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The time evolution of optically excited carriers in semiconductor quantum wells and quantum dots is
analyzed for their interaction with LO phonons. Both the full two-time Green’s function formalism and the
one-time approximation provided by the generalized Kadanoff-Baym ansatz are considered, in order to com-
pare their description of relaxation processes. It is shown that the two-time quantum kinetics leads to thermal-
ization in all the examined cases, which is not the case for the one-time approach in the intermediate-coupling
regime, even though it provides convergence to a steady state. The thermalization criterion used is the Kubo-
Martin-Schwinger condition.
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I. INTRODUCTION

The Boltzmann equation is of central importance in many
fields of physics and, since its original formulation in the
theory of gases it has received a whole range of extensions to
other domains like plasma physics, nuclear physics, or semi-
conductors. In these fields, Boltzmann scattering integrals
are extensively used to model relaxation and thermalization
processes. Adapted versions of the H theorem ensure that,
indeed, the equations describe the steady evolution of the
system towards the proper thermal equilibrium. Early at-
tempts to derive this irreversible behavior from the quantum-
mechanical evolution have shown1 that the range of validity
of Boltzmann-like equations correspond to the low-coupling,
slowly varying, long-time regime.

In more recent years with the experimental possibility to
produce and control transport and optical phenomena at ul-
trashort time scales, quantum-kinetic theories2,3 have been
devised in order to describe rapid processes in which coher-
ence is still present, together with the onset of dephasing and
relaxation. This means that the kinetics has to describe not
only real-number quantities like occupation probabilities, but
also complex, off-diagonal density-matrix elements, and
their interference effects.

Not only fast dynamics, but also the necessity to extend
the theory beyond the weak-interaction limit has prompted
the development of quantum kinetics. A typical example is
provided by the interaction of carriers with LO phonons in
semiconductor quantum dots, where a phonon bottleneck is
predicted by the Boltzmann result �see Ref. 4, and references
therein�, in contrast to the quantum-kinetic treatment of
quantum-dot polarons in the strong-coupling regime5 and
many experimental findings.

The quantum-kinetic theory using nonequilibrium Green’s
functions �GF� is one of the basic tools in this field. Its cen-
tral object is the one-particle, two-time GF, for which closed
equations are provided. Unfortunately, the large numerical
effort needed for solving these equations has limited previ-
ous applications of the two-time formalism to the early-time
regime. The method has been used to describe the ultrafast

optical excitation of semiconductors where the interaction of
carriers with LO phonons,6 the Coulomb interaction of
carriers,7,8 and their combined influence9 have been studied.
Calculations based on the two-time formalism also have
been applied in plasma physics10 and for nuclear matter.11

Since the physically relevant information �e.g., population
and polarization dynamics� is contained in the one-time GF
�the two-time GF at equal times�, it is clear that a closed
equation for this quantity would greatly simplify the proce-
dure. This explains the huge popularity of the generalized
Kadanoff-Baym ansatz �GKBA�,12 an approximation which
expresses the two-time GF in terms of its one-time compo-
nent.

The GKBA has been extensively used in the past for a
description of non-Markovian contributions to ultrafast re-
laxation and dephasing processes. Signatures of non-
Markovian effects have been investigated for the interaction
of carriers with LO phonons.13,14 Furthermore, the buildup of
screening has been studied on the basis of a quantum-kinetic
description using the GKBA �Refs. 15 and 16� and included
in scattering calculations.17,18 Results of the one-time and
two-time formulation have been compared for early times
addressing the carrier-carrier scattering10 as well as the inter-
action of carriers with LO phonons.19

Boltzmann-like kinetic equations are obtained from the
one-time theory based on the GKBA by further approxima-
tions: memory effects are neglected �Markov limit� and free
particle energies are used �low coupling limit�. One encoun-
ters therefore a situation in which only after taking two ma-
jor approximation steps, one reaches a kinetic theory for
which the physically expected correct relaxation behavior
can be proven analytically. To our knowledge, there is no
attempt in the literature to explore systematically the relax-
ation properties of either the two-time formalism or its one-
time approximation, despite their wide applications and the
obvious fundamental importance of the problem. For ex-
ample, the interest in laser devices based on quantum wells20

and quantum dots21 requires a good understanding of the
long-time behavior of the carriers in their evolution to equi-
librium. Furthermore, the importance of non-Markovian ef-
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fects in the quantum-kinetic treatment of optical gain spectra
for quantum-dot lasers has been discussed recently.22,23

In this paper, the relaxation properties in the long-time
limit are compared for the one-time and two-time quantum
kinetics. As a test case, we consider the interaction of carriers
with LO phonons in semiconductor nanostructures, which is
the dominant relaxation mechanism for low carrier densities
and elevated temperatures. We study the optical excitation of
quantum wells and quantum dots with short laser pulses and
calculate the dephasing of the coherent polarization together
with the relaxation and thermalization of the excited carrier
populations. The equilibrium state of the interacting system
is defined by the Kubo-Martin-Schwinger condition. We in-
vestigate if and under which conditions this equilibrium state
is reached in the time-dependent solution of the quantum
kinetic models. This provides a unique way to address the
range of validity of the involved approximations.

II. RELAXATION PROPERTIES OF THE BOLTZMANN
EQUATION

The Markovian limit of the kinetics, as described by the
Boltzmann equation, is a good example to start with, because
its relaxation properties are well understood and rigorously
proven. To be specific, we consider the Hamiltonian for the
interacting system of carriers and phonons

He-ph = �
i

�iai
†ai + �

q
��qbq

†bq + �
i,j,q

Mi,j�q�ai
†aj�bq + b−q

† � ,

�1�

where i , j are indices for the carrier states and the momentum
q is the phononic quantum number. The corresponding cre-
ation and annihilation operators for carriers and phonons are
given by ai

†, ai and bq
†, bq, respectively. The Boltzmann equa-

tion for the time evolution of the average occupation number
�population distribution� f i= �ai

†ai� has the form

�f i

�t
= �

j

�Wi,j�1 − f i�f j − Wj,i�1 − f j�f i� , �2�

with the transition rates given by Fermi’s golden rule

Wi,j =
2�

�
�

q
�Mi,j�q��2�Nq���i − � j − ��q�

+ �Nq + 1����i − � j + ��q�� . �3�

For a phonon bath in thermal equilibrium, Nq is a Bose-
Einstein distribution with the lattice temperature, and the �
functions ensure the strict energy conservation in the j→ i
transition process assisted by either the absorption or the
emission of a phonon.

The following properties of Eq. �2� can be analytically
proven: �i� the total number of carriers �i f i is conserved, �ii�
positivity is preserved, i.e., if at t=0 one has f i�0 then this
remains true at any later time, �iii� the Fermi distribution
f i= �e−���i−	�+1�−1 is a steady-state solution of Eq. �2�, and
�iv� this steady state is the large time limit of the solution
f i�t� for any positive initial condition provided a certain con-

nectivity property holds. This property is fulfilled if any state
of the carrier system can be reached from any other state
through a chain of transitions having nonzero rates. The tem-
perature of the stationary Fermi distribution is the lattice
temperature, and the chemical potential is fixed by the total
number of carriers. If the set of carrier states is not connected
in the above sense, any connected component behaves like a
separate fluid and reaches equilibrium with its own chemical
potential.

As satisfying as this picture looks, several problems arise
here. The carrier-phonon interaction is essential as a relax-
ation mechanism but the carrier energies themselves are
taken as if unaffected by it. Both in the energy conserving �
functions and in the final Fermi distribution these energies
appear as unperturbed. This corresponds to a low-coupling
regime, which may not be valid in practical situations. Even
in weakly polar semiconductors like GaAs, the confined na-
ture of the states in quantum wells �QWs� and even more so
in quantum dots �QDs�, gives rise to an enhanced effective
interaction.24 For higher coupling constants one expects de-
partures from the simple picture discussed above. Moreover,
in the case of a strong coupling and with the inclusion of
memory effects, neglected in the Markovian limit, the energy
conservation is not expected to hold. Finally, and specifically
for LO phonons, their dispersionless spectrum, associated
with strict energy conservation turns the system into a dis-
connected one. Indeed, each carrier can move only up and
down a ladder with fixed steps of size ��LO but cannot jump
on states outside this ladder. A phonon bottleneck effect in
QDs was predicted on these grounds.4

III. STATEMENT OF THE PROBLEM

It is clear that in most practical cases one has to turn to
quantum-kinetic treatments in which both energy renormal-
izations and memory effects are considered. Such formalisms
are provided by the two-time Green’s function kinetics or by
one-time approximations to it. In view of the discussion of
the previous section, the following questions, regarding the
relaxation properties of the quantum kinetics, are in order: �i�
Is the particle number conserved? �ii� Is positivity con-
served? �iii� Is the system evolving to a steady state? �iv� If
yes, is this steady state a thermal equilibrium one? In what
sense?

To our knowledge, with the exception of the first question,
which can be easily answered affirmatively, there is no defi-
nite and proven answer available in the literature. The aim of
the present paper is to investigate how numerical solutions of
the quantum-kinetic equations for realistic situations behave
in the discussed respects. For this purpose, we compare the
results of the two-time and the one-time approach.

IV. TWO-TIME QUANTUM KINETICS

In this section we specify the Hamiltonian, Eq. �1�, for the
case of a homogeneous two-band semiconductor, where car-
riers interact with LO phonons via the Fröhlich coupling,
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He-ph = �
k,


�k

ak,


† ak,
 + �
q

��qbq
†bq

+ �
k,q,


gqak+q,

† ak,
�bq + b−q

† � . �4�

The carrier quantum numbers are the band index 
=c ,v and
the three-dimensional �3D�—�for the bulk case� or two-
dimensional �2D�—�for QWs� momentum k. The coupling is
defined by gq

2	� /q2 for the 3D case, or by gq
2	�F�q� /q for

the quasi-2D case, with the form factor F�q� related to the
QW confinement function and the Fröhlich coupling constant
�. Additional terms to this Hamiltonian describe the optical
excitation and the Coulomb interaction in the usual way.3 We
consider only sufficiently low excitations so that carrier-
carrier scattering and screening effects are negligible. Then
the only contribution of the Coulomb interaction is the
Hartree-Fock renormalization of the single particle energies
and of the Rabi frequency.

The object of the kinetic equations is the two-time GF,

Gk

,
��t1 , t2�=Gk


,
��t , t−��. We use the parametrization of the
two-time plane �t1 , t2� in terms of the main time t and relative
time �. One can combine the two Kadanoff-Baym
equations25 which give the derivatives of the GF with respect
to t1 and t2, according to � /�t=� /�t1+� /�t2 and � /��=
−� /�t2 in order to propagate the solution either along the
time diagonal �t equation� or away from it �� equation�. As
two independent GFs we choose the lesser and the retarded
ones, and limit ourselves to the subdiagonal halfplane ��0,
since supradiagonal quantities can be related to subdiagonal
ones by complex conjugation. With these options and in ma-
trix notation with respect to band indices, the main-time
equation reads

i�
�

�t
Gk

R,�t,t − �� = �k
��t�Gk

R,�t,t − ��

− Gk
R,�t,t − ���k

��t − ��

+ 
i�
�

�t
Gk

R,�t,t − ��

coll

, �5�

where the instantaneous self-energy contains the external and
the self-consistent field

�k
��t� = � �k

c − ��R�t�
− ��R

*�t� �k
v � + i��

q
VqGk−q

 �t,t� . �6�

The collision term in Eq. �5� has different expressions for GR

and G,


i�
�

�t
Gk

R�t,t − ��

coll

= 
t−�

t

dt���k
R�t,t��Gk

R�t�,t − ��

− Gk
R�t,t���k

R�t�,t − ��� , �7�


i�
�

�t
Gk

�t,t − ��

coll

= 
−�

t

dt���k
RGk

 + �k
Gk

A − Gk
R�k



− Gk
�k

A� . �8�

The time arguments of the self-energies and GFs in Eq. �8�

are the same as in Eq. �7� and are omitted for simplicity. The
advanced quantities are expressible through retarded ones by
conjugation. The self-energies are computed in the self-
consistent random phase approximation �RPA� scheme and
have the explicit expressions

�k
R�t,t�� = i��

q
gq

2�Dq
��t − t��Gk−q

R �t,t��

+ Dq
R�t − t��Gk−q

 �t,t��� ,

�k
�t,t�� = i��

q
gq

2Dq
�t − t��Gk−q

 �t,t�� , �9�

with the equilibrium phonon propagator

Dq
��t� = −

i

�
�Nqe±i��qt + �1 + Nq�e�i��qt� . �10�

For practical calculations, we use dispersionless phonons
�q=�LO.

The above set of equations has to be supplemented by
specifying the initial conditions. For all the times prior to the
arrival of the optical pulse, the system consists of the
electron-hole vacuum in the presence of the phonon bath.
This is an equilibrium situation, characterized by diagonal
GFs, which depend only on the relative time. More precisely,
one has

GR�t,t − �� = �gc
R��� 0

0 gv
R���

� ,

G�t,t − �� = �0 0

0 − gv
R���

� , �11�

where gR is the retarded GF of the unexcited system. The
calculation of this GF is an equilibrium problem, namely that
of the Fröhlich polaron. The polaronic GF is the solution of
the � equation

�i�
�

��
− �k


�gk,

R ��� = 

0

�

d���k,

R �� − ���gk,


R ���� , �12�

in which, to be consistent with the t evolution described
above, the RPA self-energy is again used. The vacuum GF of
Eq. �11� is not only the starting value for the GF in the
main-time evolution but it also appears in the integrals over
the past which require GF values before the arrival of the
optical pulse. Moreover, the presence of the polaronic GF
brings into the picture the complexities of the spectral fea-
tures of the polaron, with energy renormalization and phonon
satellites. Finally, the decay of the polaronic GF introduces a
natural memory depth into the problem. An example is seen
in Fig. 1 where, due to a rather strong coupling constant and
a high temperature, the decay with the relative time � is
rapid. This allows to cut the infinite time integrals of Eq. �8�
at a certain distance away from the diagonal.

In Fig. 1 the momentum argument is replaced by the un-
renormalized electron energy E=�2k2 /2me

*. This change of
variable is allowed by the fact that the momentum depen-
dence of the polaronic GF is isotropic. The same energy
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argument is used in the subsequent figures, with the excep-
tion of Fig. 2 where the reduced mass is employed �E
=�2k2 /2mr

*� as being more appropriate in the case of the
polarization. The choice of an energy variable facilitates the
comparison with other energies appearing in the theory. For
instance, in Fig. 1 a somewhat slower decay is seen at low
energies and is a trace of the phonon threshold ���LO

=21 meV�. Also, in Figs. 2 and 3 below, the functions have
a peak around the detuning �120 meV�.

With the specification of the initial conditions, the prob-
lem to be solved is completely defined. After obtaining the
two-time GFs, the physically relevant information is found in
the equal-time lesser GF, which contains the carrier popula-
tions and the polarization. This program is carried out for the
case of a CdTe ��=0.31� QW at room temperature. The ex-
citation conditions are defined by a Gaussian-shaped pulse of
100 fs duration �full width at half maximum �FWHM� of the
intensity�, having an excess energy of 120 meV above the
unrenormalized band gap and an area of 0.05 �in � units�.
This gives rise to carrier densities in the order of 109 /cm2,
sufficiently low to neglect carrier-carrier scattering.

As seen in Figs. 2 and 3, the interaction of carriers with
LO phonons provides an efficient dephasing and leads, in a
subpicosecond time interval, to a relaxation of the electron
population into a steady-state distribution. The same is true
for the hole population �not shown�. Before discussing this
result we compare it to the outcome of the one-time calcula-
tion.

V. ONE-TIME QUANTUM KINETICS

To obtain from the Kadanoff-Baym equations for the two-
time GF a closed set of equations for the equal-time lesser
GF, G�t , t�, one can use the GKBA.12 The ansatz reduces
the time-offdiagonal GFs appearing in the collision terms of
Eq. �8� to diagonal ones with the help of the spectral �re-
tarded or advanced� GFs. Therefore, the GKBA has to be
supplemented with a choice of spectral GFs. In our case, it is
natural to use for this purpose the polaronic GF. For ��0,
this leads to the GKBA in the form

G�t,t − �� � i�gR���G�t − �,t − �� . �13�

The result of this procedure for the same system and using
the same excitation conditions as for the two-time calcula-
tion is shown in Fig. 4. We find that the steady state obtained
in this way differs appreciably from that of the two-time
calculation.

VI. THE KUBO-MARTIN-SCHWINGER CONDITION

For a fermionic system in thermal equilibrium, the fol-
lowing relationship connects the lesser and the spectral GF
�Ref. 2�

Gk
��� = − 2if���Im Gk

R��� ,

f��� =
1

e����−	� + 1
. �14�

In thermodynamic equilibrium, the GFs depend only on the
relative time and Eq. �14� involves their Fourier transform
with respect to this time. The relationship is known as the

FIG. 1. Absolute value of the polaronic retarded GF for elec-
trons in a CdTe QW at T=300 K. E=0 corresponds to the conduc-
tion band edge.

FIG. 2. �Color online� Time evolution of the coherent interband
polarization after optical excitation of a CdTe QW with a 100 fs
laser pulse centered at time t=0, using a two-time calculation.

FIG. 3. �Color online� Time evolution of the electron population
distribution for the same situation as in Fig. 2.

FIG. 4. �Color online� Time evolution of the electron population
distributions in a CdTe QW, using the same excitation conditions as
in Figs. 2 and 3 and a one-time calculation.
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Kubo-Martin-Schwinger �KMS� condition or as the
fluctuation-dissipation theorem, and leads to a thermal equi-
librium population given by

fk

 = − d��

�
f���Im Gk

R,

��� . �15�

The two-time theory provides the excitation-dependent re-
tarded GF along with the lesser one, the formalism being a
system of coupled equation for these two quantities. Ne-
vetheless, in the low excitation regime used here the differ-
ence between the actual retarded GF and its vacuum coun-
terpart gk,


R ��� turns out to be negligible, as can be checked
numerically. Therefore, the latter can be used in Eq. �15�
without loss of accuracy.

The thermal equilibrium distribution fk

 obtained from the

KMS condition is the generalization of the Fermi function of
the noninteracting case and is used as a check of a proper
thermalization. The test of the two steady-state solutions
against the KMS distribution function is seen in Fig. 5. The
two-time calculation is in good agreement with the KMS
curve, but the one-time evolution is not. It appears that the
one-time kinetics produces a steady state with a temperature
considerably exceeding that of the phonon bath.

It is to be expected, however, that for a weaker coupling
the discrepancy between the full two-time procedure and the
GKBA is less severe. This is indeed the case, as shown in
Fig. 6, where results for a GaAs ��=0.069� QW are given.
The wiggles seen in the two-time curve are traces of the
phonon cascade, which are still present. This is due to the
much longer relaxation time in low-coupling materials. Nev-
ertheless the trend is clear, the steady-state solutions of both
approaches are in good agreement with the KMS condition.

Another important example concerns a non-homogeneous
system. It consists of CdTe lens-shaped self-assembled QDs,
having both for electrons and for holes two discrete levels
below the wetting-layer �WL� continuum. These states are
labeled s and p, according to their z-projection angular mo-
mentum. We consider an equidistant energy spacing of
2.4��LO between the WL continuum edge, the p level and
the s level, for the electrons and a 0.27��LO similar spacing
for holes. The formalism used is the same as for the homo-
geneous systems but with the momentum replaced by a state
quantum number running over the discrete QD states and the
WL continuum. This amounts to neglecting GF matrix ele-
ments which are off-diagonal in the state index, but still
keeping off-diagonal terms with respect to the band index.
This has been shown to be a reasonable approximation for

FIG. 5. �Color online� One-time and two-time CdTe QW elec-
tron populations at t=1240 fs and the KMS result.

FIG. 6. �Color online� Electron population at t=1600 fs for a
GaAs QW and optical excitation with a 100 fs laser pulse at t=0.
Solutions of the two-time and the one-time quantum kinetics are
compared with the KMS result. Inset: same on semilogarithmic
scale.

FIG. 7. �Color online� Electron populations in the localized s
and p states of a CdTe QD and in the extended k=0 WL state after
optical excitation with a 100 fs laser pulse at t=0, as calculated
using the two-time kinetics. Open circles represent the equilibrium
values according to the KMS condition.

FIG. 8. �Color online� Same as Fig. 7, but using the one-time
kinetics. Note that an identical ordinate axis is used to facilitate the
comparison.
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QDs.5,26 Our calculations for this example include both lo-
calized QD and delocalized WL states. We consider a har-
monic in-plane confinement potential for the localized states
and construct orthogonalized plane waves for the delocalized
states in the WL plane. The strong confinement in growth
direction is described by a steplike finite-height potential.
Details for the calculation of interaction matrix elements are
given in Ref. 5. In Figs. 7 and 8, the time evolution of the
population of electrons is shown. The system is pumped
close to the renormalized p-shell energy with a 100 fs laser
pulse at time t=0. Therefore, the majority of the carriers is
initially found in the p state �which has a twofold degeneracy
due to the angular momentum in addition to the spin degen-
eracy�. Nevertheless, efficient carrier relaxation takes place,
even if the level spacing does not match the LO-phonon
energy, and a steady state is reached. The two-time results
are again in agreement with the KMS condition, shown by
open circles. The one-time evolution shows a non-physical
intermediate negative value for the WL population and con-
verges to a state in strong disagreement with the KMS result.

VII. CONCLUSIONS

The long-time behavior of different quantum kinetic ap-
proaches to the problem of carrier scattering by means of LO
phonons was analyzed, in order to assess their relaxation
properties. As a test of proper convergence to thermal equi-
librium, the KMS condition was used. We considered mate-
rials with low �GaAs� and intermediate �CdTe� Fröhlich cou-
pling. The results can be summarized as follows: �i� In both
the one-time and the two-time quantum kinetics steady states
are reached. �ii� The steady state produced by the two-time
approach obeys the KMS condition in all cases considered.
�iii� The one-time result agrees with the KMS condition only
at low coupling and differs considerably for larger ones.
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