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Optical transitions in a semiconductor quantum dot are theoretically investigated, with emphasis on the
coupling to longitudinal optical phonons, and including excitonic effects. When limiting to a finite number of
m electron and n hole levels in the dot, the model can be solved exactly within numerical accuracy. Crucial for
this to work is the absence of dispersion of the phonons. A suitable orthogonalization procedure leaves only
m�m+1� /2+n�n+1� /2−2 phonon modes to be coupled to the electronic system. We calculate the linear optical
polarization following a delta pulse excitation and, by a subsequent Fourier transformation, the resulting
optical absorption. This strict result is compared with a frequently used approximation modeling the absorption
as a convolution between spectral functions of electron and hole, which tends to overestimate the effect of the
phonon coupling. Numerical results are given for two electron and three hole states in a quantum dot made
from the polar material CdSe. Parameter values are chosen such that a quantum dot with a resonant sublevel
distance can be compared with a nonresonant one.
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I. INTRODUCTION

Quantum dots �QDs� based on semiconductor structures
have received great attention for almost two decades now.1

Whereas early experiments were only able to measure en-
semble averages over many quantum dots, it is nowadays
possible to address single quantum dots individually.2 Photo-
luminescence and more recently absorption3 has been mea-
sured with high spatial resolution, showing distinct lines re-
lated to individual dots �due to well width fluctuations in a
quantum well�. Using magnetophotoluminescence, detailed
information on energy levels and phonon coupling could be
extracted for single QDs made from II-VI semiconductor
material.4 This and related experimental work has enor-
mously stimulated investigations on the interaction between
the carriers on confinement levels and the surrounding polar-
izable medium on a microscopic level. A proper understand-
ing of the related dephasing mechanisms might become im-
portant in view of future quantum computation applications
based on semiconductor quantum dots.5

Carrier relaxation and dephasing in quantum dots cru-
cially depends on the interaction with lattice vibrations
�phonons�. At first sight, scattering with longitudinal-optical
�LO� phonons seems to be possible only if a sublevel spacing
matches the LO phonon energy ��0. In other �nonresonant�
cases, scattering is expected to be impossible �or at least
strongly reduced�. This is the so-called phonon-bottleneck
problem which has been discussed intensively in the
literature.6 The argument relies on the application of Fermi’s
golden rule, which demands energy conservation in each in-
dividual process. However, electron-phonon interaction in
quantum confined systems7,8 gives rise to a far more compli-
cated picture including: non-Markovian scattering, formation
of electron-phonon bound states with level repulsion, and
phonon satellites spaced at multiples of ��0.

The coupling of quantum dot levels to acoustic phonons is
responsible for another set of features. Due to their disper-
sion, the possible energy transfer covers a range from zero to
a maximum value �typically, a few meV� which is related to

the dot size. Consequently, phonon satellites appear here as
broad bands surrounding the zero-phonon line.9,10 The broad-
ening of this line itself is a subject of intense research. Simi-
lar to the phonon bottleneck problem mentioned above, an
advanced theory11 predicts a finite broadening even in cases
where the next confined level is far away in energy compared
to the maximal possible energy transfer.

In the present work, we want to focus on the interaction
with LO phonons. This is relevant for quantum dots made
from polar material like CdSe, where the Fröhlich interaction
with LO phonons is much stronger than the coupling to
acoustic phonons. Král and Khás12 have dealt with the LO
phonon bottleneck problem and found within a standard self-
energy approach �second order in the interaction�, an appre-
ciable broadening of the levels which persists even outside
the exact resonance. It has further been argued that relaxation
properties can be obtained from a convolution of the spectral
functions of the discrete energy levels.

Aiming at a nonperturbative treatment, a big advantage is
the dispersionless nature of the LO phonons which allows a
numerically exact treatment. We have derived in our previ-
ous paper, Ref. 13, an efficient scheme to calculate eigenen-
ergies and eigenvectors, which rests upon a unitary transfor-
mation of the phonons into a new set where only a few
modes are coupled to the electronic degrees of freedom. We
have calculated the electron spectral function and shown that
it consists of a series of discrete delta functions. They are
distributed around the bare level energies and at multiples of
the LO energy �phonon satellites�. Under resonance condi-
tions, the eigenenergies are still split in the form of avoided
level crossing. This is reminiscent of the Rabi splitting in a
two-level system coupled to monochromatic photons �which
formally replace the phonons�. The self-consistent second
Born approximation for the self-energy gives some gross fea-
tures of the spectrum, but has broadened levels instead of the
closely spaced discrete lines in the exact calculation. Thus,
we had concluded that this approximation fails if phonons
are coupled to discrete electronic levels. Recently, our nu-
merically exact treatment was used to assess results obtained
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via the Davydov’s canonical transformation.14

Looking at the influence of phonon interaction on the in-
terband transitions, one has to refer to a paper by Schmitt-
Rink and coworkers.7 They have shown that the phonon in-
teraction, in general, will increase with confinement �i.e., by
reducing the dot size�. For the Fröhlich coupling to LO
phonons, however, things are more subtle since here the dif-
ference in charge distribution between initial �valence band
sublevel� and final state �conduction band sublevel� enters.
Now, under strong confinement, the sublevel wave functions
are getting more similar. Therefore, the optical transition is
accompanied with practically no change in local charge dis-
tribution, and the net LO phonon coupling is drastically re-
duced.

In Ref. 12, it has been claimed that the interband absorp-
tion spectrum can be taken as a convolution of the one-
particle spectral functions for the electron and the hole. In
the present work, which extends Ref. 13 to a two-band
many-level situation and allows us to calculate the linear
optical response exactly, we will demonstrate the failure of
this convolution approach. Indeed, it is missing the correct
charge redistribution.

Absorption in QDs was discussed in Ref. 15 with empha-
sis on the nonadiabatic electron-phonon coupling, labeled as
phonon-assisted transitions in Ref. 13. In Ref. 16, a detailed
comparison between features in QDs and phenomena from
quantum optics was presented, again focusing on the
electron-phonon interaction. Recently, the absorption spec-
trum of individual QDs has been discussed for intraband17 as
well as for interband transitions.18 In the latter work, the
valence band levels were treated without phonon interaction,
which leads to an even more simplified form of the convo-
lution approach. However, the resonance condition �match-
ing a sublevel distance by ��0� can be obtained much easier
in the valence band since the sublevel spacing is here smaller
than in the conduction band.

The paper is organized as follows. In Sec. II, the model
and the Hamiltonian are presented, which includes both
carrier-phonon and carrier-carrier �Coulomb� interaction. In
Sec. III, we define and perform the unitary transformation
which reduces the number of bosonic modes coupled to the
fermionic states. This works if the phonons have no disper-
sion and makes a numerical diagonalization of the Hamil-
tonian feasible. Equations for the linear polarization in terms
of exact eigenstates are derived in Sec. IV, and the approxi-
mate convolution of electron and hole spectral function is
given as well. In Sec. V, numerical results for two prototype
quantum dots made from the polar material CdSe are pre-
sented and discussed. Several details on the transformations
and a list of material parameters are given in the Appendices.

II. THE MODEL

We start with the standard Hamiltonian, which couples the
band states in a semiconductor to the lattice displacement.
For the quantum dot, the confined electronic states in the
conduction �valence� band are given by fermionic creation
operators cj

†�v j
†�. The lattice vibrations are taken as longitu-

dinal optical phonons without dispersion ��0 and repre-
sented by bosonic operators bq

†

H = �
q

� �0bq
†bq + �

j

�� j
ccj

†cj + � j
vv j

†v j�

+ �
qjl

�bq + b−q
† ��Mqjl

c cj
†cl + Mqjl

v v j
†vl� . �1�

The coupling matrix elements Mqjl
a �a=c ,v� stem from the

Fröhlich interaction applied to the confinement wave func-
tions �see Appendix C for details�. Note that there is no pho-
non coupling between valence and conduction band states
since the energy gap is far greater than the LO phonon en-
ergy, while the distance between confined levels in one band
� j

a−�l
a�a=c ,v� may be well in the range of the phonon en-

ergy. Electron spin is not included here since spin relaxation
is a slow process compared to the spin-conserving electron-
phonon interaction. Similarly, phonon-assisted transitions
into the continuum of wetting layer states are not considered.
For simplicity, we restrict ourselves to the interaction with
bulk phonon modes, leaving the more precise picture of con-
fined and interface modes for future investigations.20

For treating optical transitions between the filled valence
band and the empty conduction band, it is convenient to
switch from the conduction-valence-band description used in
Eq. �1� to the electron-hole picture. This is accomplished by
the replacement

cj → ej, v j → hj
†. �2�

Using v j
†vl=� j,l−hl

†hj, the Hamiltonian is rewritten as

H = �
q

� �0bq
†bq + �

j

�� j
cej

†ej − � j
vhj

†hj� �3�

+ �
qjl

�bq + b−q
† ��Mqjl

c ej
†el − Mqlj

v hj
†hl�

+ �
j

� j
v + �

qj

�bq + b−q
† �Mqj j

v . �4�

Note that the phonon interaction now carries a negative sign
for the hole states compared to the electron states, which can
be traced back to the different charge sign of the excitations.
In Appendix A, we show that the last line can be dropped by
renormalizing the ground state energy.

As we are focusing on the linear response, the Coulomb
interaction leads to the formation of a single exciton only.
The relevant interaction term is

HC = − �
klij

vklijek
†hl

†hjei �5�

and has to be added to Eq. �3�. vklij denotes the Coulomb
matrix element between sublevel states �for details, see Ap-
pendix C�. Under strong confinement conditions considered
here, the confinement states are only reshaped marginally,19

and the Coulomb interaction leads to almost rigid shifts of
the transition energies �exciton binding energies�. However,
nondiagonal Coulomb couplings have to be included since
they can be of similar order as the phonon couplings and
modify the oscillator strengths as well.

T. STAUBER AND R. ZIMMERMANN PHYSICAL REVIEW B 73, 115303 �2006�

115303-2



III. REDUCING THE PHONON SUBSPACE

The phonon coupling in Eq. �3� involves only certain
combinations of phonon operators, e.g., �qMqjl

c bq. If we con-
sider a finite number �say m� of electron sublevels in the dot,
and n hole sublevels, there are m2+n2 such combinations �as
argued above, phonon-assisted transitions between conduc-
tion and valence bands are absent�. Since we are dealing
exclusively with confined states, the confinement wave func-
tions can be chosen to be real, and the symmetry Mqlj

a

=Mqjl
a holds. This reduces the linear independent combina-

tions to m�m+1� /2+n�n+1� /2.
A further reduction can be achieved since in the present

Hamiltonian, Eq. �3�, the number of electrons �Ne� and of
holes �Nh� are conserved quantities. Therefore, two �diago-
nal� fermion pairs in the interaction can be expressed by the
remaining ones. We choose

em
† em = Ne − �

j=1

m−1

ej
†ej, hn

†hn = Nh − �
j=1

n−1

hj
†hj , �6�

which gives additions to all the other diagonal coupling
terms and a c number remainder. In order to shorten the
subsequent writing, we introduce pair indices �=1, . . . , �N
−2� which combine either two electron sublevels �e : jl� or
two hole sublevels �h : jl�, with j� l. Caring for the different
signs in the interaction of Eq. �3�, we define in the conduc-
tion band

Mq� = Mqjl
c − � jlMqmm

c , �7�

and in the valence band

Mq� = − Mqlj
v + � jlMqnn

v . �8�

For treating the c number part properly, we have to introduce
one further index �=��N−1, with the matrix element

Mq� = NeMqmm
c − NhMqnn

v . �9�

Now, the interaction term of Eq. �3� reads

�
�=1

�−1

�A� + A�
†��c†c�� + �A� + A�

†� �10�

with a shorthand writing for the fermionic operators. Note
that for the nondiagonal terms j� l, we have to set, e.g.,

�c†c�� = ej
†el + el

†ej . �11�

The combinations of phonon operators entering Eq. �10� are

A� = �
q

Mq�bq �� = 1 ¯ �� , �12�

but the A� do not form an orthonormal set. As detailed in
Appendix B, we apply the Gram-Schmidt orthonormalization
scheme to generate new phonon operators B� which are
properly orthogonalized. The transformation is a linear one,

A� = �
	=1

�

I�	B	 �13�

and leads to the transformed Hamiltonian

H = �
�

� �0B�
†B� + �

j

�� j
cej

†ej − � j
vhj

†hj�

+ �
�=1

�−1

�
	=1

�

�I�	B	 + I�	
* B	

†��c†c��

+ �
	=1

�

�I�	B	 + I�	
* B	

†� . �14�

To arrive at the standard diagonal form of the free phonon
part, it was essential that the phonons have no dispersion.
Otherwise, the subset of B� would still mix with the remain-
ing phonon operators. These remaining degrees of freedom
only contribute to the free phonon energy and are omitted
from Eq. �14�.

A careful inspection of Eq. �14� shows that the bosonic
operator B� only appears as the last element in the last line of
Eq. �14� and in the free phonon part. It is, therefore, decou-
pled from the Hamiltonian and allows an independent solu-
tion in terms of a shifted oscillator,

B� = B� + I��/ ��0. �15�

Therefore, only

N =
m�m + 1�

2
+

n�n + 1�
2

− 2 �16�

new modes are coupled to the fermionic Hilbert space.
Assuming a symmetric dot shape, the confinement func-

tions are either even or odd, and the matrix elements Mqjl
a

have a definite parity in q, too. Consequently, the compound
matrix elements M�	 defined in Eq. �B5� vanish if � and 	
refer to different parity. Therefore, the tridiagonal matrix K
�and I as well� has a block structure, allowing the Gram-
Schmidt procedure to work in each block independently.
Note that the Coulomb matrix elements have an equivalent
parity and, therefore, do not mix these blocks. For certain
confinement potentials like the harmonic potential, the num-
ber of phonon modes can be reduced even further �see Ap-
pendix C�.

IV. LINEAR OPTICAL RESPONSE

In this section, we want to contrast the direct evaluation
of the time-dependent linear polarization and the absorption
spectrum with the so-called convolution approach: Here,
only the spectral functions of the electron and hole states are
calculated, and the absorption is taken as a convolution of
both quantities. Before deriving the corresponding formal
expressions, let us point out the main difference: For the
direct evaluation, we start from the electron-hole vacuum
�Ne=0, Nh=0� as the initial state and end up in the subspace
of one electron-hole pair �Ne=1, Nh=1�. For the convolution
approach, quite different subspaces are invoked, namely Ne
=0, Nh=0→Ne=1, Nh=0 for the electron spectral function,
and Ne=0, Nh=0→Ne=0, Nh=1 for the hole one. In dia-
gram language, any process which has a phonon correlation
between electron and hole levels is discarded in the convo-
lution approach. In Fig. 1, we display the relevant first order
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diagrams. The vertex diagram Fig. 1�d� describes interband
phonon correlations. In particular, under strong confinement
conditions, it compensates to a large extent the self-energy
type diagrams �Figs. 1�b� and 1�c��. Only the latter are kept
in the convolution approach, and we expect many strong
phonon satellites in this approximate treatment. Formally, in
the convolution approach, the matrix elements appear as
�Mc�2 or �Mv�2, while the full version includes the vertex
corrections containing McMv as well. For level-diagonal ma-
trix elements, this combines into �Mc−Mv�2. The appearance
of matrix element differences can be seen already in Eq. �3�.
Therefore, the near cancellation of changes in the charge
distribution7 can only be achieved when treating self-energy
and vertex diagrams on an equal footing. Note that excitonic
effects are completely absent within the convolution ap-
proach.

A. Direct evaluation

The coupling to the light is described within the dipole
approximation for interband transitions, adding

E�t��
ij

�
ijci
†v j + H.c.� �17�

as a perturbation to the Hamiltonian. The dipole matrix ele-
ments are given by an integral over the confinement func-
tions,


ij = 
cv� d3r�i
e�r�� j

h�r� , �18�

having as prefactor, the dipole moment between the valence
and conduction band 
cv.

The linear optical response follows from the polarization
after a unit-area delta pulse at t=0 and is given as dipole-
dipole-correlation function. Expressed via the electron and
hole operators, we have for t�0

P�t� = i�
ij,kl


kl
* 
ij�hl�t�ek�t�ei

†�0�hj
†�0�	 �19�

with the time dependence of the operators in the Heisenberg
picture. The expectation value is shorthand writing for the
statistical sum over initial states, which contain no electron-
hole pairs, and a thermal distribution of phonon mode occu-
pations n�=0,1 , . . . ,
. This is denoted by 
n� ,0	, with total
energy

E0 = � �0�
�

n�. �20�

Then, we proceed with

P�t� � i�
n�

e−�E0�
ij,kl


kl
* 
ij�n�,0
hl�t�ek�t�
n�,ij	 . �21�

In practice, the independent summation over phonon occu-
pations n� can be restricted to a maximum number which
depends on coupling strength and temperature, �=1/kBT.
For simplicity, we have omitted a prefactor which ensures
the proper normalization of the statistical sum.

While the zero-pair states 
n� ,0	 diagonalize the zero-pair
Hamiltonian properly, we need to look for the one-pair states
from the eigenvalue problem

�H + HC�1
�	 = E�
�	 . �22�

Due to the reduction of the number of bosonic modes, this
can be solved to be numerically exact by expanding into the
noninteracting one-pair basis 
n� , ij	.

Plugging all time dependencies together, we obtain

P�t� = i�
n�

e−�E0 �
ij,kl,�


kl
ije
i�E0−E��t/��n�,kl
�	��
n�,ij	 .

�23�

Starting with the initial value

P�t = 0� = i�
n�

e−�E0�
kl



kl
2, �24�

the polarization evolves in time as a sum over many indi-
vidual oscillations. Although each of these terms does not
have a damping, in the sum a general decay can be observed
�quasidephasing�, as shown in Sec. V.

The imaginary part of the Fourier transformation of the
polarization function yields the absorption spectrum,

	��� = Im�
−





dtP�t�ei�t �25�

� �
n�

e−�E0 �
ij,kl,�


kl
* 
ij�n�,kl
�	��
n�,ij	��E� − E0 − � �� .

�26�

Let us point out that the exact absorption spectrum consists
of delta peaks only. This was clear from the beginning since
a finite perturbation cannot change the character of the spec-
trum of the unperturbed system. Since we started from dis-
persionless bosonic modes, the discrete electronic spectrum
cannot be altered by the nonzero electron-phonon
interaction.21

B. Convolution approach

It has been argued in the literature12 that the convolution
of electron and hole spectral functions may give a reasonable
approximation to the absorption spectrum,

FIG. 1. �Color online� Diagrammatic expansion of the optical
polarization up to first order in the electron-phonon interaction.
Lines denote the electron �e� and hole �h� propagator, the dotted
line the phonon propagator, and the large dot stands for the optical
dipole matrix element. The zeroth order diagram �a� describes in-
terband transitions between confined states unaffected by the pho-
non interaction. In the convolution approach, only self-energy type
diagrams �b�, �c� are considered, while in the full evaluation, vertex
type diagrams �d� are included as well.
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	con��� �� d���
ij,kl


kl
* 
ijAki

e ����Alj
h �� − ��� . �27�

Indeed, avoiding the evaluation of the two-particle �i.e.,
dipole-dipole� correlation functions would be an important
reduction of the numerical labor, since the spectral function
is a genuine one-particle function. We concentrate on the
electron spectral function Aki

e ���, which is defined by

Aki
e ��� =

1

�
Re�

0




dtei�t�ek�t�ei
†�0�	 . �28�

Here, we need the exact eigenstates of the Hilbert space with
Ne=1, Nh=0, which will be denoted by He 
�	=E� 
�	. Simi-
lar arguments as used in deriving Eq. �23� lead to

Aki
e ��� � �

n�

e−�E0�
�

�n�,k
�	��
n�,i	��E� − E0 − � �� ,

�29�

where 
n� ,k	 is the �noninteracting� one-electron basis. Simi-
lar equations hold for the hole spectral function. Due to the
assumed dot symmetry, the only off-diagonal spectral func-
tion will be the hole spectral function related to h :13.

V. NUMERICAL RESULTS

We consider a prototype quantum dot of ellipsoidal shape
with CdSe as the semiconductor material. The relevant LO
phonon energy is ��0=24 meV. The larger mass of the holes
results in a smaller level distance in the valence band. In
order to cover a comparable energy range in the conduction
and the valence band, we take into account the two lowest
confined states in the conduction band �m=2� and the three
lowest confined states in the valence band �n=3�. In accor-
dance with Eq. �16�, we then have seven new phonon modes.

According to what has been said before, there is the odd
parity group ��=e :12, h :12, h :23� and the even parity
group ��=e :11, h :11, h :22�. The special mode �=��7
refers to the even parity group. Consequently, K and I de-
compose into a three-dimensional block for both parity
groups. Due to the harmonic potential, no extra bosonic
mode is assigned to the transition h :13, which can be ex-
pressed by other bosonic modes �see Appendix C�.

For characterizing the different dot sizes, we define the
first sublevel distance in each band �without phonon interac-
tion and exciton effects� as

�a � 
�2
a − �1

a
 �a = c,v� . �30�

In the sequel, we calculate the linear optical properties for
two selected dot sizes: The resonant quantum dot has perfect
resonance between phonon energy and sublevel distance in
the valence band, �v= ��0=24 meV, and consequently
�c=55 meV. In Fig. 2, the confinement levels for the reso-
nant QD are shown schematically. Vertical arrows mark the
nonzero optical transitions. The dotted lines denote phonon
processes. In the valence band, this is resonant with the sub-
level distance �real transition, driven by Mq12

v �. In the con-
duction band, a virtual process involving the diagonal matrix
element Mq11

c is depicted.

The second choice is backed by experimentally measured
level distances from Refs. 4 and 22 and comes out to be a
nonresonant quantum dot with �v=35 meV and �c

=80 meV. More details on the extraction of size parameters
are given in Appendix D.

A. Direct evaluation

To determine the full linear response, we need to solve the
eigenvalue problem for the one-pair subspace Eq. �22�. As
mentioned at the end of Sec. II, it will consist of six fermi-
onic pair states which are coupled to six bosonic modes. We
truncate the Hilbert space by allowing the sum of occupation
numbers in all six bosonic modes not to exceed seven. This
gives 1716 different bosonic states using the binomial coef-
ficient �13 over 6�. For the fermionic states 
jl	, we can ex-
ploit an additional parity symmetry. Thus, in total, two ma-
trices with 5148�5148 elements each have to be
diagonalized. At T=77 K, we have ���0=3.62, which tells
us that LO phonon emission processes are dominant. By
checking the convergence, we found that the first 1000 ei-
genvalues are sufficient to describe the spectra properly.

In dealing with the special phonon mode B7, we have to
evaluate the matrix elements between the unshifted oscillator
�in the initial state� and the shifted one �in the final state�,

�n,0
n�,s	 = e−s2/2 �
k=0

min�n,n��
�− 1�k+n�n ! n�!

k ! �n − k� ! �n� − k�!
sn+n�−2k.

�31�

The shift parameter is given as the second argument in the
state, here s= I77/ ��0. In the polarization, this part gives rise
to an additional factor of

�
n7,n7�

e−�n7��0ei�n7−n7�−s2��0t
�n7,0
n7�,s	
2. �32�

Note the appearance of s2�0 as a correction to the final state
energy. For the absorption spectrum, first the spectrum with-
out the special mode is calculated, and subsequently spec-

FIG. 2. �Color online� Schematic band diagram with sublevel
spacings corresponding to the resonant quantum dot. Vertical ar-
rows: optical transitions, dotted lines: phonon processes. For further
explanation, see text.
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trally displaced and added up, as the Fourier transform of Eq.
�32� dictates.

The temporal decay of the polarization amplitude 
P�t�
 is
displayed in Fig. 3 for the resonant QD. In the calculation,
we have taken into account only transitions which are ener-
getically close to the �lowest� h1-e1 exciton. Thus, phonon
satellites and the interference with the other transitions are
suppressed. This spectral window would correspond to a
finite-duration excitation pulse. For an elevated temperature
of 300 K, the initial decay goes much faster, which re-
sembles a traditional temperature-dependent dephasing.
However, at larger times, the polarization oscillates irregu-
larly around a finite value �therefore, we would like to use
the term quasidephasing�.

A similar dynamical decay due to incommensurate ener-
gies has been discussed in Refs. 16 and 23. In real systems,
these LO phonon beats will be damped finally by anharmo-
nicity effects.24

For the absorption spectrum, we have chosen to broaden
all discrete lines in Eq. �25� with a fixed Gaussian of vari-
ance �=1 meV. In this way, we can visualize both, the tran-
sition energies and their oscillator strengths.

In Fig. 4, the absorption spectrum 	��� is shown for both
the nonresonant QD �left� and the resonant one �right�. In the
lower panels, all phonon couplings are included. A set of
closely spaced levels �bundle� is seen around the two main
optically allowed exciton transitions h1-e1 and h2-e2. The
excited-state bundle for the resonant QD exhibits a particular
broad range. A simple theory like, e.g., the second Born
approximation12 would give here a real broadening of the
line, which may be interpreted as a real dephasing process
via energy-conserving phonon emission. We see that in the
present exact treatment, the situation is a bit more complex
and can at best be called quasidephasing. Also, the compari-
son with the nonresonant dot �left� shows that quasidephas-
ing is in no way restricted to exact resonance. Although a
treatment of exciton occupation is outside the frame of the
present paper, this finding points to the absence of a clear
phonon bottleneck in polar quantum dots.

We have also calculated the spectrum for the reduced
model of level-diagonal phonon coupling Mqij

a ��ij �upper
panels in Fig. 4�. This case is known to be exactly solvable
and is called the Independent Boson Model, see Ref. 25. We
found excellent agreement supporting our method and could
justify the chosen truncation in boson occupation. The level-
diagonal absorption spectrum exhibits phonon satellites
which carry only a few percent of the total weight, leaving
the zero phonon line as the dominant feature. The inclusion
of the interlevel or nonadiabatic coupling thus changes the
absorption spectrum significantly which was already empha-
sized in Ref. 15.

In Fig. 5, we show the different contributions separately.
Without Coulomb interaction �upper panel�, the transitions
are slightly shifted compared to their bare positions marked
by dashed vertical lines. This allows us to extract a polaron

FIG. 3. �Color online� Temporal decay of the linear polarization
for the resonant QD at T=77 K �upper curves� and T=300 K �lower
curves�. The excitation pulse is centered around the lowest optical
transition �h1-e1 exciton� with a spectral window of ±12 meV. The
inset shows the initial decay.

FIG. 4. �Color online� Normalized absorption spectrum 	��� for
the nonresonant QD �left� and the resonant QD �right� at T=77 K.
The lower panels refer to the full model, while the upper panels are
restricted to level-diagonal phonon coupling. The bare h1→e1 tran-
sition energy is chosen as zero of energy.

FIG. 5. �Color online� Normalized absorption spectrum 	��� for
the nonresonant QD at T=77 K. Upper panel: without Coulomb
interaction. The transition energies without phonon interaction are
shown as vertical dashed lines which refer to the vertical arrows of
Fig. 2. Middle panel: all couplings and levels included. Lower
panel: only two hole levels included.
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shift of the lowest transition in the nonresonant QD of
4 meV. This is much smaller than the standard expression
for the polaron shift in bulk CdSe �electrons: 11.3 meV,
holes: 21.1 meV� and shows indeed the strong charge can-
cellation in a QD as discussed in Ref. 7. In addition, the
restriction to a finite number of sublevels might underesti-
mate our calculated QD polaron shift. The comparison with
the full calculation including phonon and Coulomb interac-
tion �middle panel� shows the importance of the exciton ef-
fect. There is a general shift which is related to the dominant
diagonal Coulomb matrix element v1111=67.4 meV. How-
ever, the competition between nondiagonal Coulomb interac-
tion and phonon coupling �which are of the same order of
magnitude� modifies the spectrum in a complex manner and
cannot be reduced to a rigid spectral shift. This clearly shows
the importance of excitonic effects in the absorption spec-
trum of strongly polar quantum dots.

In the lower panel, results of a calculation with only two
hole levels are shown. The h3-e1 transition and its excitonic
modification is, of course, missing here. Nevertheless, the
basic features in the spectrum prevail. The polaron shift is a
bit smaller and the spectrum is less “smeared out” compared
to the full model with three hole levels �middle panel�.

B. Convolution approach

Performing the unitary transformation described in Sec.
III on the Hamiltonian for each band separately, we end up
with a model containing three bosonic modes for the conduc-
tion band and six bosonic modes for the valence band. Using
the conservation of the electron �hole� number and again a
parabolic confinement potential, we finally have to diagonal-
ize a Hamiltonian with two bosonic modes and two fermi-
onic states for the conduction band and four bosonic modes
and three fermionic states for the valence band. For the two-
state model, this has been discussed at length in our previous
paper, Ref. 13.

Within the convolution approach, excitonic effects can
only be included approximately by a rigid shift of the spec-
trum using an ad hoc exciton binding energy. In the follow-
ing discussion, we want to demonstrate that even the
electron-phonon interaction is not treated appropriately.
Therefore, we have no Coulomb interaction in this subsec-
tion.

In Fig. 6, the absorption spectrum 	con��� from the
convolution of the spectral functions Eq. �27� is shown for
the nonresonant case. In order to reach the same �artificial�
broadening of the spectrum, we have to broaden the spectral
functions with a Gaussian of reduced variance,
�=1/�2 meV.

The inclusion of nondiagonal phonon matrix elements
�lower panel� is not so important here, as the spectrum is
dominated by strong phonon satellites. A comparison with
the exact spectrum �neglecting excitonic effects� of Fig. 5
�upper panel� shows, however, that these satellites are much
too strong. As discussed at the beginning of Sec. IV, it is the
correlated phonon scattering between electron and hole states
which reduces the satellite structure appreciably. Thus, the
one-particle spectral functions are not able to describe the

optical transitions properly. Thus, we conclude that the con-
volution approach as applied in Refs. 12 and 18 is insuffi-
cient, even if the phonon coupling is of moderate strength, as
in the present example.

VI. SUMMARY

We have presented a solvable model which describes the
optical properties of a single quantum dot interacting with
LO phonons and includes exciton formation. The linear po-
larization and the corresponding absorption spectrum is cal-
culated by diagonalizing the appropriate Hilbert space of six
electronic levels and six bosonic modes split off from the full
phonon modes via an orthogonalization procedure. The cor-
rect evaluation of the two-particle dipole-dipole-correlation
function is contrasted with a simplified approach using the
spectral convolution of one-particle spectral functions. The
numerics shows this convolution approach to be inadequate,
as it gives phonon satellites strongly enhanced compared to
the correct result. Qualitatively, this can be traced back to a
missing compensation between different contributions in a
diagrammatic analysis.

Parameter values for CdSe quantum dots are used, and a
comparison between resonant and nonresonant QDs is car-
ried out. Signatures of the phonon bottleneck are found, i.e.,
a stronger quasidephasing for the resonant case, but this is
not as dramatic as simple arguments using Fermi’s golden
rule for phonon emission would predict.
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APPENDIX A: ELECTRON-HOLE TRANSFORMATION

Switching from the conduction-valence-band description
to the electron-hole picture produces a shift in the bosonic

FIG. 6. �Color online� Normalized absorption spectrum 	con���
obtained from convoluting the spectral functions for electron and
hole in the nonresonant QD. The transition energies without phonon
interaction are shown as vertical dashed lines. The upper panel re-
fers to the diagonal phonon coupling, while the lower panel in-
cludes all coupling matrix elements.
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operators. Here, we show that only the shift of the zero-
momentum mode survives.

To proceed, we have to use the complete form of the
confinement wave function including the Wannier basis
wa�r� of the band under consideration,

� j
a�r� = �

R
� jR

a wa�r − R� , �A1�

where � jR
a is the envelope part �called confinement function

in the previous sections�. The orthogonality of the �real�
wave functions induces

� jl = �
�

d3r� j
a�r��l

a�r� = �
R

� jR
a �lR

a , �A2�

since the Wannier functions are orthogonal on different lat-
tice sites R�R�. Dropping prefactors, we evaluate

�
j

Mqj j
a � �

�

d3r �
RR�j

� jR
a � jR�

a eiqrwa�r − R�wa�r − R�� � Cq.

�A3�

The sum over j gives a Kronecker symbol �RR� due to the
completeness of the coefficients � jR

a . The remaining integral
simplifies to

Cq = �
�

d3r�
R

eiqrwa
2�r − R� = �

�

d3r�eiqr�wa
2�r���

R
eiqR.

�A4�

The last sum over R produces N�q0, where N is the number
of elementary cells �0 within the normalization volume,
�=N�0. Altogether, we have

Cq = �q0N . �A5�

Therefore, the correction in the last line of Eq. �3� reduces to
zero momentum,

�b0
† + b0��N � �0	v�q�,	v�q� =� 1

�0

e2

2q2�0
� 1

�


−
1

�S

 .

�A6�

In the prefactor 	v�q�, we let q→0 at the end.
In order to remove the last line from the Hamiltonian, the

zero-momentum phonon operator is shifted according to

b0 + 	v�q��N/ � �0 → b0, �A7�

which brings from the free phonon Hamiltonian, a quadratic
contribution N	v

2�q�. Together with the valence energy sum,
this gives an unimportant c number contribution which can
be dropped. However, the electron-phonon interaction is get-
ting an addition at q→0, too. Due to the orthogonality of the
confinement functions, we have in leading order

Mqjl
a =���0

N
	v�q��� jl + O�q�� , �A8�

which gives as correction

− 2	v
2�q��ei

†ei − hi
†hi� . �A9�

However, this term vanishes for any state having no or an
equal number of electrons and holes �charge neutrality�. For
optical excitation and recombination, this is just the relevant
sector of the Hilbert space. Therefore, the singularity in
	v�q��1/q �which would have to be treated carefully� does
not contribute to physical quantities.

Finally, we note that the above argument also holds for
acoustic phonons.

APPENDIX B: GRAM-SCHMIDT
ORTHONORMALIZATION

We apply the Gram-Schmidt scheme by first constructing
the orthogonal operator set

B̃1 = A1, B̃� = A� − �
	=1

�−1

�A�,B	
†�B	, �B1�

and normalizing it afterwards via

B� = N�B̃�,

where

N�
−2 = �B̃�,B̃�

†� . �B2�

The new operators obey the canonical commutation rules

�B�,B	
†� = ��	. �B3�

The final result can be written as a linear transformation

B� = N��
	=1

�

K�	A	. �B4�

By construction, K�	 is a tridiagonal matrix which has non-
zero elements for ��	 only. The key ingredient for its
evaluation is the commutator

�A�,A	
†� = �

qq�

Mq�Mq�	
* �bq,bq�

† � = �
q

Mq�Mq	
* � M�	,

�B5�

and we get a recursive determination according to

K�� = 1,

K�	 = − �
�=	

�−1

N�
2K�	�

�=1

�

M��K��
* �� � 	� . �B6�

The norm follows from

N�
−2 = �

	,�=1

�

K�	M	�K��
* . �B7�

In order to transform the Hamilton operator to the new pho-
non operators B�, we need to invert Eq. �B4�,

A� = �
	=1

�

I�	B	. �B8�

Again, I is tridiagonal and can be determined quite easily via
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I�� = 1/N�, � � 	:I�	 = − �
�=	

�−1

K��I�	. �B9�

APPENDIX C: COUPLING MATRIX ELEMENTS

The standard Fröhlich coupling for the electron-LO-
phonon interaction is applied to the dot confinement states,

Mqjl
a =���0

�

e2

2q2�0
� 1

�


−
1

�S

�qjl

a ,

�qjl
a =� d3r� j

a�r�eiq·r�l
a�r� �a = c,v� . �C1�

In the subspace of one-electron-hole pair states, the Coulomb
interaction HC reduces to

�n�,kl
HC
n��,ij	 = − �n�,n
��
vklij , �C2�

which is diagonal in the phonon quantum numbers. The ma-
trix element is given by

vklij =� d3rd3r��k
c�r��l

v�r��
e2

4��0�S
r − r�

� j

v�r���i
c�r�

=
1

�
�
q

�qki
c e2

�0�Sq2�−qlj
v . �C3�

Diagonalizing the phonon-free part together with HC would
lead to �nonpolar� exciton transition energies. However, in
the present context, it is more appropriate �and easier� to
diagonalize phonon and excitonic effects together. Conse-
quently, the main interband transition energies are related to
exciton-polaron states in the quantum dot.

For simplicity, we consider an anisotropic parabolic po-
tential as a dot confinement for both, electrons and holes,
with x as the long axis. The three energetically lowest wave
functions are given by

�1
a�r� =

1

Na
exp −

1

2
� x2

Xa
2 +

y2

Ya
2 +

z2

Za
2
,

�2
a�r� = �2

x

Xa
�1

a�r�,

�3
a�r� = ��2

x2

Xa
2 −

1
�2


�1
a�r� , �C4�

where Xa�Ya ,Za are the spatial extensions �variances� of
the ground state, and Na

2=�3/2XaYaZa its normalization.
The matrix elements in Eq. �C1� and Eq. �C3� thus read

�q11
a = exp�−

1

4
�qx

2Xa
2 + qy

2Ya
2 + qz

2Za
2�
,

�q21
a = iqxXa/�2�q11

a ,

�q31
a = − qx

2Xa
2/�8�q11

a ,

�q22
a = �1 − qx

2Xa
2/2��q11

a ,

�q32
a = i�qxXa − qx

3Xa
3/4��q11

a ,

�q33
a = �1 − qx

2Xa
2 + qx

4Xa
4/8��q11

a . �C5�

Notice that �q22
v =�q11

v +�q31
v /�2. Therefore, one additional

bosonic mode can be eliminated.
The new coupling constants M�	 are obtained by integrat-

ing a pair of coupling constants Mqij
a over q, Eq. �B5�. This

final integration can be reduced to the following �elliptic�
integrals,

Jn = �
1




dt
t−n

�t�t − p��t − q�
�n = 0,1,2,3,4� �C6�

with p=1− �Ya
2+Yb

2� / �Xa
2+Xb

2��1 and q=1− �Za
2+Zb

2� / �Xa
2

+Xb
2��1. For a cylindrically symmetric potential with Ya

=Za, we have p=q, and the integrals reduce to simple ana-
lytic functions,

J0 =
1
�p

ln
1 + �p

1 − �p
, Jn+1 =

Jn − �n + 1/2�−1

p
. �C7�

The same type of integration over q appears in the Coulomb
matrix elements, Eq. �C3�. For example, the diagonal matrix
element for the lowest transition h1-e1 can be evaluated as

v1111 =
e2

�0�S
�Xc

2 + Xv
2

Jn=0

4�3/2 , �C8�

where p and q in Eq. �C6� are determined with a=c , b=v.

APPENDIX D: MATERIAL PARAMETERS

Parameter values for the polar semiconductor material
CdSe forming the quantum dot are from Ref. 26 as LO-
phonon energy ��0=24 meV, conduction band mass mc
=0.13m0, and valence band mass mv=0.45m0. Dielectric
constants have been taken from Ref. 27: �S=9.57, �
=6.27.

We assume that the confinement potentials of electrons
and holes are scaled by a fixed ratio � which equals the ratio
between conduction band offset and valence band offset for
barrier �ZnSe� and dot material �CdSe�, �=5.44.26 Applying
this to the parabolic potential, we find a unique ratio between
the lengths in the oscillator eigenfunctions, Eq. �C4�,

� �
Lc

Lv
= � mv

mc�

1/4

, �L = X,Y,Z� , �D1�

which equals �=0.89.
Since the x direction is taken as the longest one, the en-

ergetic distance between ground level �j=1� and first excited
level �j=2� is exclusively given by the x confinement,

�a � 
�2
a − �1

a
 =
�2

maXa
2 �a = c,v� . �D2�

Taking experimental values, which have been reported for
a certain CdSe quantum dot in Refs. 4 and 22 ��c
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=80 meV, �v=35 meV�, we obtain according to Eq. �D2�
Xc=2.71 nm and Xv=2.20 nm. This yields a length ratio of
�=Xc /Xv=1.23, which is larger than the value derived from
Eq. �D1�. However, a possible alloying of the QD material20

and deviations from the �idealized� parabolic confinement
potential may introduce substantial uncertainties. In the nu-
merical calculations, we have used �=1.23 throughout.

There is no direct experimental access to the size of the
QD in the other �shorter� directions. To keep things simple,
we take the same representative value for the two smaller
lengths: Yv=Zv=1.3 nm and Yc=Zc=�Yv=1.6 nm. The next
levels corresponding to this shorter length would have a
spacing of 100 meV in the valence band. Since this is larger
than twice the level spacing corresponding to the larger X
extension �70 meV�, we have properly selected the lowest
hole confinement states in Eq. �C4�.

It is easily seen from the parity of the oscillator wave
functions, Eq. �C4�, that the optical transitions h1→e2, h2
→e1, and h3→e2 are forbidden. The remaining nonzero
dipole matrix elements, Eq. �18�, can be expressed by the
same length ratio � introduced above. In units of 
cv, we find


11 = � 2�

1 + �2
1/2

, 
22 = � 2�

1 + �2
3/2

,


31 = − � �

1 + �2
1/21 − �2

1 + �2 . �D3�

With �=1.23, we get 
11=0.99, 
22=0.97, and 
31=0.14.
Such values very close to a Kronecker delta are typical for
the strong confinement in a quantum dot. The energetic dis-
tance between the dominant transitions equals �c+�v

=115 meV �without polaron and Coulomb corrections�.
Apart from the parameter set deduced from the experi-

mentally given level distances, we chose another one which
has perfect resonance between the hole level distance and the
LO phonon energy, i.e., �v=24 meV. This yields a some-
what larger QD with Xv=2.66 nm and Xc=�Xv=3.27 nm,
while keeping all the other parameters the same. The level
distance for the electrons amounts to be �c=55 meV, giving
an energetic distance between the main allowed transitions of
79 meV. We call this the resonant QD, while the parameter
set backed by experiment is referred to as the nonresonant
QD.

The diagonal Coulomb matrix elements are in the range
50–70 meV, which is four times the exciton binding energy
in bulk CdSe �15 meV� and quantifies the strong enhance-
ment of Coulomb effects in small QDs. The nondiagonal
Coulomb matrix elements are around 15 meV, which is com-
parable to the effective phonon coupling strengths.
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