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The charge-density-wave �CDW�–spin-density-wave �SDW� phase transition of the one-dimensional ex-
tended Hubbard model is investigated in the strong correlation regime, from the viewpoint of the quantum
coherence or decoherence of the two correlated states. In the finite-size system, the CDW wave function, near
the phase boundary, has the significant quantum fluctuations due to the SDW domains. The superposition of
these SDW domains leads to the quantum coherence between the CDW and SDW wave functions. However,
the scaling analysis shows that the density of the SDW fluctuations becomes asymptotically zero in the
infinite-size limit, which indicates the decoherence of the two states in the bulk phase transition.

DOI: 10.1103/PhysRevB.73.115105 PACS number�s�: 71.10.�w, 71.15.�m, 73.90.�f

I. INTRODUCTION

The quantum phase transition, quantum fluctuation, and
quantum nucleation have been attracting much interest in
fundamental physics for a long time.1 Now, the clarifying of
these quantum phenomena is believed also to help us under-
stand the quantum effects in the unconventional phases, such
as the high-temperature superconductivity2 and quantum
paraelectrics.3 Furthermore, in addition to the historical
3He-4He liquid mixtures,4,5 the quantum phase transition has
also been reported for the organic charge-transfer
complexes.6 Thus, the research on the fluctuations and nucle-
ation in the quantum phase transition has been becoming
quite important.

A one-dimensional �1D� electron system is a good target
to study the quantum phase transition, since no thermal
phase transition occurs in it due to the large quantum fluc-
tuations. A charge-density-wave �CDW�–spin-density-wave
�SDW� phase transition of the 1D extended Hubbard model
is a simple but interesting example, which has rich informa-
tion on the quantum effects in the phase transition. Its Hamil-
tonian is given by

H = − t�
l,�

N

�al,�
† al+1,� + al+1,�

† al,�� + U�
l

N

nl,↑nl,↓ + V�
l

N

nlnl+1,

�1�

where nl=nl,↑+nl,↓ and N represents the system size. The
half-filled case, where the number of electrons is equal to N,
is considered. In Eq. �1�, t, U, and V denote the transfer
energy between the neighboring sites, on-site and nearest-
neighbor-site Coulomb repulsions, respectively. In the fol-
lowing calculations, all the energies are scaled by t, and the
periodic boundary condition is imposed.

So far, the CDW–SDW phase transition has widely been
studied by many methods,7–25 and, for example, it has been
clarified that the phase boundary deviates slightly from the
Hartree-Fock �HF� result U=2V to the CDW side �U�2V�,
due to the electron correlation effects. The recent theories
have further pointed out the bond order wave �BOW� ground
state near the CDW–SDW phase boundary17–19,22–25 or just

on the phase boundary20 in the weak and intermediate corre-
lation regimes. Although the precise phase diagram is not
determined yet, the CDW–SDW phase transition is now be-
lieved to be mediated by the BOW ground state, such as
CDW–BOW–SDW, in the weak and intermediate correlation
regimes. On the other hand, the direct CDW–SDW phase
transition of the first order is realized in the strong correla-
tion regime.

Although the ground state behaviors have thus exten-
sively been studied, we do not have sufficient information on
the quantum fluctuations in this system yet, which is also
important to understand the nature of the transition.

In this paper, the direct CDW–SDW phase transition in
the strong correlation regime is studied by the resonating
Hartree-Fock �Res-HF� method, from the viewpoint of the
quantum coherence and decoherence of the two correlated
states. Here, the quantum coherence of the two states, de-
noted by A and B phases, for example, is accomplished by
the coherent superposition of the B phase domains in the
wave function for the A phase, and vice versa. These
counter-phase domains work as the quantum fluctuations in
the quantum phase transition. In the second order phase tran-
sition, this quantum coherence is realized and the electron
state changes continuously from one state to another by
changing the weight of the counter-phase domains. In the
first order phase transition, on the other hand, this quantum
coherence is cut off, and the two different phases cannot be
continuously connected by the quantum fluctuations. In the
previous paper, we have tried to clarify the quantum fluctua-
tion effects on the CDW–SDW phase transition.26 We have
shown that the SDW �CDW� domains appear in the CDW
�SDW� wave function near the phase boundary. However,
the system size was restricted up to N=22, and we could not
elucidate how the phase transition is characterized from the
quantum fluctuations. In this paper, it will be shown that the
density of the SDW domains in the CDW wave function
becomes asymptotically zero in the infinite-size limit, though
the small SDW domains persist near the phase boundary.
Thus, the quantum coherence between the CDW and SDW
states is cut off, and the phase transition becomes of the first
order in the infinite-size system.
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This viewpoint is important also for the preliminary un-
derstanding of the quantum nucleation. In general, the first
order phase transition starts with creation of islands or do-
mains of the true ground state in the quasistable state. Then,
these domains trigger the complete phase transition to the
true ground state. In the low temperature limit, where the
system cannot thermally go beyond the potential barrier, the
domains are created by the quantum tunneling effect. This
creation of the domains of the true ground state, in the first
step of the quantum phase transition, is called the quantum
nucleation. In this research, the quantum fluctuations due to
the survived SDW domains in the CDW wave function are
suggested to evolve into the quantum nucleation, which trig-
gers the CDW–SDW phase transition, when the system goes
to the SDW region. The subject of the present research is,
thus, to clarify the nature of the first order quantum phase
transition through the quantum fluctuations, and not to deter-
mine the phase diagram precisely. We are also interested in
the quantum nucleation, which is characteristic of the first
order phase transition. Since the CDW–BOW or
BOW–SDW phase transition is suggested to be
continuous,17–19,22–25 the BOW-mediated phase transition is
not suitable for the research on the quantum nucleation, and
it will be studied elsewhere.

This paper is organized as follows. In Sec. II, the Res-HF
method is briefly reviewed. In Sec. III, this method is applied
to the CDW–SDW phase transition in the 1D extended Hub-
bard model. The correlation structures and quantum fluctua-
tions are clarified in this section. Finally, a summary is given
in Sec. IV.

II. METHOD

The Res-HF method constructs a many-body wave func-
tion by superposition of nonorthogonal Slater determinants
�S-dets�,27 such as

��� = �
n=1

NS

Cn�
G

PG��n� . �2�

Here, the broken symmetry S-dets are employed to generate
the Res-HF wave function, and NS represents the number of
the S-dets. This is a natural extension of the unrestricted
Hartree-Fock �UHF� approximation, in which the electron
correlations are partially described by a single broken sym-
metry S-det, to the multi-S-det approach for the strongly cor-
related electron systems. To recover the original symmetry,
we apply the Peierls-Yoccoz28 and spin29 projections to the
constituting S-dets ��n�. The projections are symbolically de-
noted by PG in Eq. �2�. The 1D N-electron periodic system
has the DN symmetry, and both the CDW and SDW ground
states belong to the same singlet A1

+ irreducible representa-
tion, where the indices 1 and � represent the even parity of
the reflection and electron-hole symmetries, respectively.
The wave function is now explicitly given by

��� = �
n=1

NS

Cn�
m=0

N−1

Tm�1 + R��1 + Re-h�PS��n� , �3�

where T makes the translation of the S-det by one site, while
PS, R, and Re−h represent the spin projection, C2 rotation in
the DN symmetry, and the electron-hole conversion, respec-
tively. A similar method has been developed independently

FIG. 1. V-dependence of the overall structures of the spin and charge correlation functions for N=50 at U=10. The Res-HF results with
NS=30 S-dets �black circles� are compared with those with NS=20 S-dets �crosses� for the spin correlation functions in the SDW region and
charge correlation functions in the CDW region.
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by another group.30 One of the most important points in the
Res-HF method is that the orbitals in every S-det are newly
determined by the direct optimization method31 to minimize
the many-body state energy. This orbital optimization im-
proves the Res-HF wave function quite significantly. The
author showed in the previous paper32 that the Res-HF
method can describe the electron correlation effects very ef-
ficiently for the 1D Hubbard model at any filling, where we
have the exact Lieb-Wu solution.33,34 In addition, by looking
at the structures of the constituting S-dets, we can directly
obtain information on the quantum fluctuations.

Now, we mention how to prepare the initial S-dets for the
Res-HF wave functions. Since the orbital optimization is a
time-consuming process,31 the choosing of the proper initial
S-dets is important to save the computational time. In the
previous papers,31,32 it was shown that the dominant quantum
fluctuations in the half-filled Hubbard model are described
by the translational and vibrational motions of the SDW neu-
tral solitons. Here, the soliton is a topological defect which
converts the phase of the SDW. A neutral soliton has spin of
1 /2 and no charge, while a charged soliton has charge of e
and no spin. In the present study, we start the Res-HF wave
function for the SDW state with the superposition of the
UHF S-dets representing the neutral soliton pairs with differ-
ent distances. In the CDW region, we also prepare the S-dets
representing the charged solitons as well as the neutral ones
for the initial Res-HF wave function. As shown in the fol-

lowing sections, however, some of these solitons disappear
after the orbital optimization, and the SDW �CDW� domains
appear in the Res-HF CDW �SDW� wave functions, espe-
cially near the phase boundary. This shows the importance of
the orbital optimization. In fact, the CDW solitons no longer
work as the dominant quantum fluctuations in the CDW sys-
tem, unlike the SDW soliton in the SDW system. In the
following calculations, the Res-HF wave functions are con-
structed by NS=30 S-dets for N=50, and NS=20 S-dets for
the smaller systems. It should be noted that the following
Res-HF results are not significantly modified even if the
numbers of S-dets are further increased.

III. RESULTS AND DISCUSSION

First, we show, in Fig. 1, the V-dependence of the overall
structures of the spin and charge correlation functions for
N=50 at U=10. These correlation functions are defined by

FSpin�l� =
���Sl · S0���

�����
, �4�

FCharge�l� =
���nl · n0���

�����
, �5�

where

FIG. 2. V-dependence of the order parameters at U=10. �a� and �b� show �S and �C at m=7, while �c� and �d� show those at m=15.
Black and white circles in �a� and �b� represent the Res-HF results for N=14 and 22, while white triangles and crosses in �a�–�d� denote the
results for N=30 and 50.
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Sl =
1

2 �
�,	=↑↓

al,�
† ����	al,	, �6�

nl = nl,↑ + nl,↓. �7�

Sl is the spin density at the lth site with the Pauli spin ma-
trices �= ��1 ,�2 ,�3�, and nl is the electron charge density at
the lth site. In Fig. 1, for comparison, the Res-HF results
with NS=20 S-dets are also shown by the crosses for the spin
�charge� correlation functions in the SDW �CDW� regime.
As mentioned in the preceding section, we cannot find any
significant difference between the results with NS=20 and
NS=30 S-dets. From Figs. 1�a� and 1�b�, we can see that the
spin correlation function does not have a real long-range or-
der even in the SDW region. Thus, as is already established
in the Hubbard system, we can safely say that the SDW state
is a Mott insulator with a quasi-long-range order. In the
CDW region, on the other hand, we can see, from Figs. 1�c�
and 1�d�, that the charge correlation function has a long-
range order. This long-range order will cause the spontane-
ous translational symmetry breaking in the infinite-size sys-
tem.

Then, let us see the CDW–SDW phase transition through
the order parameters. In this research, the following quanti-
ties �S�m� and �C�m� are taken as the order parameters,

which reflect the spin and charge correlation structures up to
the mth neighboring site, respectively,

�S�m� =
�l=0

l=m
�− 1�lFSpin�l�

m + 1
, �8�

�C�m� =
�l=0

l=m
�− 1�lFCharge�l�

m + 1
. �9�

As shown in Fig. 1, the CDW system has a long-range or-
dering. In this case, the order parameter does not depend on
m so largely. On the other hand, the 1D SDW system does
not have a real long-range order, and the sum of the SDW
correlation function divided by the system size goes to zero
when the system size becomes infinite �m→
�. Therefore,
we had better cut m at a finite value to focus on the relevant
correlation structures. In this research, m=7 and m=15 are
employed to reflect both the spin and charge correlation
structures appropriately into the order parameters, and also to
see the m-dependence of the order parameters.

Figures 2�a� and 2�b� show the V-dependences of �S�7�
and �C�7�, respectively, at U=10. Black and white circles
represent the results for N=14 and 22, respectively, while the
triangles and crosses denote those for N=30 and 50, respec-
tively. Both order parameters change discontinuously at the

FIG. 3. Electronic structures of five typical S-dets generating the Res-HF wave function at �U ,V�= �10,5.15� for N=50. Charge density
is measured from the half-filling. The numeral in each S-det denotes the probability to find that S-det in the Res-HF wave function.
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phase boundary �V�5.1�. In the case of N=14, however,
jumps of �S�7� and �C�7� at the phase boundary are much
smaller than those of N=22, 30, and 50. This finite-size ef-
fect is discussed in the following paragraphs from the view-
point of the quantum coherence or the avoided crossing. Fig-
ures 2�c� and 2�d� show the V-dependences of �S�15� and
�C�15�, respectively, where the triangles and crosses denote
the results for N=30 and 50 as in Figs. 2�a� and 2�b�. By
comparing Figs. 2�a� and 2�c�, we can see that the amplitude
of �S becomes smaller as m is increased. This is because the
SDW system does not have a real long-range order. If we
took m→
, the amplitude of �S would be zero. Thus, to see
the relevant spin correlation structure, as mentioned above,
we had better cut m at a finite value. The present results
indicate that both �S�7� and �S�15� show the relevant change
in the SDW correlation structure appropriately. On the other
hand, as seen from Figs. 2�b� and 2�e�, �C hardly depends on
m, since the CDW system has a real long-range order. The
discrete changes in both the spin and charge order param-
eters in the strong correlation regime agree with the previous
results,8–10,12,13,15–17,19,20,24,25 and they indicate the first order
phase transition in this correlation regime.

Now, let us investigate this phase transition through the
quantum fluctuations. Figures 3 and 4 show the structures of
five typical S-dets, generating the Res-HF wave functions for
N=50 and N=14, respectively. In both figures, �U ,V� is set

at �10,5.15�, which is in the CDW region very close to the
phase boundary. In these figures, the spin density �SD� rep-
resents the z component of Sl, while the charge density �CD�
is measured from the half-filling, such as

SD�l� = 1
2 �nl,↑ − nl,↓� , �10�

CD�l� = nl,↑ + nl,↓ − 1. �11�

The numeral in each S-det denotes the probability to find a
symmetry projected S-det in the Res-HF wave function.
Since the Res-HF wave function ��� is constituted of nonor-
thogonal S-dets ��n�, this probability pn is explicitly given by

pn = �����
m=0

N−1

Tm�1 + R��1 + Re-h�PS��n��2

. �12�

We should note that because of nonorthogonality of the
S-dets, the sum of their probabilities is not equal to 1, though
only the typical S-dets are depicted here. The Res-HF wave
functions, shown in Figs. 3 and 4 indicate that the SDW
domains appear in the CDW ground state near the phase
boundary, and the CDW amplitudes are reduced where the
SDW domains arise. In the Res-HF calculations, as men-
tioned in Sec. II, the broken-symmetry S-dets, shown in Figs.
3 and 4, are projected onto the subspace of the singlet A1

+

irreducible representation with the group integration intro-

FIG. 4. Electronic structures of five typical S-dets at �U ,V�= �10,5.15� for N=14.
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duced by Peierls and Yoccoz. Then, in Fig. 3�a�–3�d� repre-
sent the quantum fluctuations due to the expanding and con-
tracting motions of the SDW domains, while the S-dets,
shown in Fig. 3�e�, include two SDW domains. The rest of
the S-dets severally include a single SDW domain whose
size is in between �a� and �d�. On the other hand, as shown in
Fig. 4, the Res-HF wave function for N=14 has much larger
SDW domains near the phase boundary. In fact, as shown in
Figs. 4�d� and 4�e�, some S-dets include the larger SDW
domains than the CDW ones, though the most S-dets consist
of the dominant CDW components with the smaller SDW
domains, like Figs. 4�a� and 4�b�. This large SDW contribu-
tion in the Res-HF CDW wave function for N=14 is consis-
tent with the continuous changes in the order parameters
shown in Figs. 2�a� and 2�b�.

For comparison, in Fig. 5, we show five typical S-dets
generating the Res-HF wave function for N=50 at �U ,V�
= �10,5�, which lies in the SDW region close to the phase
boundary. In Figs. 5�a�–5�e�, the alternating component of
the spin density shown at the bottom of each figure repre-
sents both the amplitude and phase of the SDW. Here, the
defect, which converts the SDW phase � to � across the
horizontal zero line, denotes the SDW neutral soliton. While
the S-det shown in Fig. 5�a� contains two confined CDW
domains, the S-dets shown in Figs. 5�b�–5�e� include the
SDW neutral soliton pair on the left-hand side as well as the

CDW domain on the right-hand side. Thus, in contrast to the
CDW case, the Res-HF SDW wave function still has the
quantum fluctuations due to the SDW solitons even near the
phase boundary. However, as seen from Fig. 5, these SDW
neutral solitons do not affect the CDW component, and
therefore, we can safely say that they work for the stabiliza-
tion of the SDW state, as clarified in the Hubbard model.31,32

Thus, from Figs. 3–5 we can see that the relevant fluctua-
tions in the CDW-SDW phase transition are the SDW do-
mains in the CDW wave function and the CDW domains in
the SDW wave function.

Here, the following scenario is given for this quantum
phase transition. Since both the CDW and SDW wave func-
tions belong to the same singlet A1

+ irreducible representa-
tion, the electron state should change continuously from the
CDW to the SDW and vice versa in the finite-size system.
The origin of such a continuous change is the finite off-
diagonal resonance between the two wave functions, having
the same symmetry. The finite off-diagonal resonance causes
the mixing of the two states, and as a result, the SDW
�CDW� domains appear in the CDW �SDW� wave function.
The coherent superposition of these SDW �CDW� domains
brings about the quantum coherence between the CDW and
SDW states in the finite-size system. Thus, the continuous
change in the order parameters for N=14 shown in Figs. 2�a�
and 2�b�, and the large quantum fluctuations due to the SDW
domains in the Res-HF CDW wave function shown in Fig. 4

FIG. 5. Electronic structures of five typical S-dets generating the Res-HF wave function for N=50 at �U ,V�= �10,5�, which lies in the
SDW region near the phase boundary. The alternating component of the SD at the bottom of each figure represents both the phase and
amplitude of the SDW.
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are explained by this quantum coherence. The quantum co-
herence is a natural extension of the well-known avoided
crossing for the diatomic molecule, in which the two poten-
tial curves for the two independent wave functions having
the same symmetry cannot cross due to the finite off-
diagonal resonance between the two wave functions.

However, the above discussion is for the finite-size sys-
tems. To understand the bulk phase transition correctly, we
must remove the finite-size effects. In fact, as shown in Fig.
2, the changes in the order parameters become much more
discrete as the system size is increased. To elucidate the role
of the quantum fluctuations in the bulk phase transition, we
show in Fig. 6 the expectation value of the size of the SDW
domains in the CDW ground state, as a function of the sys-
tem size. This expectation value WSDW is given by

WSDW =
�n=1

NS pnWSDW�n�

�n=1

NS pn

, �13�

where WSDW�n� represents the size of the SDW domain in
the nth S-det ��n�, and the pn is the probability of ��n� de-
fined by Eq. �12�. Black squares and circles represent the
results for �U ,V�= �10,10� and �10, 5.15�, which lie in the
deep CDW region and near the phase boundary, respectively.
Although the size of N=50 might be small for the accurate
extrapolation, we can see that near the phase boundary, the
size of the SDW domains stays finite in the infinite-size
limit, while it goes to zero in the deep CDW region. On the
other hand, as shown in the inset of Fig. 6, the density of the
SDW domains is extrapolated to zero even near the phase
boundary, as well as in the deep CDW regions, in the
infinite-size limit. This result means that the mixing ratio of

the SDW domain in the CDW wave function becomes zero
in the infinite-size system, even near the CDW–SDW phase
transition, which indicates the decoherence of the CDW and
SDW states. Eventually, the CDW wave function becomes
asymptotically orthogonal to the SDW wave function at the
phase boundary, and the transition becomes of the first order
in the infinite-size system.

Finally, we mention the possible relationship of the quan-
tum fluctuations and quantum nucleation. Figure 6 shows
that the size of the SDW domains increases as the system
moves from the deep CDW region to the phase boundary.
Though the CDW–SDW phase transition is of the first order
due to the decoherence of the two states, the SDW domains
stay finite at �U ,V�= �10,5.15� even in the infinite-size limit.
Therefore, it is suggested that when the CDW system crosses
the transition point to the SDW region, the quantum fluctua-
tions due to the SDW domains can naturally evolve into the
quantum nucleation, which triggers the CDW–SDW phase
transition. Thus, we can regard these SDW domains as the
precursor of the quantum nucleation in the first order quan-
tum phase transition. The precise mechanism of this quantum
nucleation will be studied elsewhere.

IV. SUMMARY

The Res-HF calculations have shown that the quantum
fluctuations due to the SDW �CDW� domains, induced by the
off-diagonal resonance, lead to the quantum coherence of the
CDW and SDW states, and the electronic state changes con-
tinuously in the finite-size system. However, the scaling
analysis has indicated the decoherence of the two correlated
states in the bulk phase transition, since the density of the
counter-phase domains becomes asymptotically zero. These
results agree with the discontinuous behaviors of the order
parameters at the phase boundary when the system size is
increased. Finally, it has been suggested that the finite
counter-phase domain in the infinite-size system would be
the precursor of the quantum nucleation.
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