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A method for the ab initio prediction of the EPR g tensor for paramagnetic defects in systems under periodic
boundary conditions is presented. It is based on density functional theory and the pseudopotential approxima-
tion. The formalism is applicable to crystalline and amorphous insulators, as well as to isolated molecules
using a supercell technique. The method is validated by comparison with a well-established theoretical ap-
proach and experimental data for a series of small isolated molecules. Finally the EPR parameters of an O3

−

defect in a KCl lattice are evaluated following the new procedure, yielding results in good agreement with
experiment and at an attractive computational cost.
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I. INTRODUCTION

Electron paramagnetic resonance �EPR� is one of the most
powerful spectroscopic techniques to identify paramagnetic
defects. The ab initio quantum mechanical prediction of EPR
quantities within density functional theory1,2 has become
possible through the pioneering work by Schreckenbach and
Ziegler.3 Since then, many other DFT-based approaches have
been published. A recent overview is given in Ref. 4. These
approaches are applicable to isolated systems only. Many
useful applications of the EPR technique, however, involve
paramagnetic defects embedded in crystals.

Recently, Pickard and Mauri5 presented an all-electron
implementation of the EPR g tensor applicable on extended
periodic systems, using their gauge including projector aug-
mented wave �GIPAW� method,6 which is based on an ex-
tension to the projector augmented wave �PAW� method of
Blöchl7 and the method of Mauri et al.8 �MPL�. Although the
original MPL method neglects the complications inherent
within the pseudopotential approximation, it was found to
successfully predict the nuclear magnetic resonance �NMR�
properties in extended systems for elements up to Ne. The
GIPAW method corrects for the deficiencies of the pseudo-
potentials, and in that sense one could consider it as an all-
electron approach. In Ref. 6, the GIPAW method was suc-
cessfully used for the calculation of all-electron NMR
properties.

Almost simultaneously Sebastiani and Parrinello9 pre-
sented a conceptually different approach for the calculation
of NMR properties in extended periodic systems �hereafter
referred to as the Sebastiani method�. The Sebastiani method
also lacks corrections for the use of pseudopotentials, and
therefore can be best compared with the MPL method. In the
prediction of NMR properties, its use is thus also limited to
elements up to Ne.

In this paper, we propose an alternative pseudopotential
approach for the calculation of the EPR g tensor in extended
periodic systems which relies on this Sebastiani method. It
was already suggested by Schreckenbach in Ref. 10 that the
pseudopotential approximation could also be used for the
evaluation of the g tensor, since the g tensor does not depend
as crucially on the region near the core as is the case for the
NMR shielding tensor. In that region, the pseudopotential

approximation does not correctly describe the nodal structure
of the electronic wave functions. However, no implementa-
tion was available yet that would validate or disprove this
assertion. By comparison with experimental data from
the literature and calculated results from Schreckenbach and
Ziegler, we will investigate for which elements and at what
computational cost our pseudopotential-based approach is
applicable. Finally, as a typical example of a system under
periodic boundary conditions, the proposed method is ap-
plied to an ozonide paramagnetic defect �O3

−� embedded in
an alkali halide lattice �KCl�.

II. THEORY

The energy levels and intensities derived from EPR ex-
periments can be reproduced using an effective Hamiltonian,
expressed in terms of effective spin operators S �electronic�
and In �nuclear�. This effective Hamiltonian generally con-
sists of three contributions,

Heff = �
n

S · An · In +
�

2
B · g · S + S · D · S . �1�

Here, An is the hyperfine tensor of rank 2 describing the
coupling between the electronic S and the nuclear I spin at
the center of a nucleus n. g is the g tensor, which describes
the coupling between the electronic spin system and a con-
stant external magnetic field B. D is the zero-field splitting
tensor arising from the magnetic dipolar interactions between
multiple unpaired electrons in the system. � represents the
fine-structure constant and the summation n runs over the
nuclei. Atomic units are used throughout this paper. We will
consider only systems with net electronic spin 1/2 in the
following, although the method can be expanded to higher
spin radicals.11

The g tensor from EPR spectroscopy is a second-order
property and can therefore be evaluated using double pertur-
bation theory. The perturbation parameters are components
along the axes of a given coordinate system of a constant
external magnetic field, Bx, and the net electronic spin com-
ponent, Sy,
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gxy =
2

�
� �2���Heff���

�Bx�Sy
�

B=S=0
. �2�

Using the Helmann-Feynman theorem of double perturba-
tion theory, which states that molecular orbitals have to be
calculated up to first order in one parameter alone, it is suf-
ficient to calculate the magnetic-field perturbed electronic
wave function and to consider only perturbing Hamiltonians
containing spin operators. In order to obtain a prediction for
the g tensor from first principles, we need to equate the ex-
pectation value expression of the effective Hamiltonian with
the one of a true quantum mechanical �QM� Hamiltonian in
the presence of a constant external magnetic field B,12

gxy =
2

�

�

�Bx
��Bx

�� �HQM

�Sy
�

S=0
���Bx

��B=0. �3�

Within the formalism of spin polarized density functional
theory, the following expression for the components of the g
tensor results:3,5,12

gxy = ge�xy + �gxy
ZKE + �gxy

SO + �gxy
SOO, �4�

where ge denotes the free electron g value, and

�gxy
ZKE = − �2ge�T� − T���xy �5�

is the electron Zeeman kinetic energy �ZKE� correction,
which is a purely kinematic relativistic correction.

A treatment for the spin-orbit �SO� contribution was
elaborated by Schreckenbach and Ziegler,3 and is used in
several other implementations,5,13,14

�gxy
SO

= ��ge − 1� � dr	jBx

� �r� � �Veff
� �r� − jBx

� �r� � �Veff
� �r�
y .

�6�

The spin-other-orbit �SOO� correction describes the
screening of the external field B by the induced electronic
currents, as experienced by the unpaired electron. An inge-
nious approximate treatment for the SOO contribution,
which is often found to be negligible, was suggested by Pick-
ard and Mauri,5

�gxy
SOO = 2� drBy,Bx

�r�	���r� − ���r�
 . �7�

In Eqs. �5�–�7�, the superscript � denotes the spin-up
channel and T� and �� are the unperturbed kinetic energy
and electron probability density of the spin � channel, re-
spectively. jBx

� �r� is the electronic current density of spin �

electrons, arising from a unit magnetic field coinciding with
the x axis. Veff

� �r� is an effective potential for the spin �
channel, defined as

Veff
� = �

n

− Zion,n

�r − Rn�
erf� �r − Rn�

rc,n
� + VH + VXC

� , �8�

where erf denotes the error function, Zion the ionic charge
�i.e., charge of the nucleus minus charge of the core elec-
trons�, VH the Hartree potential, and VXC the exchange cor-

relation potential. rc gives the range of the Gaussian ionic
charge distribution leading to the erf potential.15 Similar defi-
nitions apply to the spin-down channel, denoted with �. Fi-
nally, By,Bx

�r� is the y component of the magnetic field due to
the total induced current jBx

� �r�+ jBx

� �r�, corrected for self-
interaction by removing the contribution from the current of
the unpaired electron, jBx

� �r�− jBx

� �r�.

A. Evaluation of �gxy
ZKE

In a spin-polarized DFT run, one obtains expressions for
the KS orbitals and for the effective potential in both spin
channels. This easily allows us to evaluate Eq. �5�.

B. Evaluation of �gxy
SO and �gxy

SOO

In order to evaluate the more elaborate terms of Eqs. �6�
and �7�, we need to compute the spin-dependent current den-
sities jBx

	 �r� �	=� ,��, and therefore we make use of the tech-
niques proposed by Sebastiani and Parrinello9 to include
these spin-dependent current densities.

The main obstacle to evaluate these current densities is
the fact that the magnetic field perturbation Hamiltonian con-
tains the position operator. In a periodic system, this operator
is not properly defined. To deal with this problem, the Sebas-
tiani method makes use of maximally localized Wannier
�MLW� orbitals,16 which are obtained from the canonical KS
orbitals by means of a unitary transformation in the subspace
of occupied states,

�
k
�0�� = �

l

Ukl�
l
KS� . �9�

For an insulator it can be proven that these MLW orbitals
decay exponentially,17 a crucial feature in the approach.
Within the continuous set of gauge transformations �CSGT�
method,18 the electronic current density can be written as a
sum of three contributions,

j	�r�� = �
k

n	

�
k
�0��jr�	�
k

�1a�� − �
k
�1b�� + �
k

�1c��
 , �10�

with the current density operator jr�, 	=� ,�, and

�
k
�1a�� = �

l

Gkl�r − dl� � p�
l
�0�� · B , �11�

�
k
�1b�� = �

l

�r� − dk� � Gklp�
l
�0�� · B , �12�

�
k
�1c�� = �

l

Gkl�dk − dl� � p�
l
�0�� · B . �13�

Here, Gkl denotes the Green’s function and dk is the center of
charge of the corresponding MLW orbital. The Green’s func-
tion is given by

Gkl = �
o,u

Uko
† �
u��
u�

�o − �u
Uol, �14�

where �o and �u represent the Kohn-Sham energies of the
occupied and unoccupied orbitals, respectively.
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Within the CSGT method, the magnetic response is in-
variant under a translation of the coordinate system for every
individual orbital. This allows us to redefine the position
operator, thereby exploiting the spatial localization of the
MLW orbitals. A sawtooth-shaped position operator is con-
structed for every orbital featuring the same periodicity as
the simulation cell, with its geometric center located at the
center of charge of the corresponding orbital. In doing so, the
position operator has the required periodicity of the system,
although it shows unphysical behavior around the borders.
This, however, does not pose a significant problem as these
unphysical transitions of the position operator occur in those
regions of space where the state on which it is operating
vanishes anyway. It is important to note that for a system
with completely delocalized orbitals, like a metal, the decay
of the MLW orbitals is insufficient, and therefore this ap-
proach will likely fail, unless prodigious simulation cell di-
mensions are adopted. In that case, the MPL method will be
more efficient.

The actual calculation of the first-order corrections to the
KS orbitals in the magnetic field is not performed using
Green’s functions. Instead, they are computed by minimiza-
tion of the energy functional of second order in the magnetic
field, for which a variational principle applies,19 yielding
these first-order corrections.

The full evaluation of Eqs. �11� and �12� for all electronic
states k at once can be performed at the computational cost
of approximately one total energy calculation. On the other
hand, the computation of Eq. �13�, which often represents a
fairly small correction as compared to Eqs. �11� and �12�, is
much more intensive as it requires one calculation for every
electronic state k �although typically at a lower computa-
tional cost than one total energy calculation20,21�. This aspect
hinders the practical use of the Sebastiani method. However,
we do not always need to evaluate Eq. �13� for every elec-
tronic state k, as we will argue in the following. Since the SO
	Eq. �6�
 term is found to dominate the SOO 	Eq. �7�
 term
by far in most cases, we focus our attention on the former.

The integrandum of �gxy
SO is composed of a substraction

of spin � and spin � contributions. Assuming only small
differences between the two effective potentials Veff

� �r� and
Veff

� �r�, it is superfluous to calculate the corrections of Eq.
�13� to jBx

	 �r� for pairs of � and � states that remain unaf-
fected by the presence of the unpaired electron �and thus
resemble each other�, because they are canceled out anyway.
This is especially the case for paramagnetic defects embed-
ded in a crystalline environment, for which this theory is
intended. In that case the unpaired electron is often localized
in one part of the supercell and will affect merely its near
vicinity. Other parts of the periodic box such as the lattice
environment at a larger distance of the defect will be less
affected.

The overlap with the unpaired electron could be used as
an indicator that an evaluation of Eq. �13� may be needed for
a particular state. However, due to the Wannier localization,
the wave function of the unpaired electron is no longer di-
rectly available, because it has been mixed up with other
states during the unitary transformation. We therefore intro-
duced the root norm of the spin density as an alternative
indicator, as follows:

�k =� dr��spin�r�� · �
k�r�� . �15�

Only if an expansion coefficient �k exceeds a certain thresh-
old is the calculation of �
k

�1c�� performed. This approxima-
tion allows for a drastic reduction in computation time in the
study of paramagnetic defects in a crystalline environment,
without compromising the accuracy of the calculations. This
reduction is applicable only in the case of g tensor calcula-
tions and not, for example, in the case of NMR chemical
shielding tensor calculations, where Eq. �13� had to be ne-
glected in order to make the method computationally effi-
cient.

C. Implications of the pseudopotential approach

The method as described here was implemented in the
CPMD program package,22 a frequently used molecular dy-
namics code based on a plane-wave pseudopotential imple-
mentation, resulting in the absence of core electrons as well
as in an inaccurate description of the valence orbitals in a
spherical region around the core of each element defined
during construction of the pseudopotential, hereafter referred
to as the core region.

While this method has proven successful in describing
chemical bonding, no evidence is available that the use of
pseudopotentials could produce equally meaningful results
for the EPR g tensor. However, since the g tensor is essen-
tially a valence property10,23 and depends less critically on
the exact behavior of the electronic wave functions near the
cores �as compared to the NMR shielding tensor, for which a
pseudopotential approach does in fact work9�, we believed
that the g tensor would not suffer too much from the incor-
rect shape of the orbitals in the core regions.

By careful analysis of Eqs. �5�–�7�, we will now argue
that most of the errors introduced by the pseudopotentials
can be traced back to the incorrect shape of the unpaired
electron in the core regions.

�i� In the �gxy
ZKE term, spin � and � kinetic energies are

substracted from each other. The shape of the orbitals in the
core regions is largely determined by the strong attractive
nuclear potentials. For this reason, the faulty contributions
within the core regions in the kinetic energies from paired
electrons will cancel out. Thus, the main erroneous contribu-
tion comes from the kinetic energy part of the unpaired elec-
tron in the core regions. The �gxy

ZKE term is isotropic, and
these errors will therefore not influence the direction of the
principal axes.

�ii� The same considerations apply to the �gxy
SO term, in

which the erroneous contributions in the core regions from
paired electrons cancel each other out: due to the dominant
nuclear potentials, both effective potentials �and hence their
gradients� and the current densities from the paired electrons
will resemble each other in the core regions. Thus, the major
errors originate from the cross product of the current of the
unpaired electron and the gradient of the effective potential
in the core regions: 	jBx

� �r�− jBx

� �r�
��Veff�r�. Unfortunately,
the gradient of the effective potential largely favors the cur-
rent of the unpaired electron near the cores. In addition, the
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�gxy
SO term is found to be by far the most dominant contribu-

tion to the total g tensor.
�iii� In the �gxy

SOO term, the pseudopotential approximation
is expected to result in only small errors to the total �g
tensor, because the �gxy

SOO term is found to be very small in
comparison with the �gxy

SO term,5 and because both the in-
duced magnetic field and the spin density do not diverge near
the cores.

From this discussion we can conclude that, since �gxy
SO is

generally the most important term, a good description of the
current of the unpaired electron is the most essential precon-
dition for the success of our pseudopotential method. There
are some arguments why this will be the case even when
using pseudopotentials. At least for the free atom, the more
energetic orbitals do not suffer to the same extent from the
use of pseudopotentials in the core region. This is illustrated
in Fig. 1 for the 2s1/2 and 2p1/2 orbitals of the free O atom.
While the 2s1/2 wave functions completely deviate in the
core region, the 2p1/2 pseudo-wave-function still closely re-
sembles its all-electron counterpart. Close to the core, where
a wave function is essentially atomlike �because of the domi-
nating nuclear potential�, the unpaired electron wave func-
tion will mainly be composed of these more energetic atomic
orbitals. In addition, the construction of a pseudopotential for
a specific atomic element is not unique. An important degree
of freedom is the size of the core region �while acknowledg-
ing that the smaller the core region, the higher the computa-
tional cost�.

III. RESULTS

To validate our pseudopotential approach for the evalua-
tion of the g tensor, we made a comparative study with the
all-electron Schreckenbach and Ziegler �SZ� method as well
as with experimental data from the literature for a series of
small isolated molecules. We also included results from the
ZORA approach of Van Lenthe et al.,24 which is based upon
a different theoretical approach. We approximated the iso-
lated molecules in the CPMD program package by using large

supercells of �20 a.u.�3. After Wannier localization, we can
assume the Wannier orbitals to be so well confined within the
supercell that any errors due to the aforementioned non-
physical behavior of the coordinate operator are excluded.
The results given are a measure for the accuracy one can
expect from a pseudopotential approach without reconstruc-
tion techniques for the valence orbitals in the core region.
Troullier-Martins25 �TM� and Goedecker15 �GO� norm-
conserving pseudopotentials were used in this work. Plane-
wave cutoff values of 100 Ry �TM� and 150 �GO� were
found to yield more than reasonable convergence. These are
approximately 30 Ry higher than typically used to describe
chemical bonding. Optimized geometries were obtained with
the ADF26–28 package and used throughout. We used PBE29

gradient corrected functionals in all calculations, and a QZ4P
basis set for the nonperiodic calculations. We have also per-
formed the calculations using a BLYP30,31 functional, but the
results have not been reported here, since the choice of the
functional only marginally alters the results and does not
reveal any additional relevant aspects.

In Table I, the results for radicals composed of lighter
elements up to Ne are presented. For both types of pseudo-
potentials, there is a striking resemblance between our results
and those obtained using the SZ method. This accordance
could be expected, as both methods are closely related with
each other. The deviations that are present should be attrib-
uted almost entirely to the effects of pseudopotentials. More
insight can be gained from the statistical parameters �see
Table II� deduced from the three methods using the data of
Table I, whenever experimental results were available. In this
statistical study, the predictions of �gzz for the molecules
O2H and H2O+ have been omitted as they perturb completely
the statistical parameters for all methods. From Table II, the
good agreement between our results and the SZ results be-
comes particularly clear: the correlation coefficient, the cor-
relation slope, and the standard deviation all agree to within
5% �even within 1% for the GO results�, while the SZ
method, the ZORA method, and the experimental results de-
viate on a much larger scale. The good agreement is further
confirmed in Table III, where we compare the different con-
tributions to the g tensor for the O3

− molecule. Summarizing,
we believe that it is fair to state that our pseudopotential
approach performs equally well as the SZ method in predic-
iting �g values for lighter elements.

Less accurate results were obtained when studying radi-
cals with heavier elements than Ne, as can be observed from
Table IV. Here, the effects of the use of pseudopotentials
clearly become apparent, and the available results in Table
IV from Ref. 5 show the superior behavior of the GIPAW
method for these elements. In many cases, however, the cal-
culated numbers from our method still exhibit at least the
right trend. In order to produce better results for these
heavier elements, a smaller core region is required. This can
be accomplished by including more electrons explicitly in
the calculations than required to adequately describe chemi-
cal bonding. This will result in a much better description of
the electronic wave functions near the core, and as a result, a
reduced core region.

To illustrate this, we have plotted the 3s1/2 and the 3p1/2
wave functions for the free Si atom in Fig. 2, using the stan-

FIG. 1. 2s1/2 and 2p1/2 pseudo and all-electron wave functions
of the free O atom.
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dard Goedecker pseudopotential provided with the CPMD

package with 3s23p2 as valence states and a modified
Goedecker pseudopotential with 2s22p63s23p2 as valence
states, and compared it with the all-electron result. The
modified pseudopotential manifestly better reproduces the
correct oscillating behavior of the all-electron wave func-
tions in the core region, and hence will produce better results
for the g tensor. In order to describe these extra nodes cor-
rectly, a higher number of plane waves is needed in the basis
set, which can be computationally demanding. However, in
many cases this harder but more accurate pseudopotential
will yield better results at even moderate cutoff energies. We
have verified the previous statements for MgF, AlO, and
SiH3 in Table V. We found that an increase of the number of
valence electrons results in a better agreement already at
150 Ry, although a higher cutoff was needed to yield fully
converged results. In the study of paramagnetic defects em-
bedded in a crystalline environment, we therefore recom-
mend using a modified hard pseudopotential for the heavier
atoms of the defect, even at a lower plane-wave energy cut-
off.

TABLE I. Calculated �g values �in ppm� for a series of small
isolated molecules composed of elements up to Ne, using the stan-
dard Troullier-Martins and Goedecker pseudopotential sets supplied
with CPMD, in comparison with experiment and other treatments.
For comparison with the SZ results, we omit in this table the SOO
contribution to our calculations.

Molec. g value Expt.a

This methodb

SZb,c ZORAb,cTM GO

H2
+ �g� −31 −31 −40 −66

�g� −37 −37 −43 −68

O2H �gxx −800 −265 −272 −301 −2401

�gyy 5580 5692 5905 6322 5072

�gzz 39720 28007 27479 30391 90273

H2O+ �gxx 200 −174 −138 −204 −801

�gyy 4800 5013 5233 5106 7159

�gzz 18800 13048 13489 14416 47268

CO2
− �gxx −4800 −4814 −4674 −5537 −5312

�gyy −500 −986 −866 −798 −678

�gzz 700 569 599 742 1153

O3
− �gxx 200 −503 −507 −512 −441

�gyy 10000 8365 9244 10533 12565

�gzz 16400 17543 18240 17927 23041

CH3 �g� −105 −61 −89 −123

�g� 622 931 821 1147

NH3
+ �g� −138 −98 −149 −206

�g� 1834 2385 2195 3190

HCO �gxx −7500 −10108 −10329 −9764 −12372

�gyy 0 −136 −192 −263 −194

�gzz 1500 2848 2739 2832 3285

H2CO+ �gxx −800 −1307 −1300 −1408 −1899

�gyy 200 145 122 61 −282

�gzz 4600 6413 6519 6410 7510

BO �g� −800 −70 −77 −71 −118

�g� −1100 −2975 −2753 −2335 −2487

C3H5 �gxx 0 −106 −91 −110 −118

�gyy 400 528 872 704 887

�gzz 800 561 926 832 1084

CO3
− �g� 4300 4905 4848 3474 3330

�g� 11200 10985 12234 11952 17237

NO2 �gxx −11300 −14204 −14901 −14048 −16419

�gyy −300 −1118 −1029 −768 −734

�gzz 3900 2488 3084 4296 5044

CH4
+ �gxx 600 −114 −74 −108 −144

�gyy 600 556 862 739 988

�gzz 600 556 862 739 988

NF2 �gxx −100 −704 −745 −688 −324

�gyy 2800 2735 3493 4819 6532

�gzz 6200 6908 7752 7836 10866

NF3
+ �g� 1000 −797 −834 −586 −195

�g� 7000 4782 6011 8045 10356

CO+ �g� −3200 −3960 −3918 −3194 −3543

TABLE I. �Continued.�

Molec. g value Expt.a

This methodb

SZb,c ZORAb,cTM GO

�g� −1400 −80 −17 −136 −200

CN �g� −800 −134 −94 −134 −184

�g� −2000 −2835 −3223 −2556 −2730

NO3 �g� 4300 1237 1033 167 −261

�g� 13550 11202 12660 12261 16850

aExperimental values are quoted from Refs. 3 and 32. Most experi-
mental measurements were performed in solid matrices, with the
exception of O2H, H2O+, NO2, and NF2.
bUsing optimized geometries obtained with ADF �QZ4P basis set,
PBE functional�.
cThe g tensor principal values in the SZ and ZORA method were
computed in this work, using ADF �QZ4P basis set, PBE func-
tional�.

TABLE II. Statistics of the calculated �g values �in ppm� in the
various methods. All values are taken from Table I, whenever ex-
perimental results are available. The linear regression parameters
were obtained from a plot of the calculated versus the experimental
�g values.

This method

SZ ZORATM GO

Correlation coefficient 0.977 0.981 0.980 0.972

Correlation slope 1.034 1.102 1.094 1.365

Standard deviation 1170 1241 1228 2529

Maximum deviation −3063 −3601 −4133 6641

Mean unsigned error 901 929 890 1804

Mean signed error −435 −221 −94 528
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The real application field of the method undoubtedly lies
in the prediction of EPR parameters of paramagnetic defects
in a crystal environment. Therefore, we further validated our
approach by studying the O3

− radical in a KCl lattice, in
which as a function of the tilting angle � with �110� in the

�11̄0� plane, a metastable configuration at �=0° �untilted�
and a stable configuration at �=34° �tilted� have been found
theoretically,34 as illustrated in Fig. 3. We modeled the latter
with a 66-atom �31 Cl, 32 K, and 3 O� neutrally charged
cubic cell, using a Goedecker pseudopotential, a BLYP func-
tional, and a 80 Ry plane-wave cutoff, which is about the
lower limit for this type of pseudopotential to obtain good
results. In Table VI, the g values, as well as their principal
directions, and the hyperfine values �using a method due to
Van de Walle and Blöch,35 which we also implemented in
CPMD�, are shown. Except for the incorrect prediction of the
gxx shift, from which all theoretical methods seem to suffer
�see the O3

− molecule in Table I and Ref. 36�, a good agree-
ment with available experimental g values is found, within
the error margins of around 1000 ppm as argued by Neese in

TABLE III. Deviation from the SZ result of the different con-
tributions to the g values of O3

−, using Goedecker pseudopotentials.

abs. error �ppm� pct. error �%�

�gZKE 8 2.2

�gSO

�gxx
SO 3 1.6

�gyy
SO 1297 11.9

�gzz
SO 305 1.7

TABLE IV. Calculated �g values �in ppm� for a series of small
isolated molecules with heavier elements than Ne, using the stan-
dard Goedecker pseudopotential sets supplied with CPMD, in com-
parison with experiment and other treatments. For comparison with
the SZ results, we omit in this table the SOO contribution to our
calculations.

Molec. g value Expt.a

This methodb

ZORAb,c GIPAWdGO SZb,c

MgF �g� −300 −7 −59 −81 −49

�g� −1300 −1091 −2156 −1968 −2093

SO3
− �g� −450 −43 162

�g� 1315 2008 2746

SO2
− �gxx −400 −220 −352 −531

�gyy 3400 3796 4881 4901

�gzz 9700 4565 4999 5030

ClO3 �g� 5000 801 1133 2091

�g� 6000 4908 5680 6707

ClO2 �gxx 1300 −241 −487 −666

�gyy 6500 7107 11481 12458

�gzz 16000 9887 13193 15637

AlO �g� −900 −59 −137 −364 −141

�g� −2600 3543 −2192 1128 −2310

BS �g� −700 −21 −81 −471 −80

�g� −8100 −976 −10123 12276 −9901

KrF �g� −2000 −185 −337 −16603 −340

�g� 66000 30916 61668 26471 61676

XeF �g� −28000 −173 −334 −67027 −333

�g� 124000 19128 157380 94719 151518

SiH3 �g� 1000 2 −111 −151

�g� 5000 128 2570 3779

GeH3 �g� 1000 −19 −65 −1675

�g� 15000 67 18591 24104

SnH3 �g� 1000 −21 −248 −11219

�g� 23000 14 36929 47031

aExperimental values are quoted from Ref. 3. All experimental mea-
surements were performed in solid matrices.
bUsing optimized geometries obtained with ADF �QZ4P basis set,
PBE functional�.
cThe g tensor principal values in the SZ and ZORA method were
computed in this work, using ADF �QZ4P basis set, PBE func-
tional�.
dResults from Pickard and Mauri �Ref. 5�.

FIG. 2. 3s1/2 �upper graph� and 3p1/2 �lower graph� orbitals of
the free Si atom using a soft and a hard Goedecker pseudopotential.
Note that the hard pseudopotential �PSP� 3p1/2 orbital corresponds
entirely with its all-electron counterpart.
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Ref. 36. The directions of the principal axes are equally well
predicted: the theoretical directions do not deviate from ex-
periment by more than 0.7 degrees, and often only
0.2 degrees.

One of the goals of this paper is to present an efficient
method for the calculation of the g tensor in extended peri-
odic systems at a reasonable computational cost. In this con-
text, we proposed a selection criterion to pick out those elec-
tronic states for which a calculation of the computational
expensive �
k

�1c�� term 	Eq. �13�
 is needed to get the required
accuracy. Obviously, the lower the threshold value �thres, the
more attractive the method becomes due to the reduction of
the computational effort. The determination of this threshold
value should be submitted to a careful investigation to guar-
antee sufficient convergence, but the proposed selection cri-
terion turns out to be very efficient, as will be shown now. In
Fig. 4, we plot the correlation of the theoretical predictions
of �g with respect to the experiment for the O3

− radical in a
KCl lattice. We considered the two extreme cases �full cal-
culation of �
k

�1c�� versus complete neglect of this term� and

the intermediate case completely determined by the chosen
threshold value �thres �in the figure a value of 0.01 was used�.
The numerical results of Fig. 4 obviously stress the impor-
tance of taking into account the contributions of the �
k

�1c��
term, but a full calculation is far from being a prerequisite as
the threshold algorithm manifestly predicts the same values.
The computational effort of the threshold calculation was
only little more than needed for the calculation in which
�
k

�1c�� was completely neglected.

TABLE V. Calculated �g values �in ppm� for some selected
molecules from Table IV, using harder pseudopotentials for the
heavier elements Mg, Al, and Si. For comparison with the SZ re-
sults, we omit in this table the SOO contribution to our calculations.

Molec. g value

This method

SZ150 Rya 150 Ryb 200 Ryb

MgF �g� −1091 −1734 −1813 −2156

�g� −7 −17 −17 −59

AlO �g� −59 −101 −100 −137

�g� 3543 −634 −1942 −2192

SiH3 �g� 2 −61 −68 −111

�g� 128 2125 2656 2570

aUsing standard Goedecker pseudopotentials supplied with CPMD.
The following states were explicitly used in the calculations: 3s2 for
Mg; 3s23p1 for Al; 3s23p2 for Si.
bUsing modified Goedecker pseudopotentials. The following states
were explicitly used in the calculations: 2s22p63s2 for Mg;
2s22p63s23p1 for Al; 2s22p63s23p2 for Si.

TABLE VI. Calculated EPR values ��g values in ppm, hyper-
fine values in Mhz� for O3

− in KCl in the tilted configuration ��
=34° �.

g tensor Expt.33 This method

�gxx 681 −452

�gyy 15981 16839

�gzz 9381 9434

�= � �gyy� with �110� 35° 34.8°

��gyy� with �11̄0� 0° 0.2°

��gxx� with �11̄0� 0° 0.1°

��gxx� with �001� 0° 0.2°

��gzz� with �001� 35° 34.8°

��gzz� with �11̄0� 0° 0.7°

Hyperfine tensor Aiso Aani,xx Aani,yy Aani,zz

O1 −69.61 54.34 53.58 −107.92

O2 −108.65 71.24 74.56 −145.81

O3 −68.95 54.17 53.39 −107.57

FIG. 3. �11̄0�-plane: Configuration of O3
− in KCl.

FIG. 4. Calculated �g values for O3
− in KCl in the tilted con-

figuration. Comparison of the different methods for the calculation
of Eq. �13�. �thres=0.01 was used in the threshold calculation.
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IV. CONCLUSION

We have developed an alternative method for the calcula-
tion of the EPR g tensor in extended periodic systems, based
on a pseudopotential approach without reconstruction tech-
niques and the Sebastiani method. The method has been
implemented in the CPMD code.

We have shown that for radicals composed of lighter ele-
ments �up to Ne� in the Periodic Table, the prediction of the
g tensor is slightly suffering from the use of pseudopoten-
tials, and accuracies similar to the all-electron Schrecken-
bach and Ziegler calculations were obtained with different
types of norm-conserving pseudopotentials. For radicals with
heavier elements than Ne, more electrons than strictly re-
quired to describe chemical bonding need to be included in
the calculation.

The method comes at an attractive computational cost.
Together with the molecular dynamics capabilities of the

CPMD package, we plan to use our method for EPR studies at
finite temperatures. Calculations on relevant applications are
in progress and look promising. We expect the extension of
the CPMD code to be of great value in ab initio predictions of
the EPR g tensor.
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