experiments were analyzed
by simulations based on a microscopic theory and by ana-
lytical formulas derived within a phenomenological few-
level model for the exciton-biexciton system. Significant dif-
ferences for the two FWM directions have been found and
explained by the fact that the pulse pair enters in different
orders into the generation for the FWM polarization for the
two directions. The few-level analysis furthermore revealed
that the control of the FWM emission at low excitation den-
sities can be brought about by different mechanisms which
can be selected by varying the time ordering of the pulses or
the direction of the emission. In the 2k2-k1 direction the con-
trol signals reflect the interference of linear polarizations
when the pulse pair precedes the k2 pulse. By reversing the
time ordering in this direction the control is due to a super-
position of FWM amplitudes. In this configuration each k1
pulse generates an FWM amplitude independent of the other
pulse. By measuring in the 2k1-k2 direction we can monitor
the direct nonlinear control of the TPC provided the k2 pulse
is the last pulse. Finally, when the k2 pulse arrives first at the
sample we obtain an interference of FWM amplitudes in the
direction 2k1-k2. In this case, the FWM amplitude generated
by the second control pulse depends on the polarization pro-
duced by the first one, revealing the nonlinear character of
the control. In experiments performed in the 2k1-k2 direction
where the pulse pair enters quadratically we observed a fre-

FIG. 5. Coherent control of the FWM signal in the direction
2k2-k1 for tint

0 =Tbeat /2. Bottom row: real-time FWM signals �left,
simulated; right, measured� as a function of �tint for tdel=−0.1 ps.
Top row: same for tdel= +1.0 ps. All signals are shown in contour
plots on a logarithmic grey scale spanning two orders of magnitude.
The �tint axes are directly comparable with the ones in Fig. 3.
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quency doubling of the control which is well reproduced by
the microscopic simulation and qualitatively explained by
the analytical results derived from the simplified three-level
model. In fact, the microscopic theory is able to model quan-
titatively all essential features of the experiments. Recalling
again that previous studies7–10,27,53–58 have indicated the im-
portance of correlated two-pair continuum contributions to
FWM signals even when the 1s exciton is selectively ex-
cited, it is remarkable that all pertinent qualitative features of
our present coherent control experiments are well reproduced
by a phenomenological three-level model where continua as
well as mean-field contributions are completely ignored. In
our case, the phenomenological model, therefore, yields

helpful insights, leading towards the physical understanding
of the measurements.

The results provide the basis for a targeted nonlinear op-
tical manipulation of semiconductor quantum-well samples
to selectively enhance or suppress contributions of different,
even coupled, excitonic resonances within the spectral range
of the excitation pulses.
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